Skip to main content

Understanding Customer Requirements

An Enterprise Knowledge Graph Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13870))

Abstract

Understanding customers demands and needs is one of the keys to success for large enterprises. Customers come to a large enterprise with a set of requirements and finding a mapping between the needs they are expressing and the scale of available products and services within the enterprise is a complex task. Formalizing the two sides of interaction - the requests and the offerings - is a way to achieve the matching. Enterprise Knowledge Graphs (EKG) are an effective method to represent enterprise information in ways that can be more easily interpreted by both humans and machines. In this work, we propose a solution to identify customer requirements from free text to represent them in terms of an EKG. We demonstrate the validity of the approach by matching customer requirements to their appropriate business units, using a dataset of historical requirement-offering records in IBM spanning over 10 years.

B. Shbita—This work was conducted during Summer Internship at IBM Research Almaden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.nist.gov/tac/2015/KBP.

  2. 2.

    http://trec-kba.org/.

  3. 3.

    LOD cloud: https://lod-cloud.net/.

  4. 4.

    Wikidata SPARQL query service: https://query.wikidata.org/.

  5. 5.

    https://rdflib.readthedocs.io/.

  6. 6.

    https://www.ibm.com/blogs/client-voices/.

  7. 7.

    https://www.ibm.com/blog/sustainability-begins-with-design/.

References

  1. Almeida, F., Xexéo, G.: Word embeddings: a survey. arXiv preprint arXiv:1901.09069 (2019)

  2. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, San Francisco, CA, USA, pp. 2670–2676. Morgan Kaufmann Publishers Inc. (2007). http://dl.acm.org/citation.cfm?id=1625275.1625705

  3. Brank, J., Leban, G., Grobelnik, M.: Annotating documents with relevant Wikipedia concepts. In: Proceedings of SiKDD, p. 472 (2017)

    Google Scholar 

  4. Castano, S., et al.: Multimedia interpretation for dynamic ontology evolution. J. Log. Comput. 19(5), 859–897 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cimiano, P., Völker, J.: Towards large-scale, open-domain and ontology-based named entity classification. In: RANLP (2005)

    Google Scholar 

  6. Colon-Hernandez, P., Havasi, C., Alonso, J., Huggins, M., Breazeal, C.: Combining pre-trained language models and structured knowledge (2021). http://arxiv.org/abs/2101.12294

  7. World Wide Web Consortium, et al.: SPARQL 1.1 overview (2013)

    Google Scholar 

  8. Coucke, A., et al.: Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces, pp. 12–16. arXiv preprint arXiv:1805.10190 (2018)

  9. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In: WWW 2013 - Proceedings of the 22nd International Conference on World Wide Web (i), pp. 355–365 (2013)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S., Weischedel, R.M.: The automatic content extraction (ACE) program-tasks, data, and evaluation. In: LREC (2004)

    Google Scholar 

  12. Dong, L., Wei, F., Sun, H., Zhou, M., Xu, K.: A hybrid neural model for type classification of entity mentions. In: IJCAI, pp. 1243–1249 (2015)

    Google Scholar 

  13. Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open information extraction: the second generation. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 1, pp. 3–10 (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-012

  14. Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F., Mongiovì, M.: Semantic web machine reading with FRED. Semant. Web 8(6), 873–893 (2017)

    Article  Google Scholar 

  15. Gashteovski, K., Gemulla, R., del Corro, L.: MinIE: minimizing facts in open information extraction. In: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings, pp. 2630–2640 (2017). https://doi.org/10.18653/v1/d17-1278

  16. Gerber, D., Hellmann, S., Bühmann, L., Soru, T., Usbeck, R., Ngonga Ngomo, A.-C.: Real-time RDF extraction from unstructured data streams. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 135–150. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_9

    Chapter  Google Scholar 

  17. Giuliano, C., Gliozzo, A.: Instance-based ontology population exploiting named-entity substitution. In: ACL 2008, pp. 265–272. ACL (2008)

    Google Scholar 

  18. Hamoudi, Y., Comebize, T.: Extracting RDF triples using the Stanford Parser (2016)

    Google Scholar 

  19. Hoberg, G., Knoblock, C.A., Phillips, G., Pujara, J., Raschid, L., Qiu, J.: Filling the private firm void: using representation learning to identify competitor relationships between businesses (2022)

    Google Scholar 

  20. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 1–37 (2021). https://doi.org/10.1145/3447772

    Article  Google Scholar 

  21. Honnibal, M., Montani, I.: spaCy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing (2017)

    Google Scholar 

  22. Kalyan, K.S., Rajasekharan, A., Sangeetha, S.: AMMUS: a survey of transformer-based pretrained models in natural language processing. arXiv preprint arXiv:2108.05542 (2021)

  23. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196. PMLR (2014)

    Google Scholar 

  24. Ling, X., Weld, D.S.: Fine-grained entity recognition. In: AAAI 2012, pp. 94–100. AAAI Press (2012). http://dl.acm.org/citation.cfm?id=2900728.2900742

  25. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  26. McDowell, L.K., Cafarella, M.: Ontology-driven, unsupervised instance population. Web Semant. Sci. Serv. Agents World Wide Web 6(3), 218–236 (2008)

    Article  Google Scholar 

  27. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8. ACM (2011)

    Google Scholar 

  28. Moiseev, F., Dong, Z., Alfonseca, E., Jaggi, M.: SKILL: structured knowledge infusion for large language models, pp. 1581–1588 (2022). https://doi.org/10.18653/v1/2022.naacl-main.113

  29. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)

    Article  Google Scholar 

  30. Murty, S., Verga, P., Vilnis, L., McCallum, A.: Finer grained entity typing with TypeNet. arXiv preprint arXiv:1711.05795 (2017)

  31. Nakashole, N., Tylenda, T., Weikum, G.: Fine-grained semantic typing of emerging entities. In: ACL (1), pp. 1488–1497 (2013)

    Google Scholar 

  32. Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A., Garigliotti, D., Navigli, R.: Open knowledge extraction challenge. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 3–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25518-7_1

    Chapter  Google Scholar 

  33. Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H.: Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45654-6

    Book  Google Scholar 

  34. Patel, A., Jain, S.: Present and future of semantic web technologies: a research statement. Int. J. Comput. Appl. 43(5), 413–422 (2021)

    Google Scholar 

  35. Paulheim, H.: Automatic knowledge graph refinement: a survey of approaches and evaluation methods. SWJ (2015). https://doi.org/10.3233/SW-160218

  36. Presutti, V., Nuzzolese, A.G., Consoli, S., Gangemi, A., Reforgiato Recupero, D.: From hyperlinks to semantic web properties using open knowledge extraction. Semant. Web 7(4), 351–378 (2016)

    Article  Google Scholar 

  37. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. Technical report, OpenAI (2019)

    Google Scholar 

  38. Recupero, D.R., Nuzzolese, A.G., Consoli, S., Presutti, V., Peroni, S., Mongiovì, M.: Extracting knowledge from text using SHELDON, a semantic holistic framEwork for LinkeD ONtology data. In: WWW 2015 Companion - Proceedings of the 24th International Conference on World Wide Web, pp. 235–238 (2015). https://doi.org/10.1145/2740908.2742842

  39. Ren, X., He, W., Qu, M., Huang, L., Ji, H., Han, J.: AFET: automatic fine-grained entity typing by hierarchical partial-label embedding. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2016)

    Google Scholar 

  40. Ristoski, P., Faralli, S., Ponzetto, S.P., Paulheim, H.: Large-scale taxonomy induction using entity and word embeddings. In: Proceedings - 2017 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2017, pp. 81–87 (2017). https://doi.org/10.1145/3106426.3106465

  41. Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-based information extraction for business intelligence. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 843–856. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_61

    Chapter  Google Scholar 

  42. Schneider, P., Schopf, T., Vladika, J., Galkin, M., Simperl, E., Matthes, F.: A decade of knowledge graphs in natural language processing: a survey (2022). http://arxiv.org/abs/2210.00105

  43. Segura-Bedmar, I., Martínez, P., Herrero Zazo, M.: SemEval-2013 Task 9: extraction of drug-drug interactions from biomedical texts (DDIExtraction 2013). In: SemEval 2013, pp. 341–350. ACL, June 2013

    Google Scholar 

  44. Shbita, B., Rajendran, A., Pujara, J., Knoblock, C.A.: Parsing, representing and transforming units of measure. In: Proceedings of the Conference on Modeling the World’s Systems (2019)

    Google Scholar 

  45. Shimaoka, S., Stenetorp, P., Inui, K., Riedel, S.: An attentive neural architecture for fine-grained entity type classification. arXiv preprint arXiv:1604.05525 (2016)

  46. Shimaoka, S., Stenetorp, P., Inui, K., Riedel, S.: Neural architectures for fine-grained entity type classification. arXiv preprint arXiv:1606.01341 (2016)

  47. Tanev, H., Magnini, B.: Weakly supervised approaches for ontology population. Citeseer (2008)

    Google Scholar 

  48. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003, Stroudsburg, PA, USA, vol. 4, pp. 142–147. Association for Computational Linguistics (2003)

    Google Scholar 

  49. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  50. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  51. Velardi, P., Faralli, S., Navigli, R.: OntoLearn reloaded: a graph-based algorithm for taxonomy induction. Comput. Linguist. 39(3), 665–707 (2013)

    Article  Google Scholar 

  52. Velardi, P., Navigli, R., Cuchiarelli, A., Neri, R.: Evaluation of OntoLearn, a methodology for automatic learning of domain ontologies. In: Ontology Learning from Text: Methods, Evaluation and Applications, vol. 123, no. 92 (2005)

    Google Scholar 

  53. Vrandecic, D., Krotzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  54. Wang, S., Zhao, R., Chen, X., Zheng, Y., Liu, B.: Enquire one’s parent and child before decision: fully exploit hierarchical structure for self-supervised taxonomy expansion. In: The Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021, pp. 3291–3304 (2021). https://doi.org/10.1145/3442381.3449948

  55. Weikum, G., Dong, X.L., Razniewski, S., Suchanek, F.: Machine knowledge: creation and curation of comprehensive knowledge bases. Found. Trends Databases 10(2–4), 108–490 (2021). https://doi.org/10.1561/1900000064

    Article  Google Scholar 

  56. Weikum, G., Hoffart, J., Suchanek, F.: Ten years of knowledge harvesting: lessons and challenges. Data Eng. 5, 41–50 (2016)

    Google Scholar 

  57. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and into the future. ACM Comput. Surv. (CSUR) 44(4), 1–36 (2012)

    Article  MATH  Google Scholar 

  58. Yaghoobzadeh, Y., Adel, H., Schütze, H.: Noise mitigation for neural entity typing and relation extraction. arXiv preprint arXiv:1612.07495 (2016)

  59. Yaghoobzadeh, Y., Schütze, H.: Corpus-level fine-grained entity typing using contextual information. arXiv preprint arXiv:1606.07901 (2016)

  60. Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge graphs. Front. Comput. Sci. 12(1), 55–74 (2018). https://doi.org/10.1007/s11704-016-5228-9

    Article  Google Scholar 

  61. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5753–5763 (2019)

    Google Scholar 

  62. Yogatama, D., Gillick, D., Lazic, N.: Embedding methods for fine grained entity type classification. In: ACL (2), pp. 291–296 (2015)

    Google Scholar 

  63. Zhang, L., Rettinger, A.: X-LiSA: cross-lingual semantic annotation. VLDB 7(13), 1693–1696 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lisa Gentile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shbita, B., Gentile, A.L., Li, P., DeLuca, C., Ren, GJ. (2023). Understanding Customer Requirements. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics