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Abstract. In this work, we present an end-to-end Knowledge Graph
Question Answering (KGQA) system named GETT-QA. GETT-QA uses
T5, a popular text-to-text pre-trained language model. The model takes
a question in natural language as input and produces a simpler form of
the intended SPARQL query. In the simpler form, the model does not
directly produce entity and relation IDs. Instead, it produces correspond-
ing entity and relation labels. The labels are grounded to KG entity and
relation IDs in a subsequent step. To further improve the results, we
instruct the model to produce a truncated version of the KG embed-
ding for each entity. The truncated KG embedding enables a finer search
for disambiguation purposes. We find that T5 is able to learn the trun-
cated KG embeddings without any change of loss function, improving
KGQA performance. As a result, we report strong results for LC-QuAD
2.0 and SimpleQuestions-Wikidata datasets on end-to-end KGQA over
Wikidata.

1 Introduction

A Knowledge Graph (KG) is an information store where data is stored in the
form of node-edge-node triples. Nodes represent entities and edges represent
relationships between these entities. The aim of KGQA [21] is to produce an-
swers from this KG given an input question in natural language, e.g., Who is
the father of Barack Obama 7. Usually, the first step in KGQA is to perform
Entity Linking (EL) where mention spans, e.g., Barack Obama representing the
name of a person, place, etc., are linked to a KG node. The subsequent step is
Relation Linking (RL), where the relationship of the entity to the potential an-
swer in the KG is extracted, e.g., father of. Some KGQA systems attempt to
fetch the answer based on the results of just the two steps above, which typically
ends up being another entity (node) in the graph. However, for more complex
questions, such as count queries or min/max aggregate queries (e.g.: How many
rivers are there in India?) the answer does not lie in a node or edge in the
graph, but instead, a formal query must be generated as a final step. To this
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end, semantic parsing is relevant to the problem of KGQA. Thus, our focus in
this work is to generate a final SPARQL query that can be executed on the KG.

SPARQL is a popular graph query language for querying KGs. A sample
SPARQL query for the running example over the Wikidata KG looks like the
following:

SELECT 70 WHERE { wd:Q76 wdt:P22 70 }

In the query above, wd:Q76 stands for Barack Obama, while wdt :P22 stands
for the relation father. The 7o variable represents the answer from the KG.

Recent works employ text-to-text (T2T) pre-trained language models (PLMs)
for generating logical queries, e.g. SPARQL, from natural language questions.
If the correct entity and relation IDs are already specified in the input, the ac-
curacy of T2T models is high [2]. However, the absence of linked entity and
relation IDs in the input presents a significant challenge to such models. PLMs
are adept at generating linguistic tokens from within their weights. Yet, it is an
entirely different proposition to query the KG and ground the entity and rela-
tions to specific IDs, as the variability of language creates impressive richness
at generation while at the same time hampers the alignment to pre-defined KG
items.

In this work, we demonstrate a novel method by which a T2T PLM, namely
T5 [28], not only generates SPARQL queries, but also generates truncated KG
embeddings, which aid in the subsequent process of grounding entities to the cor-
rect node in the KG. Our method produces strong results for end-to-end Question
Answering on the LC-QuAD 2.0 and SimpleQuestions-Wikidata datasets over
Wikidata KG. All code and data will be made available 3.

2 Related Work

Early KGQA systems could be divided on the basis of whether they can handle
simple [44] or complex questions [21]. In a simple question, a node-edge-node
triple is a sole basis on which a question is formed, whereas in a complex question
there may be more than one such triple involved. Moreover, certain KGQA
systems are built specifically to handle a certain class of questions better, e.g.
temporal questions [18].

Another way of categorising KGQA systems is whether they form a formal
query [1,3,8,35,39] versus whether they use graph search based methods with-
out producing an explicit query [7,40, 16, 33, 36, 37, 29, 24].

Some KGQA systems work in a hybrid mode and can query from both KG
and text-based sources. PullNet [36] and Graftnet [37] both use Relational-Graph
Convolution Networks [34] to handle complex questions. UNIK-QA [25] ver-
balises all structured input from KG, tables and lists into sentences and adds

% https://github.com/debayan/gett-qa
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them to a text corpora and proceeds to perform QA over this augmented text
corpora using deep passage retrieval techniques. UNIQORN [27] builds a con-
text graph on-the-fly and retrieves question relevant pieces of evidence from KG
and text corpora, using fine-tuned BERT models. They use group Steiner trees
to identify the best answer in the context graph. We use the results of the KG
components of these hybrid systems in our evaluation in Table 3, as reported by
UNIQORN.

Platypus [39] and QAnswer [8] are two recent KGQA systems that work on
Wikidata. Both of them use templates and ranking mechanisms to find the best
query. We make no use of templates in our method since this inherently limits
the flexibility of a system on unseen templates.

ElneuQA-ConvS2S [10] operates in a similar fashion to us, where they use
a Neural Machine Translation (NMT) model to generate SPARQL queries with
empty placeholders, while an entity linking and sequence labeling model fills the
slots. In our case we also make use of NMT capabilities of T5 to generate a
skeleton SPARQL query, however, we do not generate empty slots, and instead,
generate entity and relation labels to be grounded later.
For simple questions, KEQA[17] targets at jointly recovering the question’s head
entity, predicate, and tail entity representations in the KG embedding spaces
and then forming a query to retrieve the answer from a KG. Text2Graph[6] uses
KEQA as a base, and improves on the embedding learning model by utilising
CP tensor decomposition [15]. We include both these systems in our evaluation
Table 4.
SGPT [31] and STAG [29] both use generative methods for forming the query
using pre-trained language models, which is similar to what we do, however,
neither of them generate the entity or relation label, or the embeddings. Instead
STAG uses an external entity linking step, while SGPT attempts to generate
entity and relation IDs directly. However such a method does not work well
because for a KG like Wikidata, the IDs do not follow a hierarchical pattern,
and hence the model is not able to predict an ID that it has not seen in training
earlier.

One of our key ideas is to enable a PLM to learn KG Embeddings. There have
been some recent efforts in the same direction such as KEPLER [43], K-BERT
[23], KI-BERT [12], CoLAKE [38], BERT-MK [14] and JAKET [45]. These sys-
tems either try to inject KG embeddings into the input or intermediate layers
of the model, or they try to augment the text corpora by including verbalised
forms of the triple structural information. On the other hand, we ask the model
to print the embeddings as output. This is a fundamentally different approach
from what has been tried so far.

A related, yet different class of systems is that of conversational QA.
LASAGNE [19] and CARTON [26] are two notable systems in this category.
They evaluate on the CSQA dataset [32], which is a conversational dataset an-
swerable over a KG. In our case, we address only single sentence-long questions.
The conversations in CSQA are arranged in sequence of turns of questions and
answers. For the semantic parsing of logical forms, both LASAGNE and CAR-
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TON use a pre-defined grammar, while our approach is free of templated gram-
mar rules. Both LASAGNE and CARTON use a Transformer architecture to
generate base logical forms, however, LASAGNE uses, a Graph Attention Net-
work [42] to resolve entities and relations while CARTON uses stacked pointer
networks.

‘ Who is the father of Barack Obama ? ‘

J 3 select 20 where
Answer Query {
Wikidata KG wd:Q76 wdt:P22 20
T5 )
Q649593

Barack Obama Sr.

[ P22
Candidates: P8810

select ?0 where All Wikidata relations ’—‘
{ _ ‘fatherr | BERT Nearest ithud
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Q61909968 are
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Fig. 1: Architecture of GETT-QA: T5 generates a skeleton SPARQL query with
entity and relation labels and a truncated KG embedding string. The entity
labels are grounded using label based search and embedding based sorting, while
the relations are grounded using BERT embedding based sorting. The final query
is executed against a KG to fetch the answer.

3 Method

As shown in Figure 1, our system consists of five major steps:

— T5 generates a skeleton SPARQL query from input natural language ques-
tion.

— The entity labels and truncated KG embeddings are extracted. A label search
is performed to fetch entity candidates.

— The entity candidates are re-ranked using an embedding similarity metric.

— In parallel, the relation label is extracted and matched against Wikidata
relations based on BERT embeddings.

— The final query is grounded to KG nodes and executed to receive the answer.

3.1 Truncated KG Embeddings

We teach T5 to generate truncated vector strings of KG embeddings. We use
TransE [5] embeddings for Wikidata entities that were provided by Pytorch-
BigGraph? [22]. These are 200-dimensional vectors of floats. The truncated KG

* https://github.com/facebookresearch/PyTorch-BigGraph
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embeddings we use are a shorter version of the same embeddings. For most of
our experiments, we use the first 10 dimensions of these embeddings, and further
reduce the precision of the floats to 3 digits after the decimal. We do so since T5
is expected to produce these truncated KG embeddings while still in the text-to-
text mode. In other words, T5 produces these vectors of floats considering them
as a string. We use truncated KG embeddings instead of original embeddings to
reduce the decoding load of T5. Our aim is not to learn the entire embedding
space. Instead, we want to learn identifiers that can aid the entity disambiguation
phase. We produce these truncated KG embeddings only for entities, not for
relations.

3.2 Intuition

The initial idea behind our approach is to allow T'5 to use its significant linguistic
capability derived from pre-training over a large corpus for the task of semantic
parsing. As a result, we use T5 to produce SPARQL tokens and entity and
relation labels.

At first glance, it may appear that the production of entity labels is sufficient
for grounding to KG entity nodes. However, in most KGs, several entities share
the same labels. For example in Wikidata KG, the entity IDs Q76 and Q47513588
both share the label Barack Obama. In reality, Q76 represents the President while
Q47513588 is the entity ID for a painting of the President. As a result of such
collision of labels, a further step called disambiguation is required.

The next idea is to not just rely on T5’s linguistic abilities but also to try
and teach the model how to generate identifiers for the entities, which can aid
the grounding and disambiguation process in a subsequent step. One way could
be to generate the Wikidata IDs directly. However, the IDs do not correspond in
any hierarchical way to the underlying entities. For example, while Q76 is Barack
Obama, Q77 is Uruguay. Although the IDs are close to each other, the categories
are completely different. Models cannot be expected to produce accurate IDs of
this nature, especially on unseen input questions. As a result, we consider other
schemes of entity identifiers that exhibit some hierarchical properties.

It turns out KG embeddings fulfill these requirements handsomely, and hence
we decide to use truncated KG embeddings as the ”soft” identifier of our choice.
Another possibility would be to generate entity descriptions instead of truncated
KG embeddings, however, roughly 50% of entities in Wikidata do not have corre-
sponding descriptions (eg: Q673959855), hence we focus on generating truncated
KG embeddings instead.

While the production of such truncated embeddings may also aid the ground-
ing of relations, we do not attempt this, since Wikidata only contains a few
thousand relations, while the number of entities run into several millions. For
the grounding of relations we use simpler text embedding based methods, as
described later in Section 3.7.

5 https://www.wikidata.org/wiki/Q67395985
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3.3 Models

T5 [28], or text-to-text transfer transformer, is a transformer [41] based encoder-
decoder architecture that uses a text-to-text approach. Every task, including
translation, question answering, and classification, is cast as feeding the model
text as input and training it to generate some target text. This allows using the
same model, loss function, hyper-parameters, etc., across a diverse set of tasks.
We experiment with fine-tuning two variants of the T5 model: T5-Small with 60
million parameters and T5-Base with 220 million parameters. For the GETT-
QA system results reported in Tables 3 and 4 we use the T5-Base based model,
whereas in the analysis Section 7.2 we present a comparative study against
T5-Small.

3.4 Skeleton SPARQL

As shown in Figure 1, the first step of our KGQA system is to generate a skeleton
SPARQL query from the given natural language question. The skeleton query
consists of SPARQL tokens such as SELECT, WHERE, {}, entity and relation
labels, and truncated KG embeddings, which are an array of floats. Some
additional tokens are used to surround the entity and relation labels, such as
<ent>, </ent>,<rel>,</rel> so that in a later step their extraction can be
performed using regular-expression operations. The extraction of the labels and
the truncated KG embedding are essential for the subsequent grounding step.
Notably, entity and relation IDs are not a part of a skeleton SPARQL query.

During training via fine-tuning, pairs of questions and skeleton SPARQL
queries are presented to T5. For this purpose, we pre-process the original dataset,
which contains gold SPARQL queries for each question. The SPARQL query is
converted to a skeleton SPARQL query by replacing the entity and relation IDs
with their gold labels while appending the entity labels with a truncated KG
embedding. Hence, the following gold SPARQL query:

select 70 where { wd:Q76 wdt:P22 70 }
is converted to:

select 70 where

{

<ent>Barack Obama [...] </ent>
<rel>father</rel>

70

}

for the purposes of training T5, where the truncated KG embedding is rep-
resented by [...] .
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3.5 Entity Candidates

During inference, when T5 generates a skeleton query, all entity and relation
labels, as well as truncated KG embeddings, are extracted using regular expres-
sions. For the entity labels, a BM-25-based [30] label search is performed on
a database of all Wikidata entity labels, out of which top-k candidates are re-
trieved per entity label. For this text search we use the Elasticsearch database.
For our experiments, we fix k at 100.

3.6 Entity Candidates Re-ranking and Ordering

The top-3 entity candidates based on label matching are retained. For the next
3 candidates, we resort to truncated KG embedding-based sorting. For each
item in the list of 100 entity candidates fetched, we also fetch their gold KG
embeddings, and convert them to truncated KG embeddings. For the truncated
KG embedding generated by T5, we compute its dot product against the gold
truncated KG embeddings fetched and re-rank them in descending order. The
dot product is used as a comparator because this was the same function that
was used during the production of the TransE embeddings. From this re-ranked
list based on truncated KG embedding similarity, top-3 candidates are retained.

We append these top-3 truncated KG embedding-sorted candidates to the
top-3 label-sorted candidates, and proceed to the subsequent steps with a list
of 6 candidate entities for each entity label.

3.7 Relation Candidates

We generate no truncated KG embeddings for relation IDs, as their numbers
are orders of magnitudes smaller when compared to entities in Wikidata. From
the relation labels generated by T5, we compute their BERT embeddings and
compute the cosine similarity against the BERT embeddings of all Wikidata
properties. The list of properties is sorted based on this similarity score, and the
top-3 matches are considered for the subsequent steps.

3.8 Candidate Combinations

For a generated query, each entity label and each relation label has 6 and 3
candidates each, respectively. We preserve the serial order of the entities and
relations as produced in the query, and generate all possible combinations of
the entities and relations, which generates several queries of the same structure
but different entity and relation IDs. For example, if the query contains just
one entity and one relation, the number of possible SPARQL queries generated
would be 6 x 3 = 18. We execute each query on the KG in sorted order of entity
and relation IDs received in previous steps. We stop when the KG returns a non-
empty response. This response is considered the output of our KGQA system.

S https://www.elastic.co/
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We consider the top 3 beams produced by T5 decoder as probable queries. The
first beam producing a valid response from the KG is considered the output of
our KGQA system.

4 Dataset

We evaluate our approach on the LC-QuAD 2.0 [11] dataset, which consists of ap-
proximately 30,000 questions based on the Wikidata KG. Each question contains
the corresponding SPARQL query as gold annotation. The dataset consists of a
wide variety of questions, such as simple, complex, multi-hop, count, min/max,
dual and boolean types. This dataset also uses the recently introduced hyper-
relational [13] structure of the Wikidata KG.

Additionally, we evaluate our approach on the SimpleQuestions-Wikidata [9]”
dataset, which consists of 34,374 train questions and 9,961 test questions. This
dataset is derived from the original SimpleQuestions dataset [4], which was later
aligned with the Wikidata KG. A sample question from each dataset can be seen
in Tables 1 and 2.

Question SPARQL
Tell me the female beauty
pageant that operates in all
countries and contains the
word model in it’s name?

SELECT DISTINCT 7sbj 7?sbj_label
WHERE {
?sbj wdt:P31 wd:(Q58863414 .
?sbj wdt:P2541 wd:Q62900839 .
?sbj rdfs:label 7sbj_label .
FILTER(CONTAINS(lcase(?sbj_label), "model"))
FILTER (lang(?sbj_label) = "en"
}
LIMIT 25

Table 1: Sample question from LC-QuAD 2.0

Question SPARQL
What type of music does|SELECT ?x WHERE { wd:Q1176417 wdt:P136 ?x }
David Ruffin play ?

Table 2: Sample question from SimpleQuestions-Wikidata

5 Evaluation

In Table 3, the results for UNIQORN, QAnswer, UNIK-QA, Pullnet, and Platy-
pus are taken from UNIQORN [27]. UNIQORN uses a test split of 4,921 questions

" https://github.com/askplatypus/wikidata-simplequestions
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from the original LC-QuAD 2.0 test set of 6,046 questions for all the systems. We
evaluate our approach on the same split as UNIQORN. Despite our best efforts
we were unable to acquire the precise KG snapshot that UNIQORN used for
evaluation. UNIQORN used a Wikidata dump dated 20 April 2021, which is no
longer available either in the official Wikidata repository®, or with the authors
of UNIQORN. As a result, we ran the 4,921 questions against the NLIWOD?
Wikidata dump!®,!!, which is hosted on the docker hub for easy deployment,
and also hosted as an API by the Universitit Hamburg’s SEMS group.

In Table 4 for SimpleQuestions-Wikidata, results for KEQA and Text2Graph
are taken from MEKER [6]. They evaluate both systems on a smaller split of the
SimpleQuestions-Wikidata test set. This subset contains those questions which
are valid on a custom Wikidata version they call Wiki4M. We were provided the
KG by the authors of MEKER and we evaluated our system on the same.

In Table 3, we report macro Precision@1 based on UNIQORN’s reporting
preference. In Table 4 we report macro F1 in line with MEKER. To compute
metrics, we take the gold SPARQL and predicted SPARQL query and query the
KG with both. We compare the results from the KG to compute true positives,
false positives, and false negatives (TP, FP, FN).

pPa1
UNIK-QA 0.005
Pullnet 0.011
Platypus 0.036
QAnswer 0.308
UNIQORN 0.331
GETT-QA without truncated embeddings 0.327 £+ 0.002
GETT-QA (with truncated embeddings) 0.403 + 0.0

Table 3: Results on LC-QuAD 2.0

F1
KEQA 0.405
Text2Graph 0.618
GETT-QA without truncated embeddings 0.752 £ 0.004
GETT-QA (with truncated embeddings) 0.761 + 0.002

Table 4: Results on SimpleQuestions-Wikidata

6 Results

In Table 3, the bottom two rows contain the results of our system in two different
settings for LC-QuAD 2.0. In the first case, our KGQA system uses the top-6

8 https://dumps.wikimedia.org/wikidatawiki/entities/

9 https://www.nlivod.org/challenge
10 https://hub.docker.com/r/debayanin/hdt-query-service
1 https://skynet.coypu.org/#/dataset/wikidata/query
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entity candidates based on label match, without the use of truncated KG em-
beddings for re-ranking. In the second case, we keep the top-3 entity candidates
based on label match and append to it the top-3 candidates based on truncated
KG embedding match. This is the same setting as described in Subsection 3.6.
The relation candidates in both cases remain top-3 as described in Subsection
3.7.

The key finding in Table 3 is that when we compare the last two rows,
our system performs better with an absolute gain of approximately 8% when
truncated KG embeddings are used.

In Table 4, for SimpleQuestions-Wikidata our method without truncated KG
embeddgings already outperforms the nearest competitor by an absolute margin
of 13%. This demonstrates the natural ability of T5 to predict the correct entity
and relation labels given a question. Since the query structure of all the questions
in this dataset is the same, no challenge is posed to TH in trying to learn the
query itself. It is noteworthy however, that after the inclusion of truncated KG
embedding re-ranking, the performance remains similar. An insignificant margin
of absolute improvement of 0.9% is seen. To investigate this gap when compared
to the 8% improvement of LC-QuAD 2.0, we delve further into the nature of the
two datasets and run some analysis. We find that in the case of LC-QuAD 2.0,
the correct entity is found in the top-1 position of the candidate list based on
text match 60% of the time, whereas in the case of SimpleQuestions-Wikidata,
this number is significantly higher at 82%. This is so because the questions in
SimpleQuestions-Wikidata contain the entity names in almost the exact form as
their gold entity annotations, whereas in LC-QuAD 2.0, several entity labels are
modified, misspelled or shortened by the human annotators. Hence, in the case
of SimpleQuestions-Wikidata, label-only matching is in most cases sufficient,
whereas in LC-QuAD 2.0, truncated KG embedding-based disambiguation holds
greater importance.

6.1 Limitations

Although GETT-QA performs the best in Tables 3 and 4, we do not claim state-
of-the-art results on the respective datasets. This is due to a variety of reasons:
as mentioned in Subsection 5, we could not procure the precise Wikidata KG
version as the competing systems for LC-QuAD 2.0. In the case of LC-QuAD 2.0
and SimpleQuestions-Wikidata, evaluation was performed on a truncated subset
of the original test split of this dataset. As a result we can not claim that we
have the best results on the entire dataset. Additionally, we could not find the
code for, or run majority of systems we evaluated against, and hence resorted
to using the results as reported by them.

6.2 Additional Evaluation

As mentioned in Section 2, STAG [29] and EINeuQA-ConvS2S [10] are compa-
rable generative KGQA systems. For STAG, no code, data or KG versions have
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been made public, while for EINeuKGQA we were unable to run their code!? as
no instructions on how to run the code exists. For STAG on SimpleQuestions
[4], on a test split of 2280 questions they report F1 61.0 while we report F1 78.1
on a larger test split of 9961 questions. Lastly, EINeuQA-ConvS2S reports an
F1 of 12.9 on WikidataQA while we report 17.8. WikidataQA is a 100 question
test-subset created by the authors of EINeuQA-ConvS2S. On LC-QuAD 2.0,
they report F1 of 26.9 while we report 40.3.

7 Analysis

7.1 Error Analysis

In an attempt to find the common source of errors in LC-QuAD 2.0 we find that
by far the largest cause of incorrect answers is the improper grounding of entities
and relations to nodes in the KG. More than 95% of questions where the correct
entities and relations were in the top-6 and top-3 candidates respectively, the
right answer was eventually produced by the KG. Unfortunately, only in 41%
of the questions, the correct entities and relations were found within the top-k
candidates. This suggests that greater focus in the area of entity and relation
linking will produce better results. One may also increase the size of k, at the
cost of increased run time.

Less than 1% of the queries generated had incorrect truncated KG embedding
length (e.g.: 11 instead of 10) however these were handled in code appropriately.
Less than 1% of queries generated were improper SPARQL, where a critical
keyword was missing rendering the query syntactically incorrect. This suggests
that T5 learns how to generate valid SPARQL queries to a large extent. This is
consistent with the findings of [2] where T5 crosses 90% accuracy when provided
with grounded entity and relation IDs with their labels.

To explore the issue of lack of correct entities and relations in candidate lists,
we observe that while 60% of questions contain the correct entity ID in the top-
100 label-based search candidates, by the time we reduce this list to top-6, only
49% questions remain with the correct entity ID in the candidates list. On the
other hand, for relation candidates, 45% of questions contain the correct relation
IDs in the top-3 relation candidates.

When looking at the category of questions that return incorrect KG re-
sponses, irrespective of entity and relation grounding, we find that COUNT queries
are the most common. This happens due to a quirk in SPARQL format. If a
COUNT query is built around a family of triples that do not exist in the KG, the
KG responds with count = 0, instead of producing a NULL value or an ERROR.
This means that the very first query to be executed on the KG with the correct
COUNT SPARQL syntax will return a valid response, even if it is count = 0 and
we no longer explore subsequently ranked queries.

In the case of SimpleQuestions-Wikidata, all errors are either due to incorrect
entity or relation linking. The model produced an accuracy of 70% for entity
linking and 94% for relation linking.

2 https://github.com/thesemanticwebhero/E1NeukGQA
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Fig. 2: Cosine and Dot Product based similarities of truncated KG embeddings

7.2 Truncated KG embedding Learning

We discover that T5 is able to produce a vector of floats while still in the text-
to-text mode of decoding. For this functionality, No change of loss function or
decoding scheme is made in our experiments. It effectively learns a simplified
embedding space, but with certain limitations. To further explore this ability of
T5, we performed some additional experiments on the 200 questions dev set of
LC-QuAD 2.0 with T5-Small.

In Figure 2, we compare how the model learns the embedding space with each
epoch of training. The TransE embeddings have an angular component and a
magnitude component. Since the dot operation was used to train the original
embeddings, the magnitude of each embedding may be greater than 1. It appears
in Figure 2 that around step 20 the angular component of the embeddings has
been learned by T5 to the best of its abilities, and it proceeds to learn the
magnitude component (denoted by the orange line) further.

In Figures 3, 4 and 5, we chart the LC-QuAD 2.0 dev set performance
of T5-Small and T5-Base in varying truncated KG embedding lengths. For
T5-Small (pink line) we set the truncated KG embedding length at 30, so this
should only directly be compared against T5-Base with truncated KG embed-
ding length 30 (green line). We see in Figures 4 and 5 that in cosine and dot
product metrics T5-Small consistently under-performs.

However, in the matches metric, which only looks at the keywords and labels
produced in the skeleton SPARQL query (truncated KG embeddings have been
removed from the generated query), the two reach similar performance. This
suggests that a larger number of parameters helps learn the embedding space
better, but for the textual component the extra number of parameters of T5-Base
remain unused.

In Figures 4 and 5, we focus only on T5-Base’s performance with vary-
ing truncated KG embedding lengths. It seems larger truncated KG embedding
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Fig. 6: Distribution of angular difference between gold and predicted truncated
KG embeddings on LC-QuAD 2.0 dev set. The mean angular difference can be
seen reducing as the epochs progress, suggesting that the model is learning the
embedding space.

lengths produce worse cosine similarity and label matching performance (green
vs yellow), but better dot products. One explanation of the behavior could be
that as we increase the truncated KG embedding lengths, the curse of dimen-
sionality kicks in, and hence the angular space becomes less discriminable, as
most vector pairs tend to differ in angle by 7/2. At this point, the model begins
to learn the magnitude aspect of the embedding and excels at it sooner than the
models handling smaller truncated KG embedding lengths.

With a truncated KG embedding length of 10 (yellow line), we see the best la-
bel match accuracy and hence we persist with this family of models for reporting
results in Table 3.

In Figure 6, we plot the distribution of the angular difference between the gold
and predicted truncated embeddings on the LC-QuAD 2.0 dev set. The model
seems to learn the embedding space in two distinctly different manners: firstly, for
several entities it is able to print the exact embedding, with an angular difference
of 0°. Secondly, for the entities which it is unable to learn the embedding of
exactly, it produces a more familiar distribution, where the mean shifts every
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few epochs, reducing the angular difference. This suggests that the model is
learning the embedding space effectively.

F1
3LS+3TS 0.365
3TS+3LS 0.331
3LS+0TS 0.289
0OLS +3TS 0.236
6 LS+ 0TS 0.319
0LS +6TS 0.256

Table 5: Effects of ordering entity candidates differently. LS = Label sorted, T'S
= Truncated KG embedding sorted

7.3 Candidate Ordering

As mentioned in Subsection 3.6, our results reported in Table 3 come from a
configuration of our system where the entity candidates are layered in two parts:
the first three candidates are sorted based on label match, while the bottom
three candidates are sorted based on the truncated KG embedding dot product
similarity. It is observed in Table 5 that the ordering of these two categories
affects the eventual accuracy strongly. We take 200 questions at random from
the LC-QuAD 2.0 test set and perform experiments to ascertain how the or-
dering of candidates affects accuracy. In the first row of the table, three entity
candidates based on label sorting are followed by three candidates of truncated
KG embedding sorting, while the next row of the table shows the result when we
keep truncated KG embedding-sorted candidates above label-sorted candidates.
The results show that keeping truncated KG embedding-sorted candidates at
the top reduces accuracy, and hence, label-based matching for entities remains
a stronger mode of fetching correct candidates. This is no surprise, since not
all labels have multiple entity candidates requiring disambiguation. Kindly note
that the accuracy drops because an earlier query formed due to candidate com-
binations (as explained in Subsection 3.8) returns a non-empty result from the
KG and this response turns out to be incorrect.

In the next two rows, we see how excluding either label-sorted candidates, or
truncated KG embedding-sorted candidates entirely affects accuracy. Once more
we see that label-sorted candidates still perform better when used in isolation.
However, the crux of the table is the first row, i.e., when both the categories are
appropriately sequenced and used in tandem, the accuracy is best.

In the bottom two rows, we see the effect of changing the number of can-
didates. It is no surprise that increasing k from 3 to 6 increases accuracy since
more correct entities are included in the list. However, some systems also perform
worse in such settings as the noise may increase adding to the disambiguation
load. In our system, this does not seem to be the case.

Increasing the value of & further imposes a large cost on the run time of the
system affecting the user experience adversely. Since the candidate combination
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step has exponential complexity, which depends on the number of entities and
relations in a query, we need to keep the number of candidates in check. Too
many candidates will produce too many SPARQL queries and the user must
wait for all of them to be executed on the KG till one of them responds validly.

In our choice of setting k=6 for entities and k=3 for relations, we observe that
on the test set of LC-QuAD 2.0, our system has an average response time of
1.2 seconds per question, which from a user experience perspective seems like an
acceptable response time.

8 Hyperparameters and Hardware

For the evaluation of LC-QuAD 2.0 in Table 3, we fine-tune our models for
50 epochs with a learning rate of 1e-04 with the Adam optimizer [20]. For
SimpleQuestions in Table 4 we fine-tune for 25 epochs, roughly half of LC-
QuAD 2.0, since the train set is roughly twice as large as LC-QuAD 2.0. We use
a batch size of 8. During this phase we had access to NVIDIA GeForce RTX 2080
Ti/1080 Ti graphics cards with approximately 11GB of video memory. We do
not fix a seed during training, and train and infer three times. We report mean
and standard deviation for the three runs in the respective tables.

For the analysis in Section 7, we fine-tune our models for 100 epochs with a
learning rate of 1e-05 with the Adam Optimizer [20] and we use a batch size of
20. During this phase we had access to larger GPUs, namely NVIDIA RTX A6000
with 48GB of memory and RTX A5000 with 24GB memory.

9 Conclusion and Future Work

In this work, we presented a novel KGQA pipeline called GETT-QA. We use no
external entity or relation linking tool, and still achieve strong results on LC-
QuAD 2.0 and SimpleQuestions-Wikidata datasets. Additionally, we discover the
ability of T5 to learn KG embeddings. We demonstrate that in certain situations
this ability helps in better question answering performance.

In future work, we will explore the ability of T5 in generating similar trun-
cated KG embedding based queries with modified loss functions and a customised
architecture towards the penultimate layers of the models, so that embeddings
can be generated with more standard loss functions meant specifically for learn-
ing embeddings. Additionally, suitable identifiers other than embeddings can
also be explored, for example, text description based identifiers.
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