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Abstract. In the pursuit of accurate and scalable quantitative methods
for financial market analysis, the focus has shifted from individual stock
models to those capturing interrelations between companies and their
stocks. However, current relational stock methods are limited by their
reliance on predefined stock relationships and the exclusive consideration
of immediate effects. To address these limitations, we present a ground-
breaking framework for financial market analysis. This approach, to our
knowledge, is the first to jointly model investor expectations and au-
tomatically mine latent stock relationships. Comprehensive experiments
conducted on China’s CSI 300, one of the world’s largest markets, demon-
strate that our model consistently achieves an annual return exceeding
10%. This performance surpasses existing benchmarks, setting a new
state-of-the-art standard in stock return prediction and multiyear trad-
ing simulations (i.e., backtesting).

Keywords: stock trend prediction · trading simulation · expectation
modeling.

1 Introduction

The efficient-market hypothesis in traditional finance posits that stock prices
reflect all available market information, with current prices consistently trading
at their fair value [5]. Consequently, predicting future stock prices is challenging
without access to new information. However, markets are often less efficient in
reality [11], with stock market fluctuations driven by behavioral factors such as
expectations, confidence, panic, euphoria, or herding behavior. These inefficien-
cies enable the use of machine learning to predict future stock movements based
on historical trends.

Stock-affecting behavioral factors can be categorized into short- and long-
term factors. Factors like panic, euphoria, or herding behavior are typically
short-term, while subjective expectations and confidence tend to be long-term
factors, only influencing stock prices imperceptibly over extended periods. These
factors do not solely impact individual stocks; their effects often spread to top-
ically related stocks, which share similarities across various explicit or latent
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Fig. 1. The return of Amazon and Facebook (Meta) stocks from 2021-05-03 to 2022-
07-08 with respect to their stock prices at 2021-05-03.

.

dimensions. Recent stock prediction works [14,21,15] utilize topic stocks to im-
prove prediction capabilities. However, most of these methods exhibit two key
limitations:

(1) Topics are typically assumed to be static and known beforehand. However,
real-world topics can change and new topics may emerge. For example, during the
COVID-19 pandemic, pharmaceutical companies investing in COVID vaccines
(e.g., Pfizer4 and Moderna5) experienced stock price fluctuations under the new
COVID topic.

(2) Only the short-term impact between stocks is considered, neglecting the
long-term subjective expectations. Unlike analyst expectations, subjective expec-
tations are based on human psychology and behavior and can be irrational.
Figure 1 illustrates that Amazon and Facebook stock prices often correlate, and
previous methods might reason that a significant drop in Facebook’s price would
also lead to plummeting Amazon stocks. However, in the second half of 2021,
Amazon’s return was lower than Facebook’s, lowering investor expectations for
Amazon. Thus, when Amazon released an unremarkable financial report6 on
February 3, 2022, its stock rose 13.5

4 https://investors.pfizer.com/Investors/Stock-Info/default.aspx
5 https://investors.modernatx.com/Stock-Info/default.aspx
6 https://s2.q4cdn.com/299287126/files/doc_financials/2021/q4/business_

and_financial_update.pdf

https://investors.pfizer.com/Investors/Stock-Info/default.aspx
https://investors.modernatx.com/Stock-Info/default.aspx
https://s2.q4cdn.com/299287126/files/doc_financials/2021/q4/business_and_financial_update.pdf
https://s2.q4cdn.com/299287126/files/doc_financials/2021/q4/business_and_financial_update.pdf
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In this paper, we introduce a novel attention-based framework for stock trend
prediction that simultaneously discovers topical relations between stocks and
models both the short-term impact and long-term subjective expectations of top-
ically similar stocks. To the best of our knowledge, our framework is the first
to:

– Model the influence of investors’ subjective expectations on stock prices.

– Automatically identify dynamic topics between stocks without making as-
sumptions or requiring additional knowledge.

Through comprehensive experiments against 16 well-established baselines,
we demonstrate that our method achieves the current state-of-the-art on the
Qlib [22] quantitative investment platform.

2 Related Work

The stock price prediction and stock selection problems can be easily formed as a
time series forecasting problem. Therefore, traditional and deep-learning-based
machine learning (ML) methods, especially those for sequence learning, have
been directly applied to these tasks are widely used by investment institutions.
Specifically, Qlib [22], a popular quantitative investment platform, benchmarks
models based on the following ML methods: multi-layer perceptron (MLP); Tab-
Net [1]; TCN [2]; gradient boosting models: CatBoost [12], LightGBM [8]; Re-
current Neural Network (RNN) based models: long short-term memory (LSTM)
[6], gated recurrent unit (GRU) [3], DA-RNN [13], AdaRNN [4]; and attention-
based models: Transformer [18], and Localformer [7]. To model the co-movement
and relations among stocks, some research, such as MAN-SF [15] and STHAN-
SR [14]), also adopted graph neural network methods like GCN [10] and GATs
[19] to mine the correlation between different stocks.

More recent models include those specifically designed for stock trading. Dou-
bleEnsemble [23] is an ensemble model which utilizes learning-trajectory-based
sample reweighting and shuffling-based feature selection for stock prediction.
ADD [16] attempt to extract clean information from noisy data to improve pre-
diction performances. Specifically, they proposed a method for separating the
inferential features from the noisy raw data to a certain degree using disentan-
glement, dynamic self-distillation, and data augmentation. Xu et al. assume that
inter-dependencies may exist among different stocks at different time series and
propose a method called IGMTF [20] to mine these relations. In their other work,
they propose HIST [21], a three-step framework to mine the concept-oriented
shared information and individual features among stocks.

We use most of the above-mentioned methods as baselines in our experiments.
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3 Framework

3.1 Problem Definition

We formulate the stock trend prediction problem as a regression problem. Let
stock1, stock2, ..., stockn denote n different stocks. For each stock stockj on date
i, the closing price is priceij . Given the historical information before date i, our

task is to predict the one-day return rij =
priceij−pricei−1

j

pricei−1
j

for each stock j on date

i. In the rest of this paper, we use ri to denote (ri1, r
i
2, ..., r

i
n).
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Fig. 2. Our model’s framework consists of: (a) Extracting Alpha360 features from raw
data: For each stock on a given day, we combine the opening price, closing price, highest
price, lowest price, trading volume, and volume-weighted average price (VWAP) into
a 6-D feature vector. We then concatenate this vector with similar 6-D vectors from
the preceding 59 days to form a 360-D feature vector. (b) The LSTM module processes
the extracted Alpha360 features to learn temporal representations. (c) The left half
of this section represents the topic module, which uses stock embeddings as input to
extract latent topics. The right half illustrates the expectations module, which takes the
Ei−1 output from the expectation LSTM in part (d) as an initial embedding, employs
attention with topics to update it to Êi−1, and feeds it back into the expectation LSTM
as input for day i. (d) The second LSTM module models the evolution of each stock’s
expectation.

3.2 Overview of the Framework

The architecture of our model is shown in Figure 2. The model consists of three
jointly optimized modules: temporal stock representation (which aims to extract
temporal stock features), topic module (aims to discover the dynamic topics
based on the extracted features), and expectation module (aims to model the
subjective expectations for each stock). Below we describe each module in detail.
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3.3 Temporal Stock Representation

The first step of our learning framework is to extract the Alpha360 features
[22] from the raw data. The Alpha360 is a 360-D feature vector that is widely
used in the quantitative investment domain. As shown in Figure 2 (a), for each
stock on each day, we combine the opening price, closing price, highest price,
lowest price, trading volume and volume-weighted average price (VWAP) as a
6-D feature vector and concatenate it with similar 6-D vectors from the past 59
days to get a 360-D feature vector.

To extract the temporal representation of stocks, we adopt an LSTM layer
shown in Figure 2 (b)). Our framework is trained recursively by date: for each
trading day i, the input is the Alpha360 features Hi of stock1, stock2, ..., stockn
for that day and the output of the LSTM layer is Si, which is comprised of si1,
si2, ..., s

i
n, denoting the embeddings of each stock.

3.4 Topic Module

As mentioned before, the relations among stocks may evolve overtime, so our
framework needs to be able to capture the evolution of topics and discover new
topics each day. Figure 2 (c) shows the topic and expectation modules of our
framework.

First, for each day i, we initialize the n topic embeddings Ti = (ti1, t
i
2, ...,

tin) using the n stock embeddings Si = (si1, s
i
2, ..., s

i
n). Then, we compute the

Tanimoto coefficient (T ) [17] between all pairs of tij1 (topic j1 in day i) and sij2
(stock j2 in day i), for ∀j1, j2 ∈ [1, n] with the following equation:

T (tij1 , s
i
j2) =

tij1s
i
j2

∥tij1∥2 + ∥sij2∥2 − tij1s
i
j2

(1)

We define a function ϕi(sij2) that for each stock embedding, sij2 , returns the
most similar topic index j1, except for its own topic (i.e., j1 ̸= j2) in date i,
based on the Tanimoto coefficient:

ϕi(sij2) = arg max
j1

(
T (tij1 , s

i
j2), j1 ̸= j2

)
(2)

In the example shown in Figure 2 (c) (with the dashed lines) ϕi(si1) = 1, ϕi(si2) =
1, ϕi(sin) = n.

We further construct a set validi that contains “valid” topics for each day i,
i.e., those that are the most related to at least one stock:

validi =
{
x|∃j, x = ϕi(sij)

}
(3)

This set denotes the topics we discovered for each day. Only if a topic tij1 is
the most similar topic to at least one stock, it will be include in this set, other
topics (e.g., ti2 in Figure 2 (c)) will be excluded from the following calculations.

To update each topic embedding tij1(j1 ∈ validi), we train the fully connected
layer with weight matrix Wt, bias matrix bt and activation function tanh to
aggregate the stock embeddings using the Tanimoto coefficient:
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tij1 = tanh

Wt

 ∑
ϕi(sij2

)=j1

T (tij1 , s
i
j2)sij2

 + bt

 (4)

3.5 Expectation Module

The expectations of investors change over time and our framework needs to
take that into consideration. As shown in Figure 2 (d), we adopt an LSTM to
model the evolving expectations of each stock. Each Ei consists of n expectation
embeddings ei1, e

i
2, ..., e

i
n, we assume that at the first timestamp, the investor’s

expectations are all decided by the stocks themselves, so the initial embedding
E1 = (e11, e

1
2, ..., e

1
n) are initialized as the n stock embeddings S1 = (s11, s

1
2, ..., s

1
n).

The expectation for one stock can also be affected by the performance of
other stocks under related topics. So for day i, we take the output Ei−1 =
(ei−1

1 , ei−1
2 , ..., ei−1

n ) of the LSTM and adopt an attention mechanism to learn
the importance of each topic j1 to the expectations:

α(tij1 , e
i−1
j2

) =
exp

(
T
(
tij1 , e

i−1
j2

))∑
j∈validi exp

(
T
(
tij , e

i−1
j2

)) (5)

êi−1
j2

= tanh

W 1
e e

i−1
j2

+ W 2
e

 ∑
j1∈validi

α(tij1 , e
i−1
j2

)tij1

 + be

 (6)

where α(tij1 , e
i−1
j2

) measures the importance of topic j1 to the expectation

of stock j2, and the updated Êi−1 = (êi−1
1 , êi−1

2 , ..., êi−1
n ) then feed back to the

LSTM (d) as the input of day i.

3.6 Loss Function

The objective of our model is to predict the one-day return r of each stock. The
objective relies on three components: rstock, rtopic, and rexpectation.

The rstock and rexpectation are learnt from the temporal stock embeddings
and the expectation embeddings, respectively :

ristock = tanh (WstockSi + bstock) (7)

riexpectation = tanh (WexpectationEi + bexpectation) (8)

To learn rtopic, we first learn the importance of each topic to the stocks using
a similar attention mechanism as the expectation module:

β(tij1 , s
i
j2) =

exp
(
T
(
tij1 , s

i
j2

))∑
j∈validi exp

(
T
(
tij , s

i
j2

)) (9)

oij2 = tanh

Ws

 ∑
j1∈validi

β(tij1 , s
i
j2)tij1

 + bs

 (10)
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where β(tij1 , s
i
j2
) measures the importance of topic j1 to the expectation of

stock j2 on day i. Note that different from the expectation module which includes
the term W 1

e e
i−1
j2

, here oij2 measures the impact of all the topics on the stock j2
on day i, without considering si. This is because si is already included in rstock.
We use Oi to denote (oi1, o

i
2, ..., o

i
n); rtopic is learnt as:

ritopic = tanh
(
WtopicO

i + btopic
)

(11)

The predicted return r̂ is learnt by combining these three components:

r̂i = tanh
(
Wr̂r

i
stock + Wr̂r

i
topic + Wr̂r

i
expectation + br̂

)
(12)

The loss function of our model is defined as the mean squared error between
r̂ and r:

L =

∑
i∈[1,D]

(
ri − r̂i

)⊤ (
ri − r̂i

)
D · n (13)

where D corresponds to the number of trading days. Algorithm 1 shows the
pseudocode of our method.

Algorithm 1 Training pseudo-code

Input: H =
{
H1, H2, . . . , H|D|

}
: the Alpha360 features for each trading day

Parameters:
Θ : the initialized model parameters, epochs : the number of training epochs, η :
learning rate

Output: The predicted return r̂

1: for epoch← {1, . . . , epochs} do
2: for i← {1, . . . , D} do
3: Si ← LSTMb(Hi)
4: if t == 1 then
5: Ti ← Si

6: Ei ← Si

7: end if
8: T ← Calculate Tanimoto coefficient (Eq. 1)
9: validi ← Calculate the valid topic set according to T (Eq. 3)

10: Ti ← Aggregate information from Si according to T (Eq. 4)
11: α← Calculate the attention weight (Eq. 5)
12: Êi ← Aggregate information from Ti according to α (Eq. 6)
13: Ei+1 ← LSTMd(Êi)
14: end for
15: Compute the stochastic gradients of Θ (Eq.13)
16: Update model parameters Θ according to learning rate η and gradients.
17: end for
18: return the predicted return r̂
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3.7 Model Training

Our model is optimized by minimizing the global loss L. This was done using the
Adam optimizer [9]. The hyper-parameters are set as follows: the embedding size
is set to 128, the learning rate is set to 0.001, the training epoch is set to 300, the
dropout rate is set to 0.1. All experiments are run on a Lambda Deep Learning
2-GPU Workstation (RTX 2080) with 24GB of memory, and the random seed is
set to 0 at the beginning of each experiment.

4 Experiments

4.1 Datasets

We run comprehensive evaluations of our framework on the China’s CSI 300
financial markets, from 2008 to 2022. We use the data from 01/01/2008 to
12/31/2014 as the training set, the data from 01/01/2015 to 12/31/2016 as the
validation set for hyper-parameter fine-tuning, and the data from 01/01/2017 to
07/10/2022 as the test set.

4.2 Baselines

We compare our framework with a comprehensive list of 16 well-known methods
which are widely used in the financial sector. These methods span six different
categories and are:

– Classic Models - MLP, TCN [2], GATs [19]

– Tabular Learning - TabNet

– Gradient Boosting Models - CatBoost [12], LightGBM [8]

– RNN-Based Methods- LSTM [6], GRU [3], DA-RNN [13], AdaRNN [4]

– Attention-Based Methods- Transformer [18], Localformer [7]

– Financial Prediction Methods- DoubleEnsemble [23], ADD [16], HIST
[21], IGMTF [20]

Note that although our method can mine the latent topics among stocks,
the tasks in our experiments only assume access to price and volume features
(opening price, closing price, highest price, lowest price, VWAP). Several recently
proposed methods require additional information such as company relations [14]
or social media text [15], thus these methods cannot be included as baselines.

4.3 Results

We use stock trend prediction and trading simulation for our experiments.
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Model Name IC ICIR Rank IC Rank ICIR

Transformer 0.0143±0.0024 * 0.0910±0.0180 * 0.0317±0.0024 * 0.2192±0.0190 *
TabNet 0.0286±0.0000 * 0.1975±0.0000 * 0.0367±0.0000 * 0.2798±0.0000 *
MLP 0.0267±0.0017 * 0.1845±0.0154 * 0.0362±0.0018 * 0.2681±0.0157 *

Localformer 0.0358±0.0036 * 0.2633±0.0334 * 0.0477±0.0019 * 0.3643±0.0218 *
CatBoost 0.0326±0.0000 * 0.2328±0.0000 * 0.0394±0.0000 * 0.2998±0.0000 *

DoubleEnsemble 0.0362±0.0005 * 0.2725±0.0036 * 0.0444±0.0004 * 0.3450±0.0038 *
LightGBM 0.0347±0.0000 * 0.2648±0.0000 * 0.0443±0.0000 * 0.3520±0.0000 *

TCN 0.0384±0.0015 * 0.2834±0.0164 * 0.0455±0.0012 * 0.3546±0.0077 *
ALSTM 0.0413±0.0034 * 0.3166±0.0329 * 0.0504±0.0032 * 0.3974±0.0280 *
LSTM 0.0402±0.0030 * 0.3194±0.0271 * 0.0496±0.0027 * 0.4040±0.0212 *
ADD 0.0370±0.0025 * 0.2669±0.0254 * 0.0511±0.0018 * 0.3756±0.0235 *
GRU 0.0417±0.0029 * 0.3284±0.0367 * 0.0510±0.0014 * 0.4137±0.0224 *

AdaRNN 0.0380±0.0117 * 0.2999±0.1022 * 0.0472±0.0095 * 0.3744±0.0974 *
GATs 0.0430±0.0010 * 0.3221±0.0096 * 0.0543±0.0012 * 0.4217±0.0099 *

IGMTF 0.0419±0.0004 * 0.3152±0.0055 * 0.0538±0.0014 * 0.4213±0.0171 *
HIST 0.0437±0.0012 * 0.2952±0.0108 * 0.0581±0.0013 * 0.3912±0.0096 *

Our Method 0.0489±0.0026 0.3593±0.0143 0.0605±0.0023 0.4514±0.0225

Table 1. The results of stock trend prediction on the CSI300 market from 01/01/2017
to 07/10/2022. All the results are averaged after 10 runs, and the standard deviations
are shown. * corresponds to statistically significant differences between a baseline and
our method (p < 0.05 using t-test).

Stock Trend Prediction This task aims to evaluate the ability of models to
predict the future stock price trend. For each trading day i, we calculate the 1-day
return r̂i of each stock based on its historical information before date i. For the
results, we report the averaged information coefficient (IC), ranked information
coefficient (Rank IC), information ratio of IC (ICIR), and information ratio of
Rank IC (Rank ICIR). ICi is the daily IC that measures the Pearson correlation
between the predicted ratio r̂i and the ground-truth ratio ri:

ICi =
(r̂i −mean(r̂i))⊤(ri −mean(ri))

n · std(r̂i) · std(ri)
(14)

The IC is calculated for the average of each trading day:

IC =

∑
i∈[1,D] ICi

D
(15)

The ICIR is used to show the stability of IC, which is calculated by dividing
IC by its standard deviation:

ICIR =
IC

std(IC)
(16)

For the caculation of Rank ICi, we first use Ri = rank(ri), and R̂i = rank(r̂i)
to denote the ranks of the ground-truth and the predicted ratios, respectively:

Rank ICi =
(R̂i −mean(R̂i))⊤(Ri −mean(Ri))

n · std(R̂i) · std(Ri)
(17)
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Model Name Annualized Return Max Drawdown Information Ratio

Transformer 0.0069±0.0181 * -0.2131±0.0868 * 0.0753±0.2138 *
TabNet 0.0719±0.0000 * -0.1139±0.0000 0.8155±0.0000 *
MLP 0.0441±0.0153 * -0.1512±0.0375 * 0.5163±0.1882 *

Localformer 0.0498±0.0228 * -0.1268±0.0235 0.6194±0.2843 *
CatBoost 0.0585±0.0013 * -0.1364±0.0051 0.7270±0.0162 *

DoubleEnsemble 0.0642±0.0112 * -0.0900±0.0103 * 0.8234±0.1398 *
LightGBM 0.0707±0.0000 * -0.0835±0.0000 * 0.9487±0.0000 *

TCN 0.0781±0.0203 * -0.0849±0.0151 * 1.0205±0.2350 *
ALSTM 0.0777±0.0220 * -0.1031±0.0204 1.0226±0.2859 *
LSTM 0.0826±0.0242 * -0.0908±0.0132 * 1.0706±0.2771 *
ADD 0.0759±0.0178 * -0.0939±0.0237 0.9471±0.2101 *
GRU 0.0815±0.0258 * -0.0917±0.0270 * 1.0826±0.3671

AdaRNN 0.0619±0.0589 * -0.1392±0.1622 0.8439±0.7172
GATs 0.0886±0.0115 * -0.1022±0.0184 1.1524±0.1469 *

IGMTF 0.0903±0.0095 * -0.0986±0.0174 1.1825±0.1035
HIST 0.0854±0.0119 * -0.0919±0.0152 * 1.0879±0.1504 *

Our Method 0.1063±0.0187 -0.1191±0.0301 1.3315±0.2169

Table 2. The results of trading simulation on the CSI300 market from 01/01/2017 to
07/10/2022. All the results are averaged after 10 runs, and the standard deviations are
shown. * corresponds to statistically significant differences between a baseline and our
method (p < 0.05 using t-test).

The Rank IC and Rank ICIR are calculated similarly as before:

Rank IC =

∑
i∈[1,D] Rank ICi

D
(18)

Rank ICIR =
Rank IC

std(Rank IC)
(19)

The results of the stock trend prediction task on the test set of the China
CSI300 market (01/01/2017 to 07/10/2022) are shown in Table 1. Our method
significantly outperforms all the 16 baselines across all four metrics (IC, ICIR,
Rank IC, and Rank ICIR) with around 10% enhancement over the second-place
model for each metric. These results indicate the importance of modeling expec-
tations and dynamic topics in financial market analysis. It is also interesting to
note that the traditional RNN-based methods (such as GRU and LSTM) achieve
similar or even better results compared to the models specifically designed for
financial analysis (such as ADD, IGMTF, and DoubleEnsemble). This may be at-
tributed to the low signal-to-noise ratio in the financial market since the simpler
models may be more robust to noise. These observations further demonstrate
the hardness of this task.

Trading Simulation In quantitative investment, ”backtesting” refers to ap-
plying a trading strategy to historical data, simulating trading, and measuring
the return of the strategy. For this task, we employ the top-k dropout strategy
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for each method, reporting the annualized return7 (the geometric average of
money earned by an investment strategy each year over a given time period),
max drawdown8 (maximum observed loss from a peak to a trough), and the
information ratio9 (ratio of returns above the returns of the CSI300 bench-
mark). The top-k dropout strategy is a straightforward quantitative investment
approach: for each trading day, we hold k stocks, sell d stocks with the worst
predicted 1-day return, and buy d unheld stocks with the best-predicted 1-day
return. In our experiments, k is set to 50, and d is set to 5. The trading sim-
ulation task results on the test set of the China CSI300 market are displayed
in Table 2. Our method surpasses all 16 baselines in annualized return and in-
formation ratio. To improve the stability of profitability, future research could
explore modifications designed to reduce the max drawdown of our approach.

5 Conclusion

In this paper, we introduce a novel framework for stock trend prediction, suitable
for quantitative analysis of financial markets and stock selection. To the best
of our knowledge, our method is the first to consider (1) investors’ subjective
expectations, and (2) automatically mined dynamic topics that do not require
additional knowledge. Through experiments on 16 baselines using the CSI 300
market, we demonstrate that our model achieves a stable annual return above
10%, outperforming all existing baselines and attaining the current state-of-the-
art results for stock trend prediction and trading simulation tasks.

Future work could explore modifications to decrease the max drawdown of our
method, resulting in more stable profitability. Additionally, since expectations
are influenced by external factors such as financial reports or discussions on social
media, future research could investigate incorporating this information into our
model.
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