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Abstract. Allocation of scarce healthcare resources under limited logis-
tic and infrastructural facilities is a major issue in the modern society.
We consider the problem of allocation of healthcare resources like vac-
cines to people or hospital beds to patients in an online manner. Our
model takes into account the arrival of resources on a day-to-day basis,
different categories of agents, the possible unavailability of agents on cer-
tain days, and the utility associated with each allotment as well as its
variation over time.
We propose a model where priorities for various categories are modelled
in terms of utilities of agents. We give online and offline algorithms to
compute an allocation that respects eligibility of agents into different
categories, and incentivizes agents not to hide their eligibility for some
category. The offline algorithm gives an optimal allocation while the on-
line algorithm gives an approximation to the optimal allocation in terms
of total utility. Our algorithms are efficient, and maintain fairness among
different categories of agents. Our models have applications in other areas
like refugee settlement and visa allocation. We evaluate the performance
of our algorithms on real-life and synthetic datasets. The experimental
results show that the online algorithm is fast and performs better than
the given theoretical bound in terms of total utility. Moreover, the exper-
imental results confirm that our utility-based model correctly captures
the priorities of categories.

1 Introduction

Healthcare rationing has become an important issue in the world amidst the
COVID-19 pandemic. At certain times the scarcity of medical resources like
vaccines, hospital beds, ventilators, medicines especially in developing countries
raised the question of fair and efficient distribution of these resources. One natu-
ral approach is to define priority groups. For example, for vaccination, the main
priority groups considered include health care workers, workers in other essen-
tial services, and people with vulnerable medical conditions [36,44]. Racial equity
has been another concern [9]. Having made the priority groups, it still remains a
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challenge to allocate resources within the groups in a transparent manner [15,45].
A New York Times article has mentioned this as one of the hardest decisions for
health organizations [16]. In light of this, it is a major problem to decide how
to allocate medical resources fairly and efficiently while respecting the priority
groups and other ethical concerns.

The healthcare rationing problem has been recently addressed by market
designers. In [35], the problem was framed as a two-sided matching problem
(see e.g. [39]). Their model has reserve categories each with its own priority
ordering of people. This ordering is based on the policy decisions made accord-
ing to various ethical guidelines. It is shown in [35] that running the Deferred
Acceptance algorithm of Gale and Shapley [18] has desired properties like eligi-
bility compliance, non-wastefulness and respect to priorities. This approach of
[35] has been recommended or adopted by organizations like the NASEM (Na-
tional Academies of Sciences, Engineering, and Medicine) [19]. It has also been
recognized in medical literature [36,43], and is mentioned by the Washington
Post [12]. The Smart Reserves algorithm of [35] gives a maximum matching sat-
isfying the desired properties mentioned earlier. However, it assumes a global
priority ordering on people. In a follow-up work, [5] generalize this to the case
where categories are allowed to have heterogeneous priorities. Their Reverse Re-
jecting (REV) rule, and its extension to Smart Reverse Rejecting (S-REV) rule
are shown to satisfy the goals like eligibility compliance, respect to priorities,
maximum size, non-wastefulness, and strategyproofness.

However, the allocation of healthcare resources is an ongoing process. On a
day-to-day basis, new units arrive in the market and they need to be allocated
to people. The variation in the availability of medical resources over a period of
time, and the possible unavailability of recipients on certain days is an important
factor in making allocation decisions. For example, while allocating vaccines,
the unavailability of people on certain days might lead to wastage of vaccines,
especially if the units are reserved for categories a priori. The previous models
do not encompass this dynamic nature of resources. Moreover, the urgency with
which a resource needs to be allocated to an individual also changes over time.
While priority groups or categories aim to model this by defining a priority order
on people, defining a strict ordering is not practically possible. While dealing
with a large population, defining a strict ordering on people is not desirable.
For instance, in the category of old people, it is neither clear nor desirable to
define a strict order on people of the same age and same vulnerabilities. Even if
categories are allowed to have ties in their ordering, the ordering still provides
only an ordinal ranking.

Our model provides the flexibility to have cardinal rankings in terms of pri-
oritizing people by associating a utility value for each individual. Thus, in our
work, categories do not define an ordering over people, instead, there is a util-
ity value associated with allocation of the resource to each person. The goal
is to find an allocation with maximum total utility while respecting category
quotas. However, utilities can change over time. For instance, the advantage of
allotting a ventilator to a person today might be far more beneficial than al-
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lotting it tomorrow. Similarly, vaccinating the vulnerable population as early as
possible is much more desirable from a social perspective than delaying it to a
later day. We model this through dynamic utilities. Thus, we consider utilities
that diminish over time. The discounting factor 0 < δ < 1 is multiplicative.
Such exponential discounting is commonly used in economics literature [38,40].
Our utility maximization objective can thus be seen as maximization of social
welfare. Another advantage is that the division of available units into various
categories is not static. It is dynamically decided depending on the supply of
units and availability of people on each day.

Our algorithms to find a maximum utility allocation are based on network
flows. They adhere to the following important ethical principles which were in-
troduced by Aziz et al in [5]:

1. complies with the eligibility requirements
2. is strategyproof (does not incentivize agents to under-report the categories

they qualify for or days what they are available on),
3. is non-wasteful (no unit is unused but could be used by some eligible agent)

Additionally our algorithms give an approximate maximum weight match-
ings, where the weights denote the utility value of a matching. We note that
the current state-of-practice algorithms such as first-come first-serve or random
ordering do not guarantee non-wastefullness as the matching returned by them
may not be of maximum size. Furthermore, matchings returned by these algo-
rithms could be of arbitrarily low total utility. Using category quotas and utility
values, we provide a framework in which more vulnerable populations can be
prioritized while maintaining a balance among the people vaccinated through
each category on a day-to-day basis.

1.1 Related Work

The topic of constrained matching problems has been an active area or research
and it has been studied in the context of school choice and hospital residents
problem apart from healthcare rationing [30,5,27,28,8,21,41]. The setting with
two-sided preferences has been considered in [22,29,23,17]. The fairness and wel-
fare objectives have been covered in a comprehensive manner in [32].

Another application of the constrained matching problem is in the refugee
resettlement problem. Refugee resettlement is a pressing matter in the twenty-
first century where people have been forced to leave their country in order to
escape war, persecution, or natural disaster. In the refugee resettlement pro-
cess the refugee families are settled from asylum countries to the host countries
where the families are given permanent residentship. The reallocation is done
keeping in mind the necessities of the families as well as the infrastructure ca-
pacities of the host countries. Delacrétaz et al. [13] formalized refugee allocation
as a centralized matching market design problem. The refugee allocation prob-
lems have been studied both in terms of matching problems with preferences
[3,14,6,25,26,34,42] and without preferences[7,13]. In the matching problem with
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preferences, the goal is to match the refugees to localities based on the preference
of either one or both sides, while satisfying the multidimensional resettlement
constraints. Delacretaz et al. considered the problem both in terms of with and
without preferences. The problem without preference can be reduced to mul-
tiple multidimensional knapsack problems [13]. The branch-and-bound method
can be used to find the exact solution. Bansak et al. [7] used a combination of
supervised machine learning and optimal matching to obtain a refugee matching
that satisfies the constraints of refugees and localities. The dynamic version of
the refugee resettlement problem [4,1,11] has also been considered in literature.

1.2 Our Models

We define our model below and then define its extension. Throughout this pa-
per, we consider vaccines as the medical resource to be allocated. People are
referred to as agents. Note that although the discussion assumes perishability of
resources, it can easily be extended to non-perishable resources.

Model 1: Our model consists of a set of agents A, a set of categories C, and a set
of days D. For day dj ∈ D, there is a daily supply sj denoting the number of vac-
cine shots available for that day. For each category ci ∈ C, and each day dj ∈ D,
we define a daily quota qij . Here qij denotes the maximum number of vaccines
that can be allocated for ci on day dj . There is a priority factor αk associated
with an agent ak. Let αmax = maxi{αi | αi is the priority factor of agent ai}
and αmin = mini{αi | αi is the priority factor of agent ai}. Utilities have
a discount factor δ ∈ (0, 1) denoting the multiplicative factor with which the
utilities for vaccinating agents reduce with each passing day. Thus if ak is vacci-
nated on day dj , the utility obtained is αk· δj . Each agent ak has an availability
vector vk ∈ {0, 1}|D|. The jth entry of vk is 1 if and only if ak is available for
vaccination on day dj .

Model 2: Model 2 is an extension of Model 1 in the following way. The sets
A,C,D and the daily supply and daily quotas are the same as those in model
1. Apart from the daily quota, each category ci also has an overall quota qi
that denotes the maximum total number of vaccines that can be allocated for
category ci over all the days. Note that overall quota is also an essential quantity
in applications like visa allocation and refugee settlement.

In both the models, a matchingM : A→ (C×D)∪{∅} is a function denoting
the day on which a person is vaccinated and the category through which it is
done, such that the category quota(s) and daily supply values do not exceed on
any day. Thus if we define variables xijk such that xijk = 1 if M(ak) = (ci, dj)
and xijk = 0 ifM(ak) = ∅, then we have

∑
i,j xijk ≤ 1 for each k,

∑
k,j xijk ≤ qi

for each i,
∑
k xijk ≤ qij for each i, j, and

∑
i,k xijk ≤ sj for each j. Here

1 ≤ i ≤ |C|, 1 ≤ j ≤ |D|, 1 ≤ k ≤ |A|. If M(ak) = ∅ for some ak ∈ A, it means
the person could not be vaccinated through our algorithm within |D| days.

In both the models, the utility associated with ak is αk· δj−1 where M(ak) =
(ci, dj). The goal is to find a matching that maximizes the total utility.
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1.3 Our Contributions

The utilities αk and discounting factor δ have some desirable properties. If agent
ak is to be given a higher priority over agent a`, then we set αk > α`. On any
day dj , αk ·δj > α` ·δj . Moreover, the difference in the utilities of the two agents
diminishes over time i.e. if j < j′ then (αk − α`)δj > (αk − α`)δj

′
. Thus the

utility maximization objective across all days vaccinates ak earlier than a`.
We consider both online and offline settings. The offline setting relies on the

knowledge about availability of agents on all days. This works well in a system
where agents are required to fill up their availability in advance e.g. in case of
planned surgeries, and visa allocations. The online setting involves knowing the
availability of all the agents only on the current day as in a walk-in setting. Thus
the availability of an agent on a day in future is not known.

We give an optimal algorithm for Model 1 in the offline setting..

Theorem 1. There is a polynomial-time algorithm that computes an optimal
solution for any instance of Model 1 in the offline setting.

We also give algorithms for both Model 1 and Model 2 in the online setting.
We give theoretical guarantees on the performance of online algorithms in terms
of their competitive ratio in comparison with the utility of an offline optimal
solution.

Theorem 2. There is an online algorithm (Algorithm 1) that gives a competi-
tive ratio of (i) 1 + δ for Model 1 and (ii) of 1 + δ + (αmax/αmin)δ for Model 2
when δ is the common discounting factor for all agents. The algorithm runs in
polynomial time.

We prove part (i) of Theorem 2 in Section 3.2 whereas part (ii) is proved in
Appendix.

Strategy-proofness: It is a natural question whether agents benefit by hiding their
availability on some days. We show that the online algorithm is strategy-proof. In
this context, we analyze our online algorithm for Model 1 from a game theoretic
perspective. We exhibit that the offline setting has a pure Nash equilibrium that
corresponds to the solution output by the online algorithm. For this, we assume
that the tie-breaking among agents is done according to an arbitrary permutation
π of agents.

Theorem 3. Let an offline optimal solution that breaks ties according to a ran-
dom permutation π match agent ai on day di. Then for each agent ai, reporting
availability exactly on day di (unmatched agents mark all days as unavailable)
is a pure Nash equilibrium. Moreover, the Nash equilibrium corresponds to a
solution output by the online algorithm.

Experimental Results: We also give experimental results in Section 6 using real-
world datasets. Apart from maximization of utilities, we also consider the number
of days taken by the online algorithm for vaccinating high priority people. Our
experiments show that the online algorithm almost matches the offline algorithm
in terms of both of these criteria.
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Selection of utility values: An important aspect of our model is that the choice
of utility values does not affect the outcome as long as the utility values have the
same numerical order as the order of priorities among agents. Thus the output of
online as well as offline algorithm remains the same as long as αk > α` whenever
agent ak has a higher priority over agent a`.

2 Optimal Offline Algorithm for Model 1

The problem can be modelled as an instance of the minimum cost flow network.
We define the minimum cost flow problem here for completeness.

The minimum cost flow problem: The input is a flow network G = (V,E) as a
directed graph with node set V , edge set E, capacities ce > 0 and cost ue ∈ R
on each edge e ∈ E, and a source s and sink t. A flow f : E → R is a valid flow
in G if f(e) ≤ c(e), and the incoming flow at any node except s and t equals the
outgoing flow. The cost of a flow f(e) along an edge e is ue · f(e). A minimum
cost flow in the network is the one that minimizes the sum of costs of the flow
along all edges.

There are polynomial-time algorithms known for the minimum cost flow prob-
lem. Also, it is known that if all the capacities are integers, then the optimum
flow is an integer. We refer the reader to [2] for the details of minimum cost flow.

Reduction: The construction of the flow network is shown in Figure 2. The flow
network consists of a source s, a sink t, nodes for each day dj , each agent ak and
nodes cij for each (ci, dj) ∈ C ×D. Each edge (s, dj) has capacity sj denoting
the daily supply for day dj , each edge (dj , cij) has capacity equal to qij , and
all other edges have capacity 1. All the edges are directed. Additionally, each
(cij , ak) edge has cost −uk · δjk whereas other edges have cost 0.

Proof. (of Theorem 1) We show that a minimum cost flow f in the flow network
corresponds to a maximum utility matching in the given instance. The integrality
of minimum cost flow implies that each edge incident on t can have a flow of
either 0 or 1. For each k, if f(ak, t) = 1, then there is exactly one cij such
that f(cij , ak) = 1. Set M(ak) = (ci, dj) in the corresponding matching M .
Similarly, for any matching M , A corresponding flow can be shown as follows.
If M(ak) = (ci, dj) then set f(ak, t) = f(cij , ak) = 1, and set f(s, dj) equal to
the number of agents vaccinated on day dj , and f(dj , cij) equal to the number
of agents vaccinated on day dj through category ci. It is clear that this is a valid
flow in the network, and the negation of the cost of the flow is the same as the
utility of the corresponding matching.

3 Algorithms for Model 1

We give a flow based polynomial-time optimal offline algorithm for Model 1
in Appendix. Here, we give an online algorithm for the same which achieves a
competitive ratio of 1 + δ, where δ is the discounting factor of the agents.
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Fig. 1: Flow network for finding a maximum utility matching in Model 1

3.1 Online Algorithm for Model 1

We present an online algorithm which greedily maximizes utility on each day.
We show that this algorithm indeed achieves a competitive ratio of 1 + δ.

Outline of the Algorithm: On each day di, starting from day d1, we construct
a bipartite graph Hi = (Ai ∪ C,Ei, wi) where Ai is the set of agents who are
available on day di and are not vaccinated earlier than day di. Let the weight
of the edge (aj , ck) ∈ Ei be wi(aj , ck) = αj .δ

i−1. We define capacity of the
category ck ∈ C as b′i,k. In this graph, our algorithm finds a maximum weighted
b-matching of size not more than the daily supply value si.

The following lemma shows that the maximum weight b-matching computed
in Algorithm 1 is also a maximum size b-matching of size at most si.

Lemma 1. The maximum weight b-matching in Hi of size at most si is also a
maximum size b-matching of size at most si.

Proof. We prove that applying an augmenting path in Hi increases the weight
of the matching. Consider a matchingMi in Hi such thatMi is not of maximum
size and |Mi| < si. Let ρ = (a1, c1, a2, c2, · · · , ak, ck) be an Mi-augmenting path
in Hi. We know that every edge incident to an agent has the same weight in Hi.
If we apply the augmenting path ρ, the weight of the matching increases by the
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Algorithm 1 Online Algorithm for Vaccine Allocation
Input: An instance I of Model 1
Output: A matching M : A→ (C ×D) ∪ {∅}

1: Let D,A,C be the set of Days, Agents and Categories respectively.
2: M(aj)← ∅ for each aj ∈ A
3: for day di in D do
4: Ai ← {aj ∈ A | aj is available on di and aj is not vaccinated}
5: Ei ← {(aj , ck) ∈ Ai × C | aj is eligible to be vaccinated under category ck }
6: for (aj , ck) in Ei do
7: Let wi(aj , ck)← αjδ

i−1

8: end for
9: Construct weighted bipartite graph Hi = (Ai ∪ C,Ei, wi).
10: for ck in C do
11: b′i,k ← qik {Where qik is the daily quota}
12: end for
13: Find maximum weight b-matching Mi in Hi of size at most si. {Where si is the

daily supply}
14: for each edge (aj , ck) in Mi do
15: M(aj)← (ck, di) {Mark aj as vaccinated on day di under category ck}
16: end for
17: end for
18: return M

weight of the edge (a1, c1). This proves that a maximum weight matching in Hi

of size at most si is also a maximum size b-matching of size at most si.

3.2 Charging scheme

We compare the solution obtained by Algorithm 1 with the optimal offline so-
lution to get the worst-case competitive ratio for Algorithm 1. Let M be the
output of Algorithm 1 and N be an optimal offline solution. To compare M and
N , we devise a charging scheme by which, each agent ap matched in N charges a
unique agent aq matched inM . The amount charged, referred to as the charging
factor here is the ratio of utilities obtained by matching ap and aq in M and N
respectively.

Properties of the charging scheme:

1. Each agent matched in N charges exactly one agent matched in M ,
2. Each agent aq matched in M is charged by at most two agents matched in
N , with charging factors at most 1 and δ. This implies that the utility of N
is at most (1 + δ) times the utility of M .

We divide the agents matched in N into two types. Type 1 agents are those
which are matched in M on an earlier day compared to that in N . Thus ap ∈ A
is a Type 1 agent if ap is matched on day di in M and on day dj in N , such that
i < j. The remaining agents are called Type 2 agents. Our charging scheme is
as follows:
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1. Each Type 1 agent ap charges themselves with a charging factor δ, since the
utility associated with them in N is at most δ times that in M .

2. Here onwards, we consider only Type 2 agents and discuss the charging
scheme associated with them.
Let Xi be the set of Type 2 agents matched on day di in N , and let Yi
be the set of agents matched on day di in M . Since Algorithm 1 greedily
finds a maximum size b-matching of size at most si, and as each edge in
the b-matching corresponds to a unique agent, we show the following lemma
holds:

Lemma 2. For each di ∈ D, the set |Xi| ≤ |Yi|.

Proof. Since Xi contains only Type 2 agents matched in Ni, the agents in Xi

are not matched by M until day i − 1. Therefore Xi ⊆ Ai, where Ai is defined
in Algorithm 1. The daily quota and the daily supply available for computation
of Ni and Mi is the same i.e. qi,k, and si respectively. By construction, Mi is a
matching that matches maximum number of agents in Ai, up to an upper limit
of si, |Xi| ≤ |Yi|.

To obtain the desired competitive ratio we design an injective mapping according
to which, each agent ap in Xi can uniquely charge an agent aq in Yi such that
αp ≤ αq. The following lemma shows that such an injective mapping always
exists.

Lemma 3. There exists an injective mapping f : Xi → Yi such that if f(ap) =
aq, then αp ≤ αq.

Proof. Let Ni and Mi respectively be the restrictions of N and M to day di.
We construct an auxiliary bipartite graph Gi where Xi∪Yi form one bipartition
and categories form another bipartition. The edge set is Ni ∪Mi. Then we set
the capacity of ck in Gi to be bi,k = qi,k.

The charging scheme is as follows. Consider the symmetric differenceMi⊕Ni.
It is known that Mi ⊕Ni can be decomposed into edge disjoint paths and even
cycles [33].

Consider a component C which is an even cycle as shown in Fig 2a. Since
each agent ap in C has both Mi edge and Ni edge indecent on it, agent ap in Xi

charges her own image in Yi with a charging factor of 1.
Now, Consider a component which is a path ρ. There are two cases.

1. Case 1: The path ρ has an even length: If ρ starts and ends at a cat-
egory node, then each agent along the path is matched in both Ni and
Mi. Hence, all such agents can charge themselves with a charging factor
of 1. Suppose ρ starts and ends at an agent as shown in Fig 2b i.e. ρ =
(a1, c1, a2, c2, · · · , ak−1, ck−1, ak). Let a1 be matched inMi and ak is matched
in Ni. Then, α1 must be greater than or equal to αk. Otherwise from
Lemma 1, Mi ⊕ ρ is a matching of higher weight - which contradicts the
fact thatMi is the maximum weight matching. Now, every agent in ρ except
a1 and ak charge themselves with a charging factor of 1 and ak charges a1
with a charging factor of αk/α1.
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a1 c1

a2

c2

a3c3

a4

c4

1

1

1

1

(a) Agents in cycles charge themselves
with a charging factor or 1

a1

c1

a2

c2

a3

c3 ck−2

ak−1

ck−1

ak

1 1 1

αk/α1

(b) Agents who are matched in both
Ni and Mi charge themselves. Agent ak
charges a1 with a factor or αk/α1. Red
edges represent Ni and blue edges repre-
sent Mi

Fig. 2: Charging schemes

2. Case 2: The path ρ has an odd length: Then either ρ begins and ends with
an Mi edge or with an Ni edge. If ρ starts and ends with an Mi edge, then
every agent along the path who is matched in Ni is also matched in Mi.
Therefore all the agents on ρ charge themselves.
Consider the case when ρ starts with an Ni edge. Since ck is an end-point of
ρ with an Ni-edge, ck must have more agents matched to it in Ni than that
in Mi. So ck cannot be saturated in Mi.
AsMi is a maximum size matching [1], we cannot augmentMi toMi⊕ρ inGi
even though both endpoints are unsaturated. This can happen only because
the daily supply is met. That is |Mi| = si. As a1 is vaccinated in category c1
in Ni, we claim that the weight w(a1, c1) is less than every other edge inMi.
This is because if there exists an edge e ∈ Mi such that w(e) < w(a1, c1),
we can remove the edge e from Mi and apply the augmenting path ρ to
get a matching with a higher weight, which is a contradiction. Therefore, as
w(a1, c1) is less than every other edge in Mi, agent a1 can safely charge any
agent aq who is matched inMi. Since |Mi| ≥ |Ni|, we are guaranteed to have
sufficient agents in Ni for charging.

Order of charging among Type 2 agents: First, every agent who has both
Mi and Ni edges indecent on it, charges herself. Next every agent who is an
end-point of an even-length path charges the agent represented by the other
end-point. The rest of the agents are end-points of an odd-length path matched
in Ni. We proved that the edges incident on these agents have a weight smaller
than every edge in Mi. They can charge any agent of Mi who has not been
charged yet by any agent of Ni, as stated above.

Proof (of Theorem 2 (i)). Let aq be an agent who is vaccinated by the online
matching M on day i. Then aq can be charged by at most two agents matched
in N . Suppose aq is vaccinated by the optimal matching N on some day i′ > i.
Assume that the agent ap of type 2 who also charges aq. If the priority factor of
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aq and ap are αq and αp respectively, then

αp.δ
i + αq.δ

i′

αq.δi
=

(
αp
αq

)i
+ δi

′−i ≤ 1 + δ.

The last inequality follows as 0 < αp ≤ αq < 1, and i′ > i. Therefore the utility
obtained by ap and aq in Mi is atmost 1 + δ times the the utility of aq in Mi.
Therefore the competitive ratio of Algorithm 1 is at most 1 + δ.

In the Appendix, we show a tight example which achieves this compititve
ratio.

Since the daily supply of day d1 is 1, vaccinating a1 maximizes the utility
gained on the first day. Hence there exists a run of Algorithm 1 where a1 is vac-
cinated under category c1 on day d1. In this run, agent a2 cannot be vaccinated
on day d2 as she is unavailable on that day. Hence, total utility gained by the
online allocation is α1. Whereas in a optimal allocation scheme all the agents
can be vaccinated. We vaccinate agent a2 on day d1 under category c2, agent a1
on day d2 under category c1. This sums to a total utility of α1 +α1δ. Therefore
the competitive ratio is α1+α1δ

α1
= 1 + δ.

3.3 Tight example for the Online Algorithm

a1 α1 α1δ

α1 -a2

d1 d2

Fig. 3: A tight example with competitive ratio 1+ δ. Online allocation indicated
in red, Optimal allocation indicated in green and arrows indicate charging

The following example shows that the competitive ratio of Algorithm 1 is
tight. Let the set of agents A = {a1, a2} and categories C = {c1, c2}. Agent a1 is
eligible under {c1, c2} and agent a2 is eligible only under {c2}. The daily supply:
s1 = 1 and s2 = 1. The daily quota of each category on each day is set to 1. The
priority factor for both the agents is α1. Assume that a1 is available on both the
days whereas the agent a2 is available only on the first day. Figure 3 depicts this
example.

4 Online Algorithm for Model 2

We present an online algorithm which greedily maximizes utility on each day. We
assume that the discounting factor of the agents is δ. Moreover each agent ak has
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a priority factor αk. Let αmax = maxi{αi | αi is the priority factor of agent ai}
and αmin = mini{αi | αi is the priority factor of agent ai}. We show that this
algorithm indeed achieves a competitive ratio of 1 + δ + αmax

αmin
δ.

Outline of the Algorithm: On each day di, starting from day d1, we construct
a bipartite graph Hi = (Ai ∪C,Ei, wi) where set Ai is the set of agents who are
available on day di and are not vaccinated earlier than day di. Let the weight
of the edge (aj , ck) ∈ Ei be wi(aj , ck) = αj .δ

i−1. Let b′i,k represent the capacity
of ck ∈ C in Hi. In this graph, our algorithm finds a maximum weighted b-
matching of size not more than the daily supply value si. This can be found in
polynomial time [31]. Lemma 1 proves that the maximum weight b-matching is
also a maximum cardinality b-matching of Hi.

Algorithm 2 Online Algorithm for Vaccine Allocation
Input: An instance I of Model 2
Output: An allocation M : A→ (C ×D) ∪ {∅}

1: Let D,A,C be the set of Days, Agents and Categories respectively.
2: M(aj)← ∅ for each agent aj ∈ A
3: rk ← qk for each category ck ∈ C
4: for day di in D do
5: Ai ← {aj ∈ A | aj is available on di and aj is not vaccinated}
6: Ei = {(aj , ck) ∈ Ai × C | aj is eligible to be vaccinated under category ck}
7: Construct bipartite graph Hi = (Ai ∪ C,Ei).
8: for ck in C do
9: b′i,k ← min(qik, rk) {Capacity for each ck in Hi}
10: end for
11: Find maximum weight b-matching Ni in Hi of size at most si.
12: for each edge (aj , ck) in Mi do
13: M(aj)← (ck, di) {Mark aj as vaccinated on day di under category ck}
14: rk ← rk − 1 {Update remaining overall quota}
15: end for
16: end for
17: return M

4.1 Outline of the charging scheme

We compare the solution obtained by Algorithm 2 with the optimal offline so-
lution to get the worst-case competitive ratio for Algorithm 2. Let M be the
output of Algorithm 2 and N be an optimal offline solution. To compare M and
N , we devise a charging scheme similar to that in Section 3.2, by which each
agent a matched in N charges a unique agent a′ matched in M . The amount
charged, referred to as the charging factor here is the ratio of utilities obtained
by matching a and a′ in M and N respectively.

Properties of the charging scheme:

1. Each agent matched in N charges exactly one agent matched in M ,
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2. Each agent matched in M is charged by at most three agents matched in N ,
with charging factors at most 1, δ and αmax

αmin
δ. This implies that the utility of

N is at most (1 + δ + αmax

αmin
δ) times the utility of M .

We divide the agents matched in N into two types. Type 1 agents are those
which are matched in M on an earlier day compared to that in N . Thus a ∈ A
is a Type 1 agent if a is matched on day di in M and on day dj in N , such that
i < j. The remaining agents are called Type 2 agents. Our charging scheme is
as follows:

1. Type 1 agents charge themselves with a charging factor δ, since the utility
associated with them in N is at most δ times that in M .

2. Here onwards, we consider only Type 2 agents and discuss the charging
scheme associated with them.
Let Xi be the set of Type 2 agents matched on day di in N , and let Yi be
the set of agents matched on day di in M .
(a) Case 1: |Xi| ≤ |Yi|: From Lemma 3 we claim that each agent ap ∈ Xi

charges an agent in aq ∈ Yi with αp ≤ αq. Therefore the agents in Xi

charge the agents in Yi with a charging factor of 1.
(b) Case 2: |Xi| = |Yi| + z, z > 0: Let Ni and Mi respectively be the

restrictions of N and M to day di. We construct an auxiliary bipartite
graph Gi where Xi∪Yi form one bipartition and categories form another
bipartition. The edge set is Ni ∪ Mi. For a category ck, let nj,k and
mj,k be the number of agents matched in N and M respectively, under
category ck on day dj . Then we set the quota of ck in Gi to be bi,k =

min{qi,k,max{qk −
∑i−1
j=1 nj,k, qk −

∑i−1
j=1mj,k}}. This is the maximum

of the quotas of ck that were available for computation of Ni and Mi

respectively.
The charging scheme is given by the following. Consider the symmetric
differenceMi⊕Ni. Since |Ni| = |Mi|+z, there are exactly z edge-disjoint
alternating paths in Mi ⊕Ni that start and end with an edge of N [33].
Let ρ = 〈a1, c1, a2, . . . , ak, ck〉 be one such path. Then a2, . . . , ak−1 are
matched in both Mi and Ni, so they charge themselves with a charging
factor of 1. From Lemma 3, the agent a1 charges ak with charging factor
of at most 1. It remains to decide whom ak charges.
Since ρ terminates at ck with an Ni-edge, the number of agents matched
to ck in Ni is more than those matched to ck inMi. In Lemma 4, we show
that this can happen only because of exhaustion of qk in Algorithm 2 on
or before day di. So agent ak can charge some agent al matched to ck in
M on an earlier day, with charging factor αk

αl
δ ≤ αmax

αmin
δ.

Lemma 4. If node ck is an end-point of a path ρ in Gi, then qk is exhausted in
Algorithm 2 on or before day di.

Proof. Suppose ck be an endpoint of ρ in Gi. The number of agents matched to
ck in Ni is more than those matched to ck inMi. We know that the daily supply
si of the day di is an upperbound for both |Mi| and |Ni|. Since |Ni| = |Mi|+ z,
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we have |Mi| < si. From Algorithm 2 we know that Mi is a maximum-size b-
matching in Hi of size at most si. If the capacity of ck is not saturated in Hi,
then we can augment the path ρ contradicting the maximality of Mi. Since ck
has more edges of Mi than Ni incident to it, from the definition of bi,k, category
ck must have exhausted the overall quota qk in Algorithm 2 on or before day di.

4.2 Tight Example

The following example shows that the competitive ratio of Algorithm 2 is tight.
Let set of agents A = {a1, a2, a3} and categories C = {c1, c2}. Agent a1 is
eligible under {c1, c2}. Agent a2 is eligible only under {c1} and agent a3 is
eligible only under {c2}. The daily supply: s1 = 1 and s2 = 2. Overall quotas:
q1 = 1 and q2 = 2. The daily quota of each category on each day is set to 1. The
utility discounting factor for each agent is δ. The priority factor of the agent ai
is αi for i = 1, 2, 3. We assume that 0 ≤ α1 = α3 < α2 ≤ 1. Agent a1 is available
on both the days. Agent a3 is available only on the first day, whereas agent a2
is available only on the second day. Figure 4 depicts this example.

a1

a2

a3

α1 α1δ

- α2δ

α3 -

d1 d2

Fig. 4: A tight example with competitive ratio 1+δ+ α2

α1
δ. Online allocation indi-

cated in red, Optimal allocation indicated in green and arrows indicate charging

Since the daily supply of day d1 is 1, vaccinating a1 maximizes the utility
gained on the first day. Hence there exists a run of Algorithm 2 where a1 is vacci-
nated under category c1 on day d1. In this run, agent a2 cannot be vaccinated on
day d2 as she is eligible only under category c1 and overall quota of category c1
is exhausted. Hence, total utility gained by the online allocation is α1. Whereas
in a optimal allocation scheme all the agents can be vaccinated. Vaccinate agent
a3 on day d1 under category c2, agent a1 and a2 on day d2 under categories c2, c1
respectively. This sums to a total utility of α3+α1δ+α2δ. Therefore the compet-
itive ratio of the online algorithm is α3+α1δ+α2δ

α1
= α1+α1δ+α2δ

α1
= 1+ δ + αmax

αmin
δ.

The first equality holds as α1 = α3. The second equality holds as αmax = α2

and αmin = α1.
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5 Strategy-proofness of the online algorithm

We give the details of the Pure Nash Equilibrium here.

5.1 Pure Nash equilibrium

The offline algorithm might choose any arbitrary matching that maximizes the
utility. We present a deterministic tie-breaking rule similar to the one used in [5]
to force the algorithm to pick a unique matching. For this, we fix an ordering π on
agents. We show the existence of a pure Nash equilibrium under the deterministic
tie-breaking. We cast our problem as a linear program as given in Fig 5.

maximize:
∑

i∈A,j∈C,
k∈D

uik.xijk

subject to:
∑

i∈A,j∈C

xijk ≤ sk, ∀k ∈ D

∑
i∈A

xijk ≤ qjk, ∀(j, k) ∈ C ×D

∑
j∈C,k∈D

xijk ∈ [0, 1], ∀i ∈ A

xijk ∈ [0, 1], ∀(i, j, k) ∈ A× C ×D

Fig. 5: Here uik is the utility value of agent i on day k, and sk&qjk are the daily
supply and daily quotas respectively.

It can be seen that this LP models the network flow formulation of our
problem stated in Section 2. It is known ([31]) that the polytope arising from
the network flow problem is integral. To impose the deterministic tie breaking,
we modify the objective function as follows.

maximize
∑

i∈A,j∈C,
k∈D

uik.xijk + λ×REG,where

REG =
∑
i∈A

∑
k∈D,j∈C xijk

2π(i)

For a sufficiently small λ (λ < δ|D|+1), the difference between utilities of any
two allocations is greater than REG. Therefore, the linear program in Figure 5
maximizes the objective function in Fig 5, but breaks ties to maximize REG.
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Let Adi be defined as the set of agents matched on a day di ∈ D and A∞ be
the set of unmatched agents at the end of a run of the Algorithm 1. Let agent
ap be matched on di (WLOG, assume all unmatched agents are matched on day
∞. Now, we present a proof of Theorem 3.

Proof. (of Theorem 3) Suppose the agent ap is matched on day di, and deviates
to reporting a subset of the actual available days.

If agent ap gets matched on a day dj , j < i, because of misreporting her
available days, then some agent aq on day dj will remain unmatched. This follows,
since on any given day, the matching computed by algorithm 1 is of maximum size
and all agents other than ap turn up on at most one day. The rest of the matching
will remain unchanged. But, agent aq is prioritized by π over agent ap. Otherwise,
algorithm 1 would have matched ap and not aq on day dj . Hence, agent ap cannot
replace agent aq on day dj even after misreporting her availability.

Therefore agent ap has no advantage in deviating from the strategy. Hence,
the above matching is a pure Nash equilibrium.

6 Experimental Evaluation

In Section 3 we prove worst-case guarantees for the online algorithm. We also
give a tight example instance achieving a competitive ratio of 1 + 2δ. Here, we
experimentally evaluate the performance of the online algorithm and compare
it with the worst-case guarantees on a real-life dataset. For finding the optimal
allocation that maximizes utility, we solve the networkflow linear program with
the additional constraint for overall quota

∑
i∈A,k∈D xijk ≤ qj ∀cj ∈ C. This

LP is described in the Appendix. The code and datasets for the experiments can
be found at [24]

6.1 Methodology

All experiments run on a 64-bit Ubuntu 20.04 desktop of 2.10GHz * 4 Intel Core
i3 CPU with 8GB memory.

The proposed online approximation algorithm runs in polynomial time. In
contrast, the optimal offline algorithm solves an integer linear program which
might take exponential time depending on the integrality of the polytope. We
relax the integrality constraints to achieve an upper-bound on the optimal allo-
cation. For comparing the performance of the online Algorithm 1 and the offline
Algorithm, we use vaccination data of 24 hospitals in Chennai, India for the
month of May 2022. We use small data-sets with varying instance sizes for eval-
uating the running times of the algorithms. We use large data-sets of smaller
instance sizes for evaluating competitive ratios.

All the programs used for the simulation are written in Python language.
For solving LP, ILP, and LPR, we use the general mathematical programming
solver COIN-OR Branch and Cut solver MILP (Version: 2.10.3)[10] on PuLP
(Version 2.6) framework[37]. When measuring the running time, we consider the
time taken to solve the LP.
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6.2 Datasets

Our dataset can be divided into two parts.
Supply: We consider vaccination data of twenty four hospitals of Chennai,

India for the month of May 2022. This data is obtained from the official COVID
portal of India using the API’s provided. The data-set consists of details such
as daily vaccination availability, type of vaccines, age limit, hospital ID, hospital
zip code, etc. for each hospital.

Demand: Using the Google Maps API [20], we consider the road network for
these 24 hospitals in our data-set. From this data we construct a complete graph
with hospitals as vertices and edge weights as the shortest distance between any
two hospitals. For each hospital h ∈ H, we consider the cluster C(h) as the set
of hospitals which are at most five kilo meters away from h. We consider these
clusters as our categories. Now, we consider 10000 agents who are to be vacci-
nated. For each agent a, we pick a hospital h uniformly at random. The agent
a belongs to every hospital in the cluster C(h). Each agent’s availability over 30
days is independently sampled from the uniform distribution. Now, we consider
the age wise population distribution of the city. For each agent we assign an age
sampled from this distribution. Now, we partition the set of agents as agents
of age 18-45years, 45-60years and 60+. We assign α-values 0.96, 0.97 and 0.99
respectively. We also consider the same dataset with α-values 0.1, 0.5 and 0.9
respectively. We set the discounting factor δ to be 0.95.

For analyzing the running time of our algorithms, we use synthetically gen-
erated datasets with varying number of instance sizes ranging from 100 agents
to 20000 agents. Each agent’s availability and categories are chosen randomly
from a uniform distribution.

6.3 Results and Discussions

We show that the online algorithm runs significantly faster than the offline al-
gorithm while achieving almost similar results. We give a detailed emperical
evaluation of the running times in the Appendix.

To compare the performance of the online Algorithm 1 against the offline algo-
rithm we define a notion of remaining fraction of un-vaccinated agents. That is,
on a given day di, we take the set of agents Pdi who satisfy both of the following
conditions:

1. Agent a is available on some day dj on or before day di.
2. Agent a belongs to some hospital h and h has non-zero capacity on day dj

Pdi is the set of agents who could have been vaccinated without violating
any constraints. Let γi = |Pdi |.

Let Vdi be the set of agents who are vaccinated by the algorithm on or before
day di. Let ηi = |Vdi |. Now, 1 − ηi/γi represents the fraction of unvaccinated
agents. In Figure 6 we compare the age-wise 1− ηi/γi of both of our online and
offline algorithms. We note that the vaccination priorities given to vulnerable
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groups by the online approximation algorithm is very close to that of the offline
optimal algorithm. In both the algorithms, By the end of day 2, 50% of 1−ηi/γi
was achieved for agents of 60+ age group. By the end of day 8, only 10% of the
most vulnerable group remained unvaccinated.

Fig. 6: The 1 − ηi/γi value achieved by the online algorithm is very similar to
that of the offline algorithm across age groups. Both algorithm vaccinate achieves
vaccinate 90% of the most vulnerable group within 8 days.

6.4 Running Time Analysis

In Table 1 we compare the performance of the online algorithm and the offline
algorithm against the same dataset. We consider alpha values (0.96, 0.97, 0.99)
and (0.1, 0.5, 0.9). In both the cases, the online algorithm vaccinates almost the
same number of agents as that of the offline while algorithm achieving similar
total utility. The competitive ratio is 0.99. The online algorithm runs significantly
faster than the offline algorithm.
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Online
Algorithm

Offline
Algorithm

α value α1 α2 α1 α2

δ 0.95 0.95 0.95 0.95
Running time

(in sec) 319.04 336.55 888.90 806.65

Total
no. of agents
vaccinated

7154 7145 7192 7192

Total Utility 3567.95 1550.23 3580.68 1573.95

Table 1: The vector α1 =
(0.96, 0.97, 0.99) and vector α2 =
(0.1, 0.5, 0.9) represent the alpha
values for the three age groups . The
average competitive ratio is 0.99.
The average running time of the
online and the offline algorithms are
327.79 seconds and 847.77 seconds
respectively.
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Fig. 7: Time taken by offline and online
algorithms (on synthetic datasets) vs
instance size

Comparing the running time of Algorithm 1 and the offline algorithm, Fig-
ure 7 shows that the online algorithm runs significantly faster than the offline
algorithm for all input sizes.

6.5 Performance Analysis

In Figure 8, we plot the number of agents of age group 18-45 getting vaccinated
by the online algorithm 1 on each day for alpha values 0.96 and 0.1. It is clear
that the vaccination follows almost identical pattern as long as the order of
alpha values remain the same. Figure 9 shows similar results for the optimal
offline algorithm. The independence on cardinal values shows that the algorithm
is practically useful as ordering the vulnerable groups is much more feasible than
assigning a particular value. Similar plots for other age groups are given in the
appendix.

In Figure 10, we plot the number of agents of age group 45-60 getting vacci-
nated by the online algorithm 1 on each day for alpha values 0.97 and 0.5. It is
clear that the vaccination follows almost identical pattern as long as the order
of alpha values remain the same. Figure 11 shows similar results for the opti-
mal offline algorithm. Figure 12 and Figure 13 plot similar results for the 60+
age group population. We note that in both online and the offline algorithm,
allocations of vaccines for the age group 60+ are higher in the initial days and
decreases with days. Most of the agents from this group are vaccinated by the
end of 10th day.
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Fig. 8: Number of agents in the 60+ age group vaccinated by the online algorithm
for alpha-values 0.96 and 0.1 respectively.

Fig. 9: Number of agents in the 60+ age group vaccinated by the offline algorithm
for alpha-values 0.96 and 0.1 respectively.
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Fig. 10: Number of agents in the 45-60 age group vaccinated by the online algo-
rithm for alpha-values 0.97 and 0.5 respectively.

Fig. 11: Number of agents in the 45-60 age group vaccinated by the offline algo-
rithm for alpha-values 0.97 and 0.5 respectively.
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Fig. 12: Number of agents in the 60+ age group vaccinated by the online algo-
rithm for alpha-values 0.99 and 0.9 respectively.

Fig. 13: Number of agents in the 60+ age group vaccinated by the offline algo-
rithm for alpha-values 0.99 and 0.9 respectively.
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7 Conclusion

We investigate the problem of dynamically allocating perishable healthcare goods
to agents arriving over a period of time. We capture various constraints while
allocating a scarce resource to a large population, like production constraint on
the resource, infrastructure and constraints. While we give an offline optimal
algorithm for Model 1, getting one for Model 2 or showing NP-hardness remains
open. We also propose an online algorithm approximating welfare that elicits
information every day and makes an immediate decision. The online algorithm
does not require a foresight and hence has a practical appeal.Our experiments
show that the online algorithm generates a utility roughly equal to the utility of
the offline algorithm while achieving very little to no wastage.
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