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Abstract. The use of graph convolution in the development of recom-
mender system algorithms has recently achieved state-of-the-art results
in the collaborative filtering task (CF). While it has been demonstrated
that the graph convolution operation is connected to a filtering oper-
ation on the graph spectral domain, the theoretical rationale for why
this leads to higher performance on the collaborative filtering problem
remains unknown. The presented work makes two contributions. First,
we investigate the effect of using graph convolution throughout the user
and item representation learning processes, demonstrating how the latent
features learned are pushed from the filtering operation into the subspace
spanned by the eigenvectors associated with the highest eigenvalues of
the normalised adjacency matrix, and how vectors lying on this subspace
are the optimal solutions for an objective function related to the sum of
the prediction function over the training data. Then, we present an ap-
proach that directly leverages the eigenvectors to emulate the solution
obtained through graph convolution, eliminating the requirement for a
time-consuming gradient descent training procedure while also delivering
higher performance on three real-world datasets.

Keywords: Collaborative filtering · Graph convolution · Spectral meth-
ods.

1 Introduction

Graph convolutional networks (GCN) are a form of deep learning network which
leverages the structural information in a graph representation of the training
data [9]. The convolutional layers of the network aggregate each nodal feature
with those of its neighbours in the graph. By constructing a network of h con-
volutional layers, the node embedding becomes dependent on the features of
nodes that are h-hops away from it in the network. We focus on the Light-
GCN algorithm [8] that has received a lot of attention recently due to the fact
that it has demonstrated that, given only user-item interaction data without
rich user and item features, the convolutional layers can be greatly simplified. In
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particular, it argues that the non-linear activation and the trainable weights of
the full GCN can be removed from the convolution without any degradation to
the accuracy of the model and a substantial saving in the complexity of train-
ing. LightGCN has been shown to obtain state-of-the-art performance in terms
of top-N performance measures on a number of recommender datasets. In this
paper, we address the question of why LightGCN achieves good performance,
despite its simple convolutional layers. While it is surely true that LightGCN
is less complex than a regular GCN [9], it is also true that it requires train-
ing by gradient descent and that each update to the model parameters is much
more complex than the updates of standard matrix factorisation algorithms,
such as BPR. Hence, we ask if LightGCN is fundamentally better at capturing
features in the dataset that a standard matrix factorisation model will miss.
We show that, without the non-linear activation functions, the convolutions of
LightGCN can be understood as graph filters that have the effect of generating
features that are largely embedded in a subspace spanned by the eigenvalues
of the normalised interaction matrix corresponding to its largest eigenvalues.
We show why this is a suitable subspace in which to find quality solutions to
solve the top-N recommendation problem. With this spectral interpretation of
LightGCN, we proceed to build spectral recommender model, which we call
Pure Spectral Graph Embeddings (PSGE) that leverages the principles behind
LightGCN, while having a closed-form solution that can be found through an
eigen-decomposition of the interaction matrix, rather than through a gradient
descent algorithm. Given that fast algorithms for eigen-decomposition of sparse
matrices are available [5], PSGE can be learned in a fraction of the time that it
takes to train LightGCN. We demonstrate that PSGE out-performs LightGCN
on a number of recommendation datasets. We also test its performance against
the other leading linear algorithms in the literature and show that PSGE can
be configured to achieve high recommendation performance while reducing the
popularity bias that is evident in these other similar algorithms.

2 Preliminaries

Let U be a set of users of size |U| = U and I be a set of items of size |I| = I. Given
a U × I interaction dataset R = {rui} where rui represents implicit feedback
given by user u on item i, the top-N recommendation problem is to recommend
a set of N > 0 items that the system predicts are relevant to a given user
u. Typically, a prediction function computes a relevance score r̂ui, the items are
ranked according to r̂ui and the top items in this ordering are recommended. We
focus on latent space methods, where, for each user and item, a f -dimensional
embedding, denoted respectively as pu and qi is learned from the interaction
data, and the prediction function is the inner product of the user and item
embeddings. Write P for the U × f matrix whose rows are the user embeddings
pu and Q for the I × f matrix whose rows are the item embeddings qi.

Graph convolution methods interpret user-item interactions as edges of a
graph. More formally, the interaction data R can be represented as an undirected
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bipartite graph GR = (V, E) with nodes V = U ∪ I and edges E = {(u, i)|u ∈
U , i ∈ I, rui ̸= 0} connect user nodes u to item nodes i whenever there is an
interaction between them in R.

2.1 Graph Signals and the Graph Fourier Transform

Given an undirected weighted graph of order n, with adjacency matrix A =
{aij} ∈ R, a signal over the graph is a function f : V → R. For any signal,
we can form the n-dimensional vector x ∈ Rn such that the ith component of x
represents the value of the signal at the ith vertex of V. Notice how concatenating
the embedding matrices, P and Q into a single (U+I)×f dimensional matrix X,
we obtain a matrix in which each column represents a signal over the bipartite
graph GR. From this alternative point of view, the learning process involves the
learning of f different signals over the graph which can be thought as latent
features constructing the user and item representations.

A graph convolution operation on a signal is a weighted sum of the signal
at a node with its values in a neighbourhood of up to (n − 1)-hops from the
node and can be represented as a polynomial over a propagation matrix S with
weights gi:

conv(x,g) =

n−1∑
i=0

giS
ix ≡ g ∗ x .

A common choice for the propagation matrix S is the normalised Laplacian ∆,
of a graph with adjacency A, defined as ∆ = I − D−1/2AD−1/2 , where D is
the diagonal matrix of node degrees with diagonal elements dii =

∑
j aij . ∆ is

a symmetric positive semi-definite matrix, so that its eigenvalues λi are non-
negative and its eigenvectors form an orthogonal basis, allowing the decomposi-
tion, ∆ = UΛU⊤, where U is the matrix whose columns are the n orthonormal
eigenvectors and Λ = diag(λ1, . . . , λn) is the diagonal matrix of the eigenvalues,
assumed ordered such that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Note that, while ∆ is a
common choice, any real symmetric matrix associated with the graph can be
chosen to define the graph spectrum.

The Graph Fourier Transform [16] x̂ of a graph signal x is defined as its
projection into the eigenvector basis U, i.e., x̂ = U⊤x, with inverse operation
defined as x = Ux̂. In the Fourier domain of the eigenvector basis, a convolution
is a simple element-wise multiplication, such that ĝ ∗ x = ĝx̂, where3,

ĝi = ĝi(λi) =

n−1∑
j=0

gjU
i
j

This shows that the spectral coefficient x̂i(λi) reflecting the correlation of the
signal x with the ith eigenvector, is scaled by ĝi(λi) and hence ĝ can be thought
of as a spectral filter, which can enhance or diminish certain frequencies of the

3 A polynomial p(A) has the same eigenvectors as A, with eigenvalues given by p(λ),
where λ is an eigenvalue of A.
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signal. We can understand the impact of the convolution on a signal most easily
by studying ĝi(λi) in the Fourier domain.

In the collaborative filtering problem only the historical user-item interac-
tions are available, making impossible to seed the initial representations (signals)
for the user and item nodes. In [20], it is proposed to initialise the node embed-
dings as free parameters and learn jointly the representations and filters from
the training data. The complexity of this approach has been shown to down-
grade the quality of the user and item representations learnt [3,8]. To overcome
this problem, in [8], the “light convolution” method, LightGCN, is proposed,
where the only free parameters correspond to the user and item representations.
In the following, we show that the chosen propagation matrix corresponds to a
fixed high-pass filter in the spectral domain defined by the normalised adjacency
matrix.

3 LightGCN as a High-Pass Filter

LightGCN [8] is a state-of-the-art graph convolution model for the top-N recom-
mendation task. It uses S = D−1/2AD−1/2 as a propagation matrix to exchange
information along the edges of the graph, where A is the adjacency matrix of
the user-item interaction graph GR. At the first step, the latent features of user
and items (signals) X(0) = [P(0); Q(0)] ∈ R(U+I)×f are randomly initialised and
then updated at every convolution step as X(k) = SX(k−1) . The final user and
item latent features are then computed as a weighted combination of the signals
at each convolution step:

X = α0X
(0) + . . .+ αkX

(k) =
(
α0I + α1S + . . .+ αkS

k
)
X(0)

The authors reported that learning the signals and the coefficients αi jointly
lead to worse results than assigning the uniform weights, α0 = α1 = . . . = αk =
1/(k + 1).

By carrying out an analysis over the spectrum defined from the symmetric
normalised Laplacian ∆, in [15], the convolution operation is shown to corre-
spond to a low-pass filter. If we instead consider the spectrum defined by the
propagation matrix S = I−∆ -i.e. the symmetric normalised adjacency matrix-
we show how the convolution correspond to an high-pass filter.

ĝi(λi) =
1

k + 1
(1 + λi + λ2

i + . . .+ λk
i )

where λi are the eigenvalues of S. Applying the sum of the geometric series, we
can express it more concisely as:

ĝ(λ) =

{
1

k+1
1−λk+1

1−λ λ < 1

1 λ = 1
(1)

In Fig. 1, ĝi is plotted against λi for different values of the convolution depth
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Fig. 1. LightGCN spectral filter for different values of k.

k. It illustrates that the convolution acts as a high-pass filter over the spectrum
defined by S, reducing the strength of the lower frequencies, with stronger filter-
ing as k increases. This implies that the convolution operation transforms the
input signals so that they are focused in a subspace spanned by the eigenvectors
corresponding to the high eigenvalues of the normalised adjacency S.

4 A Spectral Interpretation of LightGCN

We have highlighted how the final latent features learnt from LightGCN are
substantially contained in the span of the largest eigenvectors of the normalised
adjacency matrix. The theoretical underpinnings for why this is beneficial for
the recommendation task are discussed in this section. We show that leveraging
vectors lying in this subspace as latent features, leads to the optimisation of a
target function which is a weighted summation of the prediction function over
the training data.

When the problem is rating prediction, the goal of a recommendation al-
gorithm is to learn a prediction matrix, R̂ which well approximates the rating
matrix R. This can be formulated in terms of finding R̂ which is close to R in
the Frobenius norm:

min
R̂

(
∥R− R̂∥2F

)
= min

R̂

(
Tr((R− R̂)(R− R̂)T )

)
= min

R̂

(
Tr(RRT )− 2Tr(RR̂T ) + Tr(R̂R̂T)

)
= min

R̂

(
− 2Tr(RR̂T ) + ∥R̂∥2F

)
.

However, when the problem is top-N recommendation where the requirement is
to learn a score to sort the items in order of preference, the scale of the prediction
function is irrelevant to the order and can be fixed to any arbitrary value. Hence,
we can write the target objective as:

max
R̂

(
Tr(RR̂T )

)
s.t. ∥R̂∥2F is fixed.

In fact, for implicit binary datasets, the trace has a natural interpretation as
the sum of the predictions over the positive interaction data. Furthermore, note
that the trace can be written as a quadratic form over the adjacency matrix of
the user-item interaction graph.
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Proposition 1. The quadratic form QA(x) induced by the adjacency matrix of
the user-item interaction graph, on a signal x = [p;q], corresponds to twice
the sum of the prediction function over all positive interactions in the training
dataset.

QA(x) = xTAx =
∑
ℓ,k

aℓkxℓxk = 2
∑

{(u,i)|rui ̸=0}

puqi .

This can be generalised to a (U + I)× f matrix X of f signals as:

QA(X) = Tr
(
XTAX

)
= Tr

(
AXXT

)
= 2Tr

(
PTRQ

)
= 2

∑
{(u,i)|rui ̸=0}

pT
uqi .

such that the sum of the prediction functions over the training data positive
interactions is the trace of a quadratic form on the interaction data.

This is an intuitive objective for the top-N recommendation task,as opposed to
the rating prediction task. Note that any rank f , symmetric matrix XXT can be
written as YΣYT where Y is orthogonal (i.e. YTY = If ) and Σ is a f×f diagonal
matrix. So we can equivalently write the trace as QA(X,Σ) = Tr

(
XTAXΣ

)
, for

orthogonal X. As such, we recognise that the problem of learning f signals (latent
features) to construct the user and item embeddings which maximises the sum
of the prediction function over the training data is solved by the generalised
Rayleigh-Ritz theorem [12].

Theorem 1 (Rayleigh-Ritz). For a real symmetric n× n matrix A:

max
X

{Tr
(
XTAX

)
s.t.XTX = If} = λ1 + · · ·+ λf

and the maximising matrix is X = [v1, . . . ,vf ] where λi are the f largest eigen-
values of A and vi the corresponding orthonormal eigenvectors. Furthermore
[19], the quadratic form Tr

(
XTAXΣ

)
, where Σ = diag(σi) is a fixed diagonal

matrix, is optimised by the same matrix of orthonormal eigenvectors, such that

Tr
(
XTAXΣ

)
=

f∑
i=1

λiσi . (2)

4.1 Inverse Propensity Control

It is well recognised that recommender system datasets tend to exhibit biases
in the manner in which the interaction data is observed [2]. Propensity scor-
ing provides one means of taking such biases into account during model learning
[14,21]. The propensity score is an estimate of the probability that any particular
interaction is observed. The contribution of each observed interaction to the loss
function is multiplied by its inverse propensity score, prior to model learning.
The symmetric normalised adjacency matrix of the LightGCN method can be
viewed as an inverse propensity weighted adjacency. In particular, each observed
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aui is weighted by a term depending on the user and item degrees: d
−1/2
u d

−1/2
i .

The quadratic form over this normalised matrix, Ã is a weighted sum of the pre-
dictions on the training data, where each prediction is down-weighted according
to the user and item degree:

QÃ(x) = Tr
(
XT ÃX

)
= Tr

(
XTD−1/2AD−1/2X

)
= 2

∑
{(u,i)|rui ̸=0}

1

d
1/2
u d

1/2
i

pT
uqi .

Without such normalisation, the target function can be trivially maximised by
giving larger embedding weights to the users and items with many interactions in
the training set. The normalisation should therefore have the effect of increasing
the embedding weights of unpopular items and users with short profiles.

The eigenvectors with largest eigenvalues of the normalised adjacency provide
the optimal solution for this modified target objective. Hence, we can conclude
that to a large extent the LightGCN method is effective because the convolution
focuses on embeddings that are largely contained in the subspace spanned by the
eigenvectors of largest eigenvalues of the normalised adjacency; and that these
eigenvectors provide an optimal solution to the target objective of maximising
the propensity-weighted sum of the predictions over the training data. It is note-
worthy that, in the maximisation of the quadratic form, each eigenvector con-
tributes proportionally to its associated eigenvalue (Theorem 1), meaning that
is reasonable to assume that the latent features associated to higher eigenvectors
should have more weight with respect to those associated to lower eigenvectors.
The shape of the high pass filter employed by LightGCN throughout the learning
process, Fig. 1, can deliver such a spectrum.

5 Pure Spectral Graph Embeddings Model

Given the interpretation of LightGCN in terms of the spectrum of the adjacency
matrix, it is worth asking if spectral methods can be developed that are com-
petitive with LightGCN on accuracy. Firstly, we show how the PureSVD [4] can
be interpreted under a trace maximisation problem. Explaining the doubts pre-
sented in the original paper regarding how a method devised for rating prediction
is performing so well with implicit feedbacks.

5.1 PureSVD

QA(X,Σ) is maximised when X = [P;Q] are the eigenvectors of A and the
prediction function is then R̂ = PΣQT , where Σ = diag(σi). Writing u for
a U × 1-dimensional eigenvector of RRT , and v for the corresponding I × 1-
dimensional eigenvector of RTR, with eigenvalue λ2 ≥ 0, the eigenvectors of A
are x = 1√

2
[u;v] and x = 1√

2
[u;−v] with eigenvalues ±λ. Moreover, u = Rv/λ

or, gathering all f eigenvectors into the columns of P and Q, we have P = RQΛ−1

where Λ = diag(λi). The eigenvectors u and v can be obtained from a singular
value decomposition of R [10].
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The coefficients σi in the above expression can be interpreted as a weight
given to each of the f signals from which the embedding is formed. Now,
∥R̂∥2 = ∥PΣQT ∥2 =

∑f
i=1 σ

2
i and it follows that the best choice of σi to max-

imise
∑f

i=1 λiσi, under a fixed constraint on its norm is σi ∝ λi. The prediction
function is then PQTΣ = RQΛ−1ΛQT = RQQT which is exactly the PureSVD
method. We have arrived at this method through trace maximisation under a
norm constraint on the prediction function, as opposed to the Frobenius norm
minimisation approach, appropriate for rating prediction. The trace maximi-
sation perspective allows for the development of other methods, which differ
from PureSVD in the manner in which the norm of the prediction matrix is
constrained.

5.2 Propensity Weighted Norm Constraint

Given that we wish to control the size of the embeddings of highly active users
or popular items, it is useful to consider a constraint on the prediction function
that controls the embedding size in proportion to the degree in the interaction
dataset. In particular, we consider the following trace maximisation problem:

max
R̂

(
Tr(RR̂T )

)
s.t. ∥Dα

U R̂D
β
I ∥

2
F is fixed .

where DU is the diagonal matrix of user degrees and DI the diagonal matrix of
item degrees. By scaling the contribution of each prediction r̂ui = pT

uqi in this

fixed norm by the degrees dαud
β
i , the effect, as α and β get larger will be that

the size of high degree embeddings gets smaller. Here we have generalised the
exponent used in LightGCN to allow for two tuneable parameters α and β such
that we can explicitly control the propensity score attributed to the users and
items. With a change of variables P̃ = Dα

UP and Q̃ = Dβ
IQ, we have

Tr(RR̂T ) = Tr(RQPT ) = Tr(RD−β
I Q̃P̃TD−α

U )

= Tr((D−α
U RD−β

I )Q̃P̃T ) =
1

2
Tr(X̃T (DAD)X̃)

where D is the (U + I) × (U + I) diagonal matrix diag(D−α
U ,D−β

I ). Writing

Ã = DAD as the normalised adjacency, the trace is maximised by choosing P̃
and Q̃ from the PureSVD solution on the normalised interaction matrix R̃ =
D−α

U RD−β
I .

Having found P̃ and Q̃, one way to proceed is to rescale them back to the
required factors P and Q, to obtain a fully popularity-controlled prediction ma-
trix. On the other hand, it is well known that to achieve high recommendation
accuracy, some popularity bias in the model’s predictions is required [17]. So,
instead, we complete the prediction function by noting that, since the embed-
dings are produced from the SVD of R̃:
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Table 1. Recommendation performance. bold and underline indicate the first and the
second best performing algorithms.

Model

Ml1M Amazon Gowalla

NDCG Recall NDCG Recall NDCG Recall

@20 @5 @20 @20 @5 @20 @20 @5 @20

BPR-MF 0.2602 0.1191 0.2756 0.0439 0.0377 0.0928 0.1021 0.0763 0.1721

LightGCN 0.2679 0.1254 0.2898 0.0446 0.0357 0.0956 0.1277 0.0980 0.2050

PureSVD 0.2621 0.1203 0.2755 0.0299 0.0229 0.0682 0.1162 0.0860 0.1836

EASE 0.2969 0.1415 0.3164 0.0509 0.0435 0.1028 0.1469 0.1114 0.2319

SGMC 0.2830 0.1369 0.3070 0.0528 0.0443 0.1087 0.1514 0.1167 0.2328

PSGE 0.2951 0.1418 0.3230 0.0533 0.0458 0.1087 0.1641 0.1265 0.2519

Statistics
# users 5 949 9 279 29 858
# items 2 810 6 065 40 988
# inter 571 531 158 979 1 027 464

1. P̃ = R̃Q̃Λ̃−1, and
2. P̃Λ̃Q̃T = R̃Q̃Q̃T ≈ R̃.

Hence

D−α
U RD−β

I Q̃Q̃T ≈ D−α
U RD−β

I (from (1) and (2) above)

RD−β
I Q̃Q̃T ≈ RD−β

I (dividing by D−α
U )

RD−β
I Q̃Q̃TDβ

I ≈ R (multiplying by Dβ
I ) .

So, we set R̂ = RD−β
I Q̃Q̃TDβ

I , as the prediction matrix that directly approxi-
mates the observed interaction data, while being constructed in a manner that
accounts for user and item propensity. It is worth noting that, although α does
not appear explicitly in this formula, the eigenvectors in Q̃ depend on α, as they
are computed from the user- and item-degree normalised matrix. In fact, using
(1) we can equivalently write the prediction matrix as

R̂ = Dα
U P̃ΛQ̃

TDβ
I . (3)

We name this method Pure Spectral Graph Embeddings (PSGE).

6 Experiments

We conduct experiments on three real-world datasets: Movielens1M [6], Amazon
Electronics [7] and Gowalla [11]. Following [8,20], we perform a k -core prepro-
cessing step setting kcore = 10. We randomly split the interaction data of each
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user in train (80%), validation (10%) and test set (10%), we use the validation
data to determine the best algorithm hyperparameters, subsequently, we assess
their final performance on the test set by training the models with both train
and validation data. We compare the proposed algorithm with BPR [13] and
LightGCN [8] as well as the spectral methods PureSVD [4] and SGMC [1] and
the linear model EASE [18]. The code used to produce the presented experiments
is publicly available on github4.

6.1 Recommendation Performance

To evaluate the algorithm’s recommendation performance under the two differ-
ent aspects of ranking and accuracy we report NDCG@20 and Recall@N using
two different cutoffs, N = {5, 20} and present the results in Table 1. Except
for the NDCG on Movielens1M, where it is the second best performer, PSGE
gets the best results on the Recall and NDCG metrics for both cutoffs in all
datasets studied, demonstrating its effectiveness in comparison to well-known,
high-performing baselines from the graph convolution and spectral research do-
mains. When compared to LightGCN, the model that inspired the study, PSGE
consistently outperforms it in all datasets, with a minimum gain of 11% on the
NDCG@20 on Movielens1M and a maximum increment of 29% on NDCG@20
on Gowalla. We conclude that in the context of implicit interaction data, we
can mimic the effect of graph convolution without resorting to a costly gradient-
based optimisation approach. PSGE corresponds to the SGMC algorithm with
the setting α = β = 0.5. We can see that in all the datasets and for all metrics
and cutoffs, the introduction of the two tuneable parameters accounting for the
propensity scoring of users and items, is capable of delivering substantial im-
provements over its hypergraph counterpart formulation in which the exponent
is set to a fixed value.

6.2 Controlling Popularity Bias

PSGE reintroduces both user and item popularity to approximate the inter-
action matrix by rescaling the norm of the user and item embeddings by their
respective degree (see Eq. 3). We note that rescaling on the users has no in-
fluence on the ranking at prediction time, but rescaling on the items increases
the popularity on the recommendations. This enables us to control the popu-
larity in the predictions by trading it off against recommendation performance-
we achieve this by changing the value of β used to estimate R̂. To evaluate the
algorithm’s efficacy from this standpoint, in Fig. 2 we show the average pop-
ularity in the PSGE prediction against the performance when the exponent β
(associated with the item degree rescaling) is varied. We also show a compari-
son to the behaviour of the baseline. The average popularity in the prediction
is defined as the mean of the popularity of the items recommended, while the
item popularity is defined as popi = di/U , where di indicates the item degree.

4 https://github.com/damicoedoardo/PSGE
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Fig. 2. Manipulation of the hyperparameter β regulating the item degree norm rescal-
ing. The tradeoff between accuracy and popularity in the predictions is reported plot-
ting the NDCG@20 against the average popularity on the recommendations.

For clarity, we refer to β̃ as the manipulated parameter while β refers to the
value used in computing the normalised interaction matrix R̃. We vary β̃ in the
range [0, 1] with a step size of 0.1. The mean popularity of the recommendation
increases monotonically with β̃, while the NDCG peaks at a value of β̃ close to
β. On Movielens1M and Amazon the peak is observed exactly at β̃ = β, while
on Gowalla we reach the best performance at β̃ = 0.3 while β = 0.4. From the
presented results we have empirically demonstrated how our algorithm can ef-
fectively trade off recommendation performance in favour of lowering popularity
in the recommendations. It is worth mentioning that in all datasets, PSGE rec-
ommendations associated with peak performance have lower average popularity
when compared to the second best performing algorithm, highlighting how the
algorithm is capable of generating high quality predictions.

7 Conclusion

We presented a study on the graph convolution approach employed by Light-
GCN proving how the convolution acts as a fixed, high-pass filter in the spectral
domain induced by the normalised adjacency matrix. We presented a detailed
explanation of why this operation is beneficial to the top-N recommendation
problem. Exploiting this spectral interpretation, we presented a scalable spectral
algorithm based on the singular value decomposition of the propensity weighted
interaction matrix. We empiracally showed how the presented model is able to
emulate the behaviour of the light convolution by achieving better performance
than LightGCN, requiring only a fraction of the training time and enabling the
control of the tradeoff between accuracy and popularity on the set of provided
recommendations.
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