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Abstract. Entity alignment (EA) which links equivalent entities across
different knowledge graphs (KGs) plays a crucial role in knowledge fu-
sion. In recent years, graph neural networks (GNNs) have been success-
fully applied in many embedding-based EA methods. However, existing
GNN-based methods either suffer from the structural heterogeneity issue
that especially appears in the real KG distributions or ignore the hetero-
geneous representation learning for unseen (unlabeled) entities, which
would lead the model to overfit on few alignment seeds (i.e., training
data) and thus cause unsatisfactory alignment performance. To enhance
the EA ability, we propose GAEA, a novel EA approach based on graph
augmentation. In this model, we design a simple Entity-Relation (ER)
Encoder to generate latent representations for entities via jointly mod-
eling comprehensive structural information and rich relation semantics.
Moreover, we use graph augmentation to create two graph views for
margin-based alignment learning and contrastive entity representation
learning, thus mitigating structural heterogeneity and further improving
the model’s alignment performance. Extensive experiments conducted on
benchmark datasets demonstrate the effectiveness of our method. Our
codes are available at https://github.com/Xiefeng69/GAEA.

Keywords: Knowledge Graph · Entity Alignment · Graph Neural Net-
works · Graph Augmentation · Knowledge Representation.

1 Introduction

Knowledge graphs (KGs) can effectively organize and represent facts about the
world in a structured fashion. More and more KGs have been constructed based
on different data sources or for different purposes. Therefore, the knowledge
contained in different KGs is far from complete yet complementary [22]. Entity
alignment (EA) which aims to link semantically equivalent entities located on dif-
ferent KGs has attracted increasing attention since it could facilitate knowledge
integration and thus promote knowledge-driven applications, such as question
answering, recommender systems, and semantic search.

In recent years, embedding-based EA methods [2,30,20,3,14,11,26,22] have
achieved decent results. The general pipeline can be summarized into two steps:
(I) generating low-dimensional embeddings (latent representations) for entities
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via KG encoder (e.g., TransE [1]), and then (II) pulling two KGs into a unified
embedding space through prior alignment seeds and pairing each entity by dis-
tance metrics (e.g., Euclidean distance). Moreover, some works further improve
the EA performance by introducing extra information, such as entity names [29],
attributes [5,12], and literal descriptions [24], while these discriminative features
are usually privacy sensitive, noise polluted, and hard to collect [8].

Due to the powerful structure learning capability, Graph Neural Networks
(GNNs) like GCN [4] and GAT [17] have been employed as the encoder with
Siamese architecture (i.e., shared-parameter) for many embedding-based models
[20,14,6,26]. KGs are heterogeneous, especially in real KG distributions, which
means entities that have the same referent in different KGs usually have dissimi-
lar relational neighborhood. To address this problem, existing GNN-based mod-
els modify and improve GNN variants to better capture structural information
in KGs, e.g., AliNet [14] adopts multi-hop aggregation with gating mechanism to
expand neighborhood ranges and RDGCN [21] incorporates relation features via
attention interactions for embedding learning. However, these models introduce
a large number of neural network operations and ignore representation learning
for unseen entities, which will tend to make the models overfit on few alignment
seeds and thus undermine their generalization and performance.

In this paper, we propose GAEA, a novel knowledge graph entity alignment
model based on graph augmentation. Firstly, we design an Entity-Relation (ER)
Encoder to generate entity representations via jointly leveraging neighborhood
structures and relation semantics in KGs. Then, we apply graph augmentation
to increase the structural diversity of input KG in the alignment learning pro-
cess, which encourages the model to capture the semantic importance of different
neighbors and enforces the model to obtain stable representations against struc-
ture perturbation, thus mitigating overfitting issue to some extent. Moreover,
since graph augmentation can inherently generate two distinct graph views with-
out extra parameters, we can let the model perceive structural differences and
further improve the feature learning for (unseen) entities by applying contrastive
entity representation learning to maximize the consistency between the original
KG and augmented KG [25,19]. Our experiments on benchmark datasets Ope-
nEA [15] show that GAEA outperforms the existing state-of-the-art embedding-
based EA methods. We also conduct thorough auxiliary analyses to demonstrate
the effectiveness of incorporating graph augmentation techniques.

2 Related Works

Entity alignment is a fundamental task to identify the same entities across differ-
ent KGs, which has attracted increasing attention in recent years. The existing
embedding-based methods can be roughly divided into two categories:

1. Structure-based models. These models solely rely on the original struc-
ture information of KGs (i.e., triples) to align entities. Previous methods
mainly use knowledge representation learning to generate low-dimensional
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embeddings for entities [2,30,7]. For example, MTransE [2] applies TransE [1]
to embed different KGs into independent vector spaces and constructs tran-
sitions via proposed alignment modules. Inspired by the powerful structure
learning ability of Graph Neural Networks (GNNs), a large body of works
begin to focus on employing GNNs as the encoder. GCN-Align [20] incorpo-
rates GCN [4] to capture entities’ neighborhood structures for the first time
and achieves promising results. Subsequent works not only apply various
GNN variants, like GAT [17], but also improve the structure awareness by
overcoming heterogeneity of different KGs [14,3,21], capturing multi-context
structural features [22], and infusing relation semantics [6,11].

2. Enhancement-based models. These models aim to build a high-accuracy
alignment system using designed alignment strategies or extra information.
BootEA [13] applies iterative learning to find potential alignments and adds
them to the training set for data augmentation. CEA [28] formulates align-
ment inference as a stable matching problem to model collective signals,
successfully guaranteeing 1-to-1 alignment. Other effective models introduce
extra information to enhance the alignment performance, including entity
names [29], attributes [5,12], and literal descriptions [24].

In this work, we aim to improve the performance and efficiency of entity align-
ment only utilizing structural contexts which are abundant and always available
without privacy issues in the real-world KGs.

3 Preliminaries

Knowledge graph. A knowledge graph (KG) is formalized as G = (E,R, T ),
where E and R refer to the set of entities and the set of relations, respectively.
T = E×R×E = {(h, r, t)|h, t ∈ E ∧ r ∈ R} is the set of triples, where h, r, and
t denote the head entity, connected relation, tail entity, respectively.

Entity alignment. Given two KGs: Gs = (Es, Rs, Ts) as the source KG and
Gt = (Et, Rt, Tt) as the target KG, and few alignment seeds (aka pre-aligned
entity pairs) S = {(ei, ej)|ei ∈ Es∧ej ∈ Et∧ei ≡ ej}, where≡means equivalence
relationship, entity alignment (EA) aims to seek remaining equivalent entities
located on different KGs via entity representations.

Augmented graph. Graph augmentation techniques will generate a perturbed
version of the original graph, i.e., augmented graph, by augmentation strategies
(e.g., node dropping, edge perturbation). In order not to introduce wrong facts,
we only choose edge dropping in this work. At each training iteration, we ran-
domly drop out some triples based on the deletion ratio r ∼ uniform(0, pr),
where pr is a preset upper bound of the deletion ratio. The augmented graphs
for Gs and Gt are denoted as Gaug

s and Gaug
t , respectively. Note that we do not

consider deleting the triples associated with entities whose degree is less than 2,
because these long-tail entities have sparse neighborhood structures inherently.
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Fig. 1. The framework of our proposed GAEA.

4 Methodology

This section details our proposed method, termed as GAEA, which is drawn in
Fig. 1: (a) Entity-Relation (ER) Encoder which generates latent representations
for entities by capturing neighborhood structures and relation semantics jointly;
(b) the training process of GAEA can be decomposed into multiple epochs, and
in each epoch, we incorporate graph augmentation to conduct margin-based
alignment learning and contrastive entity representation learning.

Initialization. At the beginning, we randomly initialize entity embeddings
Hent ∈ R(|Es|+|Et|)×dent and relation embeddings Hrel ∈ R|Rs∪Rt|×drel , where
dent and drel are the embedding dimension of entities and relations, respectively.

4.1 Entity-Relation Encoder

Here, we present the Entity-Relation Encoder (ER Encoder for short), which
aims to fully capture the contextual information of entities using two aspects
jointly: (I) neighborhood structures and (II) relation semantics.

Neighborhood aggregator. First, we aggregate neighbor entities’ infor-
mation to the central entity. The rationality of neighborhood aggregator lies in
the structure assumption that, equivalent entities tend to have similar neigh-
bor structures [20]. Moreover, leveraging multi-range neighborhood structures
is capable of providing more alignment evidence and mitigating the structural
heterogeneity issue. In this work, we apply Graph Attention Network (GAT)
[17] to allow the central entity to learn the importance of different neighbors
and thus selectively aggregate surrounding information, and we then recursively
capture multi-range neighbor information by stacking multiple layers:

h(l)
ei =

∑
ej∈Nei

αijh
(l−1)
ej , (1)

αij =
exp(LeakyReLU(a>[Wghei ⊕Wghej ]))∑

ek∈Nei
exp(LeakyReLU(a>[Wghei ⊕Wghek ]))

, (2)
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where > represents transposition, ⊕ is the concatenation operation, Wg and a
are the transformation parameter and attention transformation vector, respec-
tively. Nei means the neighbor set of entity ei in KG, and αij indicates the

learned importance of entity ej to entity ei. h
(l)
ei denotes the embedding of ei

at l-th layer (total L layers) with H(0) = Hent. Note that here we remove the
feature transformation and nonlinear activation that act on input embeddings
in vanilla GAT since we mainly focus on information aggregation. We only use
Wg and a to make each entity aware of its neighborhood contexts.

After multi-layer GAT, we obtain the multi-range neighborhood structural
representation matrix for each entity, i.e., Hm

ei = [h(1)
ei , ...,h

(L)
ei ] ∈ RL×dent for ei.

Since different neighborhood ranges have different contributions to characterize
the central entity, it is necessary to employ a mechanism to adaptively control the
flow of each range and thus reduce noise. Inspired by the skipping connections
in neural networks [10,23,14], we firstly utilize a Scaled Dot-Product Attention
mechanism [16] to learn the importance of each range, and then fuse small-range
and wide-range representations by weighted average:

[ĥ
(1)

ei , ..., ĥ
(L)

ei ] = softmax(
(Hm

eiWq)(Hm
eiWk)>

√
dent

)Hm
ei (3)

hn
ei =

1

L

L∑
l=1

ĥ
(l)

ei , (4)

where 1/
√
dent is the scaling factor, Wq and Wk are the learnable parameter

matrices, and hn
ei is the output of neighborhood aggregator.

Relation aggregator. Relation-level information which carries rich seman-
tics is vital to align entities in KGs [29,24] because two equivalent entities may
share overlapping relations. MRAEA [6] pointed out that relation directions
impose extra but delicate constraints on the head and tail entity individually.
Therefore, in this work, we directly use two mean aggregators to gather outward
relation semantics and inward relation semantics separately to provide supple-
mentary alignment signals for heterogeneous KGs:

hr
ei =

1

|Nr+
ei |

∑
r∈Nr+

ei

hrel
r ⊕

1

|Nr−
ei |

∑
r∈Nr−

ei

hrel
r , (5)

where Nr+
ei and Nr−

ei are the outward and inward relation set of ei, respectively.
Feature fusion. Finally, we concatenate two aspects of information:

h̃ei = hn
ei ⊕ hr

ei , (6)

where h̃ei ∈ Rdent+2×drel is the final output representation of ER Encoder for
ei. In the following training process, the ER Encoder is shared for Gs, Gt, and
their augmented graphs, and given an entity ei, we denote by h̃ei its represen-

tation generated by ER Encoder with the original graph as input, and h̃
aug

ei its
representation generated with the augmented graph as input.
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4.2 Model Training with Graph Augmentation

Graph augmentation learning has been demonstrated to promote the perfor-
mance of graph learning, such as overcoming overfitting and oversmoothing is-
sues [9], and being used for graph contrastive learning [25]. We apply graph
augmentation for EA and highlight two main enhancements contributed by it:
(I) injecting perturbations into the original KG can increase the diversity of the
structural differences, thus preventing the model from overfitting to the training
data during alignment process to some extent as well as enforcing the model
to produce robust entity representations against structural changes; (II) graph
augmentation inherently generates two graph views without extra parameters,
which facilitates conducting contrastive learning to promote heterogeneous rep-
resentation learning for (unseen) entities by contrasting different views.

Margin-based alignment loss. In order to make equivalent entities close
to each other and unmatched entities pull away from each other in a unified
embedding space. Following previous works [20,6,5], we apply the margin-based
alignment loss supervised by pre-aligned entity pairs S. Notably, here, we use
the output of ER Encoder based on augmented graphs to make the model avoid
overfitting and behave durable against edge changes:

La =
∑

(ei,ej)∈S

∑
(ēi,ēj)∈S̄(ei,ej)

[
||h̃

aug

ei − h̃
aug

ej ||L2 + ρ− ||h̃
aug

ēi − h̃
aug

ēj ||L2

]
+
, (7)

where ρ is a hyper-parameter of margin, [x]+ = max{0, x} is to ensure non-
negative output, and S̄(ei,ej) denotes the set of negative entity alignments con-
structed by corrupting the ground-truth alignment (ei, ej), i.e., replacing ei or
ej with another entity in Gs or Gt via negative sampling strategy.

Contrastive loss. Contrastive learning is a good means to explore supervi-
sion signals from the vast unlabeled data. Many graph learning works [18,25,19]
apply it to learn representations by contrasting different views and then maximiz-
ing feature consistency between them. RAC [27] is an effective EA model which
incorporates contrastive learning to ameliorate the alignment performance. How-
ever, RAC needs to employ two separate graph encoders with the same archi-
tecture to model different views of the structural features of entities, which will
bring twice the parameters and damage the diversity of graph views. Graph aug-
mentation inherently provides two different views (i.e., original graph view and
augmented graph view) without extra parameters. Therefore, we define the con-
trastive loss to improve entity representation learning by maximizing the feature
consistency between the original structure and augmented structure:

Lc =
∑

z={s,t}

1

2|Ez|
∑

ei∈Ez

(L(Gz,G
aug
z )

c,ei + L(Gaug
z ,Gz)

c,ei ), (8)

L(Gz,G
aug
z )

c,ei = −log
exp(〈proj(h̃ei),proj(h̃

aug

ei )〉)∑
ek∈Ez

exp(〈proj(h̃ei),proj(h̃
aug

ek
)〉)
, (9)
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where 〈·〉 means inner product, and proj(·) is a shared projection head consisting
of a linear layer and a ReLU activation function to map entity representations to
low-dimensional vector space [25]. The definition of the symmetric contrastive

loss term L(Gaug
z ,Gz)

c,ei is similar with Eq.(9).
Model training. We combine the margin-based alignment loss and the con-

trastive loss, arriving at the final objective of our model:

L = La + λLc, (10)

where λ ≥ 0 is a tunable parameter weighting the two objectives. The training
process of GAEA is outlined in Algorithm 1, where negative sample set and
augmented graphs will be updated every iteration (10 epochs as an iteration).

Algorithm 1: Training Procedure of GAEA

Input: Knowledge graph Gs and Gt, pre-aligned entity pairs S.
1 Initialize entity embeddings and relation embeddings;
2 while Not Converge do
3 for each Epoch do
4 if Epoch % 10 == 0 then // 10 epochs as an iteration

5 Generate augmented graphs Gaug
s and Gaug

t for Gs and Gt;
6 Generate negative sample set S̄ based on S;

7 Generate entity representations using ER Encoder;
8 Calculate La using S and S̄ via Eq.(7);
9 Calculate Lc using Eq.(8) and Eq.(9);

10 Θ ← BackProp(La + λLc); . Adam step

11 return Model parameters Θ;

4.3 Alignment Inference

After pulling embeddings from two KGs into a unified vector space and making
them comparable, alignment relationships can be inferred by measuring the dis-
tance between two entities. In this work, we use Euclidean Distance to be the
distance metric, i.e., for ei ∈ Es and ej ∈ Et, the distance between entity pair

(ei,ej) is calculated by ||h̃ei− h̃ej ||L2. In order to find ei’ alignment relationship,
we calculate its distance to all entities belonging to Gt and perform the nearest
neighbor (NN) search to identify ei’ counterpart entity in Gt:

ej = arg min
e
′
j∈Et

||h̃ei − h̃e
′
j
||L2. (11)

Notably, we use the original KG structures in the inference phase instead of
augmented versions to generate final entity representation h̃. We apply Faiss1

to accelerate the alignment inference process.

1 https://github.com/facebookresearch/faiss
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5 Experimental Setup

5.1 Experimental Setup

Datasets. We use the 15K benchmark dataset (V1) in OpenEA [15] for evalu-
ation since the entities thereof follow the degree distribution in real-world KGs.
It contains two cross-lingual settings, i.e., EN-FR-15K (English-to-French) and
EN-DE-15K (English-to-German), and two monolingual settings, i.e., D-W-15K
(DBPedia-to-Wikidata) and D-Y-15K (DBPedia-to-YAGO). Following the data
splits in OpenEA, we use the same split setting where 20%, 10%, and 70% align-
ments are harnessed for training, validation, and testing, respectively.

Metrics. We adopt Hits@k (k=1,5) and Mean Reciprocal Rank (MRR) as the
evaluation metrics. Hits@k is to measure the alignment accuracy, while MRR
measures the average performance of ranking over all test samples. The higher
the Hits@k and MRR, the better the alignment performance.

Baselines. We choose some GNN variants and several existing state-of-the-
art embedding-based EA models as baselines: GCN [4] and GAT [17] are the
classic variants of GNNs; MTransE [2] and SEA [7] are triple-based methods
that capture the local semantics information of relation triples via knowledge
representation learning; GCN-Align [20], AliNet [14], HyperKA [11], and KE-
GCN [26] are the neighborhood-based methods which apply GNNs to explore
neighborhood structure information; IPTransE [30] and RSNs [3] both are path-
based methods that extract the long-term dependencies across relation paths;
IMEA [22] is the recent strong baseline which uses Transformer-like architecture
to capture multiple structural contexts in an end-to-end manner.

We should note here that our model and the above baselines all mainly focus
on the structural information of KGs. Therefore, for a fair comparison, we do
not consider the models which utilize extra information (e.g., attributes, literals)
for enhancement, such as AttrGNN [5], HMAN [24], MultiKE [29].

Implementation details. All programs are implemented using Python 3.6.13
and PyTorch 1.10.2 with CUDA 11.3 on an NVIDIA GeForce RTX 3090 GPU.
Following OpenEA [15], we report the average results of five-fold cross-validation.
We initialize trainable parameters with the Xavier initializer, and we train the
model using Adam optimizer with weight decay 1e-5 and perform early stop-
ping to terminate training based on the MRR score tested every 10 epochs on
the validation data. As for hyper-parameters, the learning rate is set to 0.001,
the dropout rate is 0.2, the layer number of GAT L is 2, the number of nega-
tive samples for each entity is 5, the negative sampling strategy is ε-Truncated
Uniform Negative Sampling [13] with ε = 0.9, the margin ρ is 1, the balance
parameter λ is 100, and the embedding dimension of entities dent and relations
drel are set to 256 and 128, respectively. The pr is searched in {0.05, 0.1, 0.15}.
Following the convention, the default alignment direction is from left to right.
Taking D-W-15K as an example, we regard DBpedia as the source KG and seek
to find the counterparts of source entities in the target KG Wikidata.
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Table 1. Entity alignment results in cross-lingual and monolingual settings. The results
with † are retrieved from [15], and ‡ from [22]. Results labeled by ∗ are reproduced
using the released source codes. The boldface indicates the best result of each column
and underlined the second-best.

Models
EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR

GCN∗ .210 .414 .304 .304 .497 .394 .208 .367 .284 .343 .503 .416

GAT∗ .297 .585 .426 .542 .737 .630 .383 .622 .489 .468 .707 .573

MTrasnE† .247 .467 .351 .307 .518 .407 .259 .461 .354 .463 .675 .559

SEA† .280 .530 .397 .530 .718 .617 .360 .572 .458 .500 .706 .591

IPTransE† .169 .320 .243 .350 .515 .430 .232 .380 .303 .313 .456 .378

RSNs† .393 .595 .487 .587 .752 .662 .441 .615 .521 .514 .655 .580

GCN-Align† .338 .589 .451 .481 .679 .571 .364 .580 .461 .465 .626 .536

AliNet‡ .364 .597 .467 .604 .759 .673 .440 .628 .522 .559 .690 .617

HyperKA‡ .353 .630 .477 .560 .780 .656 .440 .686 .548 .568 .777 .659

KE-GCN‡ .408 .670 .524 .658 .822 .730 .519 .727 .608 .560 .750 .644

IMEA‡ .458 .720 .574 .639 .827 .724 .527 .753 .626 .639 .804 .712

GAEA .486 .746 .602 .684 .854 .760 .562 .768 .654 .608 .791 .688

w/o rel. .324 .626 .458 .593 .785 .678 .409 .666 .521 .502 .743 .605

5.2 Experimental Results

Performance comparison. Table 1 reports the comparison results on the Ope-
nEA 15K datasets. Experimental results show that our proposed GAEA outper-
forms other models in most tasks, especially in cross-lingual settings. There is
a phenomenon that the performance of models utilizing knowledge representa-
tion learning as the encoder, e.g., MTransE, SEA, and IPTransE, are inferior
compared with the models applying GNNs as the encoder like AliNet and KE-
GCN, and have on-par or even worse performance than vanilla GCN and GAT,
which demonstrates the GNNs’ powerful representation ability in EA. We also
notice that, compared with some methods applying GCN as the encoder (e.g.,
GCN-Align, AliNet), the vanilla GCN fails to surpass them, which shows the sig-
nificance of designing a more effective encoder for representing entities in KGs.
IMEA is a strong baseline that captures abundant structure contexts and it
obtains excellent results on D-Y-15K task. However, IMEA introduces carefully
designed data processing (e.g., entity paths encoding) and becomes a complicated
network due to the Transformer-like architecture, which will inevitably increase
the training difficulty and overfitting risk. Additionally, we compare the model
size (denoted as #Params) in Table 2. GAEA greatly reduces the number of
parameters compared to IMEA while acquiring decent alignment performance.
This is because GAEA designs a simple Entity-Relation Encoder to capture
multi-range neighborhood structures to mitigate heterogeneity and infuse rela-
tion semantics to provide more comprehensive signals for alignment. Moreover,
GAEA further facilitates producing expressive and robust entity representations
by integrating graph augmentation to achieve alignment learning supervised by
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alignment seeds and contrastive representation learning for unseen entities. In
summary, our proposed GAEA is a light and powerful solution for EA.

Table 2. #Params comparison.

Models #Params (M)

GCN ∼7.81M
AliNet ∼16.18M
IMEA ∼20.44M
GAEA (ours) ∼8.10M

Table 3. Ablation study results.

Models
EN-DE-15K D-W-15K

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR

GAEA .684 .854 .760 .562 .768 .654
−gaal. .674 .848 .751 .557 .764 .650
−Lc .665 .841 .744 .544 .755 .639

Ablation study. In the above experiments, the overall effectiveness of GAEA is
proved. In this section, we conduct ablation analyses to demonstrate the validity
of each component of GAEA. First, Table 1 also gives the results of a variant
of GAEA (denoted as w/o rel.), which means the original GAEA eliminates
relation injection. The ablation results clearly show the effectiveness of relation
embedding learning, which identifies the relation semantics can help in enriching
the expressiveness of entity representations. Next, Table 3 gives the ablation
results about graph augmentation. −gaal. and −Lc represent the variants by
removing graph augmentation in alignment learning (i.e., Eq.(7)) or removing
contrastive objective (i.e., Eq.(8)), respectively (the results of removing graph
augmentation are illustrated in the next section). The results show that utilizing
graph augmentation can have positive impacts on EA and consistently get better
performance. By introducing graph augmentation into EA training process, the
model not only is encouraged to learn useful and robust entity representations
but also lets the scarce yet valuable alignment seeds and vast unlabeled entities
in KGs jointly provide abundant supervision for model learning.

Parameter analysis. Considering that our model employs edge dropping to
generate augmented graphs for margin-based alignment learning and contrastive
entity representation learning. We investigate how the alignment performance
varies with the upper bound of the deletion ratio. We evaluate upper bound pr
in {0, 0.05, 0.1, 0.15}, and the results measured by Hit@1 and MRR are drawn

H
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Fig. 2. Parameter analysis results of pr measured by Hit@1 (green bar with left axis)
and MRR (yellow bar with right axis).
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in Fig. 2. The performance is worst on all three tasks when pr=0, i.e., without
any graph augmentation enhancement, indicating that graph augmentation can
do benefit for alignment learning. We can see that the alignment effect is best
when pr equals 0.05 or 0.1, increasing pr to 0.15 will not further improve the per-
formance, and even bring performance drops. One potential reason is that when
pr becomes large, edge dropping will lead to losing more semantic knowledge
and structural information, thus bringing an adverse impact on neighborhood
aggregation and model training. Therefore, we need to set pr as a suitably small
value to ensure information retention as well as performance improvement.

6 Discussion and Conclusion

In this paper, we propose GAEA, a novel entity alignment method based on
graph augmentation. Specifically, we design an Entity-Relation (ER) Encoder
to generate latent representations for entities via jointly capturing neighborhood
structures and relation semantics. Meanwhile, we apply graph augmentation to
create two graph views for margin-based alignment learning and contrastive en-
tity representation learning, thus improving the model’s alignment performance.
Finally, experimental results verified the effectiveness of our method.

Although GAEA achieves promising results, it still has limitations that need
further investigation. First, our experimental results show that graph augmen-
tation learning can bring some performance gains, but the supervision signals
provide key performance bases in the alignment learning process. Thus, it is
worth further studying how to amplify the improvement brought by graph aug-
mentation when there no alignment seeds are given. Besides, we currently apply
edge dropping as the only graph augmentation strategy, which exposes a new
problem, that is, how to conduct graph augmentation learning in a highly struc-
tured KG to improve performance without introducing logic errors.
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