Skip to main content

Explainable Drug Repurposing in Context via Deep Reinforcement Learning

  • Conference paper
  • First Online:
  • 998 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13870))

Abstract

Biomedical knowledge graphs encode domain knowledge as biomedical entities and relationships between them. Graph traversal algorithms can make use of these rich sources for the discovery of novel research hypotheses, e.g. the repurposing of a known drug. Traversed paths can serve to explain the underlying causal mechanisms. Most of these models, however, are trained to optimise for accuracy w.r.t. known gold standard drug-disease pairs, rather than for the explanatory mechanisms supporting such predictions. In this work, we aim to improve the retrieval of these explanatory mechanisms by improving path quality. We build on a reinforcement learning-based multi-hop reasoning approach for drug repurposing. First, we define a metric for path quality based on coherence with context entities. To calculate coherence, we learn a set of phenotype annotations with rule mining. Second, we use both the metric and the annotations to formulate a novel reward function. We assess the impact of contextual knowledge in a quantitative and qualitative evaluation, measuring: (i) the effect training with context has on the quality of reasoning paths, and (ii) the effect of using context for explainability purposes, measured in terms of plausibility, novelty, and relevancy. Results indicate that learning with contextual knowledge significantly increases path coherence, without affecting the interpretability for the domain experts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.snomed.org/.

  2. 2.

    https://go.drugbank.com/.

  3. 3.

    https://data.cochrane.org/concepts/.

  4. 4.

    https://www.nlm.nih.gov/research/umls/index.html.

  5. 5.

    https://het.io/.

  6. 6.

    https://www.ebi.ac.uk/gwas/.

  7. 7.

    https://hpo.jax.org/app/data/annotations.

  8. 8.

    https://linkeddata.cochrane.org/.

  9. 9.

    https://linkeddata.cochrane.org/pico--ontology.

  10. 10.

    Initially, intervention nodes were extracted as well, but many of these proved too coarse grained—e.g. viral agents—to be useful for multi-hop reasoning.

  11. 11.

    https://data.cochrane.org/concepts/.

  12. 12.

    https://github.com/lisestork/coco.

  13. 13.

    See the following concept for diabetes: https://data.cochrane.org/concepts/r4hp38bjj6qx, which they indicate is linked to unique codes from MedDRA: (10012594,10012601), MeSH: (D003920), and UMLS: (C0011849).

  14. 14.

    https://download.nlm.nih.gov/umls/kss/2021AA/umls-2021AA-full.zip.

  15. 15.

    https://rdfpro.fbk.eu/.

References

  1. Agrawal, M., Zitnik, M., Leskovec, J.: Large-scale analysis of disease pathways in the human interactome. In: Pacific Symposium on Biocomputing, no. 212669, pp. 111–122 (2018). https://doi.org/10.1142/9789813235533_0011

  2. Bahler, D., Stone, B., Wellington, C., Bristol, D.W.: Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds. J. Chem. Inf. Comput. Sci. 40(4), 906–914 (2000). https://doi.org/10.1021/ci990116i

    Article  Google Scholar 

  3. Bakal, G., Talari, P., Kakani, E.V., Kavuluru, R.: Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J. Biomed. Inform. 82(January), 189–199 (2018). https://doi.org/10.1016/j.jbi.2018.05.003

    Article  Google Scholar 

  4. Blomqvist, E., Alirezaie, M., Santini, M.: Towards causal knowledge graphs-position paper. In: KDH@ ECAI (2020)

    Google Scholar 

  5. Brown, D.G., Wobst, H.J.: A decade of FDA-approved drugs (2010–2019): trends and future directions. J. Med. Chem. 64(5), 2312–2338 (2021). https://doi.org/10.1021/acs.jmedchem.0c01516

    Article  Google Scholar 

  6. Das, R., et al.: Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning. In: 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings (2018)

    Google Scholar 

  7. De Cao, N., Kipf, T.: MolGAN: an implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018)

  8. DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of R &D costs. J. Health Econ. 47, 20–33 (2016). https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  Google Scholar 

  9. Drancé, M., Boudin, M., Mougin, F., Diallo, G.: Neuro-symbolic XAI for computational drug repurposing. In: KEOD, vol. 2, pp. 220–225 (2021)

    Google Scholar 

  10. Fu, G., Ding, Y., Seal, A., Chen, B., Sun, Y., Bolton, E.: Predicting drug target interactions using meta-path-based semantic network analysis. BMC Bioinform. 17(1), 1–10 (2016)

    Article  Google Scholar 

  11. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015). https://doi.org/10.1007/s00778-015-0394-1

    Article  Google Scholar 

  12. Garijo, D., et al.: Towards automated hypothesis testing in neuroscience. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 249–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0_18

    Chapter  Google Scholar 

  13. Gu, Y., Guan, Y., Missier, P.: Towards learning instantiated logical rules from knowledge graphs. arXiv preprint arXiv:2003.06071 (2020)

  14. Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational dependencies in knowledge graphs. In: International Conference on Machine Learning, pp. 2505–2514. PMLR (2019)

    Google Scholar 

  15. de Haan, R., Tiddi, I., Beek, W.: Discovering research hypotheses in social science using knowledge graph embeddings. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 477–494. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_28

    Chapter  Google Scholar 

  16. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6, e26726 (2017)

    Article  Google Scholar 

  17. Jaundoo, R., Craddock, T.J.: DRUGPATH: the drug gene pathway meta-database. Int. J. Mol. Sci. 21(9), 3171 (2020). https://doi.org/10.3390/ijms21093171

    Article  Google Scholar 

  18. Jumper, J., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)

    Article  Google Scholar 

  19. Kundu, S.: AI in medicine must be explainable. Nat. Med. 27(8), 1328 (2021). https://doi.org/10.1038/s41591-021-01461-z

    Article  Google Scholar 

  20. Lakkaraju, H., Kamar, E., Caruana, R., Leskovec, J.: Interpretable & explorable approximations of black box models. arXiv preprint arXiv:1707.01154 (2017)

  21. Lin, X.V., Socher, R., Xiong, C.: Multi-hop knowledge graph reasoning with reward shaping. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018) (2018)

    Google Scholar 

  22. Liu, Y., Hildebrandt, M., Joblin, M., Ringsquandl, M., Raissouni, R., Tresp, V.: Neural multi-hop reasoning with logical rules on biomedical knowledge graphs. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 375–391. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_22

    Chapter  Google Scholar 

  23. Lv, X., et al.: Is multi-hop reasoning really explainable? Towards benchmarking reasoning interpretability. arXiv preprint arXiv:2104.06751 (2021)

  24. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI). IJCAI/AAAI Press (2019)

    Google Scholar 

  25. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Sig. Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  26. Nagarajan, M., et al.: Predicting future scientific discoveries based on a networked analysis of the past literature. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2019–2028 (2015)

    Google Scholar 

  27. Pankratius, V., et al.: Computer-aided discovery: toward scientific insight generation with machine support why scientists need machine support for discovery search. IEEE Intell. Syst. 31(4), 3–10 (2016). https://doi.org/10.1109/MIS.2016.60

    Article  Google Scholar 

  28. Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., Tekade, R.K.: Artificial intelligence in drug discovery and development. Drug Discov. Today 26(1), 80 (2021)

    Article  Google Scholar 

  29. Percha, B., Altman, R.B.: A global network of biomedical relationships derived from text. Bioinformatics 34(15), 2614–2624 (2018)

    Article  Google Scholar 

  30. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  31. Saik, O.V., et al.: Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics 11(1), 61–76 (2018)

    Google Scholar 

  32. Sosa, D.N., Derry, A., Guo, M., Wei, E., Brinton, C., Altman, R.B.: A literature-based knowledge graph embedding method for identifying drug repurposing opportunities in rare diseases. In: Pacific Symposium on Biocomputing 2020, pp. 463–474. World Scientific (2020)

    Google Scholar 

  33. Swanson, D.R., Smalheiser, N.R.: An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif. Intell. 91(2), 183–203 (1997). https://doi.org/10.1016/S0004-3702(97)00008-8

    Article  MATH  Google Scholar 

  34. Tiddi, I., D’Aquin, M., Motta, E.: Walking linked data: a graph traversal approach to explain clusters. In: CEUR Workshop Proceedings (2014)

    Google Scholar 

  35. Wilcke, W.X., de Boer, V., de Kleijn, M.T., van Harmelen, F.A., Scholten, H.J.: User-centric pattern mining on knowledge graphs: an archaeological case study. J. Web Semant. 59, 100486 (2019). https://doi.org/10.1016/j.websem.2018.12.004

    Article  Google Scholar 

  36. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    Article  MATH  Google Scholar 

  37. Zhou, X., Menche, J., Barabási, A.L., Sharma, A.: Human symptoms-disease network. Nat. Commun. 5(1), 1–10 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thankfully acknowledge Lotty Hooft and Alexandre Renaux for their valuable opinions and discussions related to this work. This work is supported by the EU Horizon 2020 research programme MUHAI, grant no. 951846.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Stork .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stork, L., Tiddi, I., Spijker, R., ten Teije, A. (2023). Explainable Drug Repurposing in Context via Deep Reinforcement Learning. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics