Skip to main content

An Upper Ontology for Modern Science Branches and Related Entities

  • Conference paper
  • First Online:
  • 902 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13870))

Abstract

Recent developments in the context of semantic technologies have given rise to ontologies for modelling scientific information in various fields of science. Over the past years, we have been engaged in the development of the Science Knowledge Graph Ontologies (SKGO), a set of ontologies for modelling research findings in various fields of science. This paper introduces the Modern Science Ontology (ModSci), an upper ontology for modelling relationships between modern science branches and related entities, including scientific discoveries, phenomena, prominent scientists, instruments, etc. ModSci provides a unifying framework for the various domain ontologies that make up the Science Knowledge Graph Ontology suite. Well-known ontology development guidelines and principles have been followed in the development and publication of the resource. We present several use cases and motivational scenarios to express the motivation behind developing the ontology and, therefore, its potential uses. We deem that within the next few years, a science knowledge graph is likely to become a crucial component for organizing and exploring scientific work.

S. Fathalla—The majority of the research presented in this work was carried out at the University of Bonn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://msc2020.org/.

  2. 2.

    https://www.aeaweb.org/econlit/jelCodes.php.

  3. 3.

    https://www.catawiki.com/.

  4. 4.

    https://species.wikimedia.org/.

  5. 5.

    https://www.answers.com/.

  6. 6.

    https://ncatlab.org/.

  7. 7.

    https://en.wikipedia.org/wiki/Gene_Wiki.

  8. 8.

    https://www.snpedia.com/.

  9. 9.

    https://projects.tib.eu/orkg/.

  10. 10.

    https://nfdi4culture.de.

  11. 11.

    https://nfdi-matwerk.de/.

  12. 12.

    https://www.dfg.de/en/dfg_profile/statutory_bodies/review_boards/subject_areas/.

  13. 13.

    http://ontologydesignpatterns.org/wiki/Community:ListPatterns.

  14. 14.

    https://github.com/saidfathalla/Science-knowledge-graph-ontologies.

  15. 15.

    http://bioportal.bioontology.org/ontologies/MODSCI.

  16. 16.

    https://lov.linkeddata.es/dataset/lov/vocabs/modsci.

  17. 17.

    https://discuss.okfn.org/.

  18. 18.

    http://oops.linkeddata.es/.

  19. 19.

    https://w3id.org/widoco/bestPractices.

  20. 20.

    The final set of competency questions is available at the GitHub repository.

References

  1. de Almeida Falbo, R.: SABiO: systematic approach for building ontologies. In: 1st Joint Workshop Onto. Com/ODISE on Ontologies in Conceptual Modeling and Information Systems Engineering (2014)

    Google Scholar 

  2. Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. ACM, p. 1 (2018)

    Google Scholar 

  3. Berrueta, D., Phipps, J., Miles, A., Baker, T., Swick, R.: Best practice recipes for publishing RDF vocabularies. In: Working Draft, W3C (2008). http://www.w3.org/TR/swbp-vocab-pub/

  4. Blomqvist, E.: Ontology patterns: typology and experiences from design pattern development. In: The Swedish AI Society Workshop 20–21 May 2010. Uppsala University. 048, pp. 55–64. Linköping University Electronic Press (2010)

    Google Scholar 

  5. Boyack, K., Klavans, D., Paley, W., Börner, K.: Scientific method: relationships among scientific paradigms. Seed Mag. 9, 36–37 (2007)

    Google Scholar 

  6. Brank, J., Grobelnik, M., Mladenic, D.: A survey of ontology evaluation techniques. In: Proceedings of the Conference on Data Mining and Data Warehouses, pp. 166–170. Citeseer Ljubljana, Slovenia (2005)

    Google Scholar 

  7. Fathalla, S., Auer, S., Lange, C.: Towards the semantic formalization of science. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 2057–2059 (2020)

    Google Scholar 

  8. Fathalla, S., Lange, C.: EVENTS: a dataset on the history of top-prestigious events in five computer science communities. In: González-Beltrán, A., Osborne, F., Peroni, S., Vahdati, S. (eds.) SAVE-SD 2017-2018. LNCS, vol. 10959, pp. 110–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01379-0_8

    Chapter  Google Scholar 

  9. Fathalla, S., Lange, C., Auer, S.: EVENTSKG: a 5-star dataset of top-ranked events in eight computer science communities. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 427–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_28

    Chapter  Google Scholar 

  10. Fathalla, S., Vahdati, S., Auer, S., Lange, C.: SemSur: a core ontology for the semantic representation of research findings. Procedia Comput. Sci. 137, 151–162 (2018)

    Article  Google Scholar 

  11. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 221–243. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_10

    Chapter  Google Scholar 

  12. Garijo, D.: WIDOCO: a wizard for documenting ontologies. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 94–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_9

    Chapter  Google Scholar 

  13. Giunti, M., Sergioli, G., Vivanet, G., Pinna, S.: Representing n-ary relations in the semantic web. Logic J. IGPL 29(4), 697–717 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Seman. 6(4), 309–322 (2008)

    Article  Google Scholar 

  15. Jaradeh, M.Y., et al.:Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge. In: Proceedings of the 10th International Conference on Knowledge Capture, pp. 243–246. ACM (2019)

    Google Scholar 

  16. Library of Congress contributors. Library of Congress Classification (2014). https://www.loc.gov/catdir/cpso/lcc.html. Accessed December 2022

  17. Mitchell, J.S.: Relationships in the dewey decimal classification system. In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge. Information Science and Knowledge Management, vol 2, pp. 211–226. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9696-1_14

  18. Noy, N., Rector, A., Hayes, P., Welty, C.: Defining n-ary relations on the semantic web. In: W3C Working Group Note, vol. 12, no. 4 (2006)

    Google Scholar 

  19. Osborne, F., Salatino, A., Birukou, A., Motta, E.: Automatic classification of springer nature proceedings with smart topic miner. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 383–399. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_33

    Chapter  Google Scholar 

  20. Presutti, V., Gangemi, A.: Content ontology design patterns as practical building blocks for web ontologies. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 128–141. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_11

    Chapter  Google Scholar 

  21. Priya, M., Aswani Kumar, C.: Construction and merging of ACM and sciencedirect ontologies. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) ISDA 2018 2018. AISC, vol. 941, pp. 238–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16660-1_24

    Chapter  Google Scholar 

  22. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for earth and environmental terminology (SWEET). Comput. Geosci. 31(9), 1119–1125 (2005)

    Article  Google Scholar 

  23. Rousseau, R., Ecoom, F.O.: The Australian and New Zealands fields of research (FoR) codes. ISSI Newslet. 14(3), 59–61 (2018)

    Google Scholar 

  24. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer science ontology: a large-scale taxonomy of research areas. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 187–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_12

    Chapter  Google Scholar 

  25. Say, A., Fathalla, S., Vahdati, S., Lehmann, J., Auer, S.: Semantic representation of physics research data. In: 12th International Conference on Knowledge Engineering and Ontology Development (KEOD 2020), pp. 64–75. Science and Technology Publications. LDA Setúbal, Portugal (2020)

    Google Scholar 

  26. Say, Z., Fathalla, S., Vahdati, S., Lehmann, J., Auer, S.: Ontology design for pharmaceutical research outcomes. In: Hall, M., Merčun, T., Risse, T., Duchateau, F. (eds.) TPDL 2020. LNCS, vol. 12246, pp. 119–132. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54956-5_9

    Chapter  Google Scholar 

  27. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: metric- based ontology quality analysis. In: IEEE ICDM Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources (2005)

    Google Scholar 

  28. Vahdati, S., Arndt, N., Auer, S., Lange, C.: OpenResearch: collaborative management of scholarly communication metadata. In: EKAW (2016)

    Google Scholar 

  29. Visser, U., Abeyruwan, S., Vempati, U., Smith, R.P., Lemmon, V., Schürer, S.C.: BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results. BMC Bioinf. 12(1), 257 (2011)

    Article  Google Scholar 

  30. Völker, J., Fleischhacker, D., Stuckenschmidt, H.: Automatic acquisition of class disjointness. Web Seman. Sci. Serv. Agents World Wide Web 35, 124–139 (2015)

    Article  Google Scholar 

  31. Wikipedia contributors. Science - Wikipedia, The Free Encyclopedia (2019). http://en.wikipedia.org/w/index.php?title=Science &oldid=918085492. Accessed December 2022

  32. Wilkinson, M.D., et al.: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Fathalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fathalla, S., Lange, C., Auer, S. (2023). An Upper Ontology for Modern Science Branches and Related Entities. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics