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Abstract. This paper develops the exact linear relationship between
the leading eigenvector of the unnormalized modularity matrix and the
eigenvectors of the adjacency matrix. We propose a method for approx-
imating the leading eigenvector of the modularity matrix, and we de-
rive the error of the approximation. There is also a complete proof of
the equivalence between normalized adjacency clustering and normal-
ized modularity clustering. Numerical experiments show that normalized
adjacency clustering can be as twice efficient as normalized modulairty
clustering.
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1 Introduction

Graph partitioning is the process of breaking a graph into smaller components
so the components can be characterized by specific properties. The problem, also
known as clustering or community detection, is of high interest in both academia
and industry. For example, Pothen [14] applies graph partitioning in scientific
computing. Olson et al. [13] uses the concept of robotics. Tolliver and Miller
[17] discusses the possibility of using graph partitioning for image segmentation.
Recently, the scientific interest in graph partitioning has centered on dividing
large graphs into smaller components by matching their size. This is done by
minimizing the number of edges that are cut during the process [18].

A number of algorithms have been developed to solve problems related to
graph partitioning. Among the many clustering methods, two spectral techniques
that rely on adjacency matrices of graphs are widely used and extensively re-
searched. Fiedler [5] develops the spectral clustering method, while Newman
and Girvan [11] develop the modularity clustering method. As discussed in [5],
the eigenvalue corresponding to the second smallest eigenvector of a graph ad-
jacency matrix is closely related to the graph’s structure. It is suggested in [6]
to partition a graph based on the signs of eigenvector entries of its adjacency
matrix. Newman [10] describes modularity clustering in detail. As with Fiedler’s
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spectral clustering method, the modularity clustering method uses entries in the
eigenvector that correspond to a modularity matrix’s eigenvalue.

There are some modified versions of the spectral clustering and modularity
clustering methods. Chung [4] analyzes the properties of scaled Laplacian ma-
trices. By utilizing normalized spectral clustering, Shi and Malik [16] provides
a method to develop normalized Laplacian matrices and use them to segment
images. In [12], another version of normalized spectral clustering is discussed.
The Laplacian matrix is scaled on one side by the researchers in their method.
In [1], a normalized version of modularity clustering is examined.

Since modularity matrices are derived from adjacency matrices, it would be
interesting to see if similar clustering results can be obtained from the two kinds
of matrices. One main contribution of this paper is to describe the relation be-
tween clustering results using modularity matrices and adjacency matrices, and
to show that using normalized modularity matrices and normalized adjacency
matrices will produce the same clustering results. As a practical motivation,
this paper demonstrates that clustering can be sped up by using normalized
adjacency matrices rather than normalized modularity matrices.

As follows is the organization of the paper. Section 2 contains some prelimi-
nary mathematical notations. Section 3 describes how to approximate the leading
eigenvector of the modularity matrix with eigenvectors of the adjacency matrix.
The equivalence between normalized adjacency clustering and normalized modu-
larity clustering is presented in Section 4. Section 5 provides experimental results
and discussions. Section 6 contains the conclusions.

2 Preliminaries

Throughout the paper, we assume G(V,E) to be a connected simple graph with
m = |E| edges and n = |V | vertices. Unless otherwise stated, A is assumed to
represent an adjacency matrix, i.e.

Aij =

{
1 if nodes i and j are adjacent
0 if otherwise.

A vertex’s degree is defined as

di =

n∑
i=1

aji,

and
D = diag(d1, d2, · · · , dn)

is a degree matrix containing the degrees of the vertices in a graph. In this paper,
the number of clusters is always fixed at two. Clustering methods can be applied
recursively if more clusters are needed, in which case a hierarchy is built to get
the desired number of clusters. It is worth noting that this approach will result
in a greedy algorithm which may lead to unsatisfactory results because of poor
partitioning in the first stages.
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Partitioning the graph is based on the signs of the entries in the eigenvectors.
In real cases, the cases where zero entries emerge are rare, so it is assumed that
there are no zero entries in the eigenvectors. Although the results are presented
in this paper using adjacency matrices, it is also possible to extend the results
to use similarity matrices. A graph Laplacian is defined as

L = D−A, (2.1)

and a modularity matrix defined as

M = A− ddT

2m
, (2.2)

where
d =

(
d1 d2 · · · dn

)T
(2.3)

is the vector containing the degrees of the nodes. The normalized versions of the
graph Laplacian and the modularity matrix are

Lsym = D− 1
2LD− 1

2 (2.4)

and
Msym = D− 1

2MD− 1
2 , (2.5)

respectively. With e a vector that contains all 1’s with proper dimension, it can
be seen that (0, e) is an eigenpair of L and M, and (0,D

1
2 e) is an eigenpair of

Lsym and Msym.

3 Dominant Eigenvectors of Modularity and Adjacency
Matrices

As a linear combination of the eigenvectors of the corresponding adjacency ma-
trix, the eigenvector corresponding to the largest eigenvalue of a modularity
matrix is written in this section. To begin with, we state a theorem from [2]
regarding the interlacing property of a diagonal matrix and its rank-one modifi-
cation, and how to calculate the eigenvectors of a diagonal plus rank one (DPR1)
matrix [9]. The theorem is also discussed in [19]. We will use these results in our
analysis.

Theorem 1. Let P = S+αuuT , where S is diagonal, ∥u∥2 = 1. Let s1 ≤ s2 ≤
· · · ≤ sn be the eigenvalues of S, and let s̃1 ≤ s̃2 ≤ · · · ≤ s̃n be the eigenvalues
of P. Then s̃1 ≤ s1 ≤ s̃2 ≤ s2 ≤ · · · ≤ s̃n ≤ sn if α < 0. If the si are distinct
and all the elements of u are nonzero, then the eigenvalues of P strictly separate
those of S.

Corollary 1. By using the notations in Theorem 1, the eigenvector of P asso-
ciated with eigenvalue s̃i can be calculated by

(S− s̃iI)
−1u. (3.1)
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By Theorem 1, we know that the eigenvalues of a DPR1 matrix interlace
with the eigenvalues of the original diagonal matrix. A linear combination of the
eigenvectors of the corresponding adjacency matrix is then used to compute the
eigenvector representing the largest eigenvalue of a modularity matrix.

According to the notation in Section 1, because A is an adjacency matrix, it
is symmetric and is therefore orthogonally similar to a diagonal matrix. It follows
that there exists an orthogonal matrix U and a diagonal matrix ΣA such that

A = UΣAUT .

Suppose the rows and columns of A are ordered such that

ΣA = diag(σ1, σ2, · · · , σn),

where σ1 ≥ σ2 ≥ · · · ≥ σn. Let U =
(
u1 u2 · · · un

)
. Similarly, since a modularity

matrix M is symmetric, it is orthogonally similar to a diagonal matrix. Suppose
the eigenvalues of M are β1 ≥ β2 ≥ · · · ≥ βn.

Theorem 2. Suppose β1 ̸= σ1, β1 ̸= σ2, and |β1 − σ2| = ∆. The eigenvector
corresponding to the largest eigenvalue of M is given by

1

∥UTd∥2

n∑
i=1

uT
i d

σi − (σ2 +∆)
ui, (3.2)

where d is defined in Eq. 2.3.

Proof. Since M = A− ddT /(2m), we have

M = A− ddT

2m

= UΣAUT − ddT

2m

= U(ΣA + ρyyT )UT ,

(3.3)

where

y =
UTd

∥UTd∥2
and

ρ = −∥UTd∥22
2m

.

Since ΣA + ρyyT is also symmetric, it is orthogonally similar to a diagonal
matrix. So we have

M = UVΣMVTUT ,

where V is orthogonal and ΣM is diagonal. Since ΣA+ρyyT is a DPR1 matrix,
ρ < 0 and ∥y∥2 = 1, the interlacing theorem applies to the eigenvalues of A and
M. More specifically, we have

βn ≤ σn ≤ βn−1 ≤ σn−1 ≤ · · · ≤ β2 ≤ σ2 < β1 < σ1. (3.4)
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The strict inequalities hold because β1 ̸= σ1 and β1 ̸= σ2. Thus |β1 − σ2| = ∆
implies β1 − σ2 = ∆. Next, let

M1 = ΣA + ρyyT .

Since M = UM1U
T , we have MU = UM1. Suppose (λ,v) is an eigenpair of

M1, then
MUv = UM1v = λUv

implies that (λ,v) is an eigenpair of M1 if and only if (λ,Uv) is an eigenpair of
M. By Corollary 1, the eigenvector of M1 corresponding to β1 is given by

v1 = (ΣA − β1I)
−1y

= (ΣA − (σ2 +∆)I)−1 UTd

∥UTd∥2
,

(3.5)

and hence the eigenvector of M corresponding to β1 is given by

m1 = Uv1

= U(ΣA − (σ2 +∆)I)−1 UTd

∥UTd∥2

=
1

∥UTd∥2

n∑
i=1

uT
i d

σi − (σ2 +∆)
ui.

(3.6)

The aim of Theorem 2 is to demonstrate that the vector b1 is a linear com-
bination of the ui. Let

γi =
uT
i d

(σi − β1)∥UTd∥2
, (3.7)

the next theorem is intended to approximate m1, the eigenvector corresponding
to the largest eigenvalue of M, by a linear combination of ui that has the largest
|γi|, and to measure how good the approximation is by calculating the norm
between m1 and its approximation.

Theorem 3. With the notations and assumptions in Theorem 2 , and let γi has
the expression in Eq. 3.7. Suppose ik ∈ {1, 2, · · · , n}, and γi are reordered such
that

|γin | ≤ |γin−1
| ≤ · · · ≤ |γi1 |.

Then given p ∈ {1, 2, · · · , n}, m1 can be approximated by

m̂1 =

p∑
j=1

γijuij ,

with relative error
1

q

( n∑
j=p+1

γ2
ij

) 1
2

,

where q is the 2-norm of the vector m1.
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Proof. Since

γi =
uT
i d

(σi − β1)∥UTd∥2
,

the vector m1 can be written as

m1 =

n∑
i=1

γiui =

n∑
j=1

γijuij .

So if

m̂1 =

p∑
j=1

γijuij , p ≤ n

is an approximation ofm1, then the difference betweenm1 and its approximation
is

m1 − m̂1 =

n∑
j=p+1

γijuij ,

and the 2-norm of m1 − m̂1 is

∥m1 − m̂1∥2 =

∥∥∥∥∥∥
n∑

j=p+1

γijuij

∥∥∥∥∥∥
2

=
( n∑

j=p+1

γ2
ij

) 1
2

,

because the ui are orthonormal. So if q is the 2-norm of the vector m1, then the
relative error of the approximation is

∥m1 − m̂1∥2
∥m1∥

=
1

q

( n∑
j=p+1

γ2
ij

) 1
2

.

We can use the error provided in Theorem 3 to gauge the number of terms we
will need to approximate the dominant eigenvector of the modularity matrix
with eigenvectors of the adjacency matrix to achieve a given level of accuracy.

4 Normalized Adjacency and Modularity Clustering

In parallel to the previous analysis, we will show that the eigenvectors corre-
sponding to the largest eigenvalues of a normalized adjacency matrix and a
normalized modularity matrix will produce the same clustering results. Bolla [1]
mentions a similar statement without a complete proof, but Yu and Ding [20]
consider it from a different angle.

Suppose A is an adjacency matrix, and

Asym = D− 1
2AD− 1

2

is the corresponding normalized adjacency matrix. Let

L = D−A
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be the unnormalized Laplacian matrix and

Lsym = D− 1
2LD− 1

2 = I−Asym

be the normalized Laplacian matrix. Finally let M be the unnormalized modu-
larity matrix defined in Section 1,

P =
ddT

2m
,

and
Msym = D− 1

2MD− 1
2

be the normalized modularity matrix. A theorem is first stated, followed by its
proof.

Theorem 4. Suppose that zero is a simple eigenvalue of Msym, and one is a
simple eigenvalue of Asym. If λ ̸= 0 and λ ̸= 1, then (λ,u) is an eigenpair of
Asym if and only if (λ,u) is an eigenpair of Msym.

This theorem may be proven by combining the following two observations.
As the second observation requires more lines of explanation, we write it as a
lemma.

Observation 5 (λ,u) is an eigenpair of Lsym if and only if (1 − λ,u) is an
eigenpair of Asym because

Lsymu = λu

⇐⇒ (I−Asym)u = λu

⇐⇒ Asymu = (1− λ)u.

Lemma 1. Suppose that 0 is a simple eigenvalue of both Lsym and Msym. It
follows that if λ ̸= 0 and (λ,u) is an eigenpair of Lsym, then (1 − λ,u) is an
eigenpair of Msym. If α ̸= 0 and (α,v) is an eigenpair of Msym, then (1−α,v)
is an eigenpair of Lsym.

Proof. For P = ddT /(2m), it is easy to observe that

Msym + Lsym = D− 1
2 (A−P+D−A)D− 1

2

= I−D− 1
2PD− 1

2 .
(4.1)

Let E = D− 1
2PD− 1

2 . If (λ,u) is an eigenpair of Lsym, we have

λu = Lsymu

=⇒ λu = (I−Msym −E)u

=⇒ (1− λ)u = Msymu+Eu.
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Note that P is an outer product and P ̸= 0, so rank(P)=1. Since E is
congruent to P, E and P have the same number of positive, negative and zero
eigenvalues by Sylvester’s law [9]. Therefore

rank(E) = rank(P) = 1.

To prove Eu = 0, it is sufficient to prove u is in the nullspace of E. Let e be the
vector such that all its entries are one. Observe that

E ·D 1
2 e = D− 1

2PD− 1
2D

1
2 e

= D− 1
2
ddT

2m
e

=
dTe

2m
(D− 1

2d)

= D− 1
2d,

(4.2)

because

dTe =

n∑
i=1

di = 2m

is the sum of the degrees of all the nodes in the graph. Moreover, because

D− 1
2d = D

1
2 e,

(1,D
1
2 e) is an eigenpair of E. Also observe that

Lsym ·D 1
2 e = D− 1

2 (D−A)D− 1
2D

1
2 e

= D− 1
2Le = 0.

(4.3)

Therefore, (0,D
1
2 e) is an eigenpair of Lsym. Since u is an eigenvector of Lsym

corresponding to a nonzero eigenvalue λ, we have u ⊥ D
1
2 e, so u is in the

nullspace of E. This gives Eu = 0 and thus (1 − λ)u = Msymu. Therefore
λu = Lsymu ⇒ (1− λ)u = Msymu.

On the other hand, if (α,v) is an eigenpair of Msym, then we have

αv = Msymv

=⇒ αv = (I− Lsym −E)v

=⇒ Lsymv +Ev = (1− α)v.

Observe that

Msym ·D 1
2 e = D− 1

2MD− 1
2D

1
2 e

= D− 1
2Me = 0

(4.4)

because the row sums of M are all zeros. Therefore, (0,D
1
2 e) is an eigenpair of

Msym. Since v is an eigenvector of Msym corresponding to a nonzero eigenvalue

α, we have v ⊥ D
1
2 e, so v is in the nullspace of E. This gives Ev = 0 and thus

(1− α)v = Lsymv. Therefore αv = Msymv ⇒ (1− α)v = Lsymv.
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As a result of Theorem 4, a bijection from the nonzero eigenvalues of Msym

to the nonzero eigenvalues of Asym can be established, and the order of these
eigenvalues is maintained. As zero is always an eigenvalue of Msym, the largest
eigenvalue of Bsym is always nonnegative. Newman [10] discusses when B can
have a zero largest eigenvalue. The congruence of Msym and M logically implies
that if zero is the largest Eigenvalue for M, then it is also the largest Eigenvalue
for Bsym. Since (0,D

1
2 e) is an eigenpair of Msym and all entries in the vector

D
1
2 e are greater than zero, all nodes in the graph will be put into one cluster. We

prove below that, for nontrivial cases (i.e. when the largest eigenvalue ofM is not
zero), the eigenvectors for the largest eigenvalues of both a normalized adjacency
matrix and a normalized modularity matrix are the same, so in nontrivial cases
they will give the same clustering results.

Theorem 6. With the assumptions in Theorem 4, and given that zero is not the
largest eigenvalue of Msym, the eigenvector corresponding to the largest eigen-
value of Msym and the eigenvector corresponding to the second largest eigenvalue
of Asym are identical.

Proof. Due to the fact that Lsym is positive semi-definite [18], zero is the smallest
eigenvalue of Lsym. Then by Observation 5, one is the largest eigenvalue ofAsym.
Since all eigenvalues of Asym that are not equal to one are also the eigenvalues
of Msym, it follows that if the simple zero eigenvalue is not the largest eigenvalue
of Msym, then the largest eigenvalue of Asym is the second largest eigenvalue of
Msym and they have the same eigenvectors by Theorem 4.

Both adjacency clustering and modularity clustering involve calculation of
all entries in the adjacency matrices, so they have the same time complexity of
O(n2). However, as shown in the next section, normalized adjacency clustering
can be twice as effective as normalized modularity clustering.

5 Experiments

In this section, synthetic and practical data sets are used to corroborate the the-
oretical findings presented in the previous sections. Since normalized adjacency
clustering and normalized modularity clustering provides the same eigenvalues
and eigenvectors, only efficiency is compared in the experiments.

5.1 Synthetic Data Sets

Synthetic data sets with observations from 100 to 10, 000 are created, and for
each of the data sets, the number of features is 10. The experimental results are
shown in Figure 1.

From Figure 1, it can be seen that normalized adjacency clustering (the blue
line) is about twice efficient as normalized modularity clustering (the orange
line).



10 H. Jiang and C. Meyer

Fig. 1. The plot of run-time recordings of normalized adjacency clustering and normal-
ized modularity clustering. X-axis is the number of observations, and y-axis is run-time
in seconds.

5.2 PenDigit Data Sets from MNIST database

The PenDigit database is a subset of the MNIST data set [8,21,7,3,15]. A training
set of 60,000 handwritten digits from 44 writers is contained in the original
data. Each data point is a row vector derived from a grayscale image. The
images each have 28 pixels in height and 28 pixels in width, which makes 784
pixels in total. The row vectors contain the label of each digit as well as the
lightness of each pixel. A pixel’s lightness is represented by a number between
0 and 255 inclusively, with smaller numbers representing lighter pixels. The
experiments were conducted using three subsets consisting of 1&7, 2&3, and
5&6. The experimental results are listed in Table 1.

Table 1. The plot of run-time recordings (in seconds) of normalized adjacency clus-
tering and normalized modularity clustering on subsets of MNIST data set

Data #data points Asym Msym

Digit1&7 9085 4.0920 9.1306
Digit2&3 8528 3.5197 7.0120
Digit5&6 7932 3.0505 6.5147

From Table 1, it can be seen that the experimental results from real data sets
are similar to the ones from synthetic data sets in that normalized adjacency
clustering as around twice efficient as normalized modularity clustering.
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6 Conclusion

In this article, the exact linear relationship between the leading eigenvector of
the unnormalized modularity matrix and the eigenvectors of the adjacency ma-
trix is established. This paper demonstrates that the leading eigenvector of a
modularity matrix can be written as a linear combination of the eigenvectors
of an adjacency matrix, and the coefficients in the linear combination are de-
duced. An approximation method for the leading eigenvector of the modularity
matrix is then given, along with a calculated relative error. Additionally, when
the largest eigenvalue of the modularity matrix is nonzero, the normalized mod-
ularity clustering method will give the same results as using the eigenvector
corresponding to the smallest eigenvalue of the normalized adjacency matrix.
Experimental results indicate that using normalized adjacency clustering can be
as twice efficient as normalized modularity clustering.
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