
Stochastic Decision Petri Nets

Florian Wittbold1 , Rebecca Bernemann1 , Reiko Heckel2 , Tobias
Heindel3 , and Barbara König1

1 Universität Duisburg-Essen, Duisburg, Germany
2 University of Leicester, UK
3 Heliax Technologies GmbH

Abstract. We introduce stochastic decision Petri nets (SDPNs), which
are a form of stochastic Petri nets equipped with rewards and a con-
trol mechanism via the deactivation of controllable transitions. Such
nets can be translated into Markov decision processes (MDPs), poten-
tially leading to a combinatorial explosion in the number of states due
to concurrency. Hence we restrict ourselves to instances where nets are
either safe, free-choice and acyclic nets (SAFC nets) or even occurrence
nets and policies are defined by a constant deactivation pattern. We ob-
tain complexity-theoretic results for such cases via a close connection to
Bayesian networks, in particular we show that for SAFC nets the ques-
tion whether there is a policy guaranteeing a reward above a certain
threshold is NPPP-complete. We also introduce a partial-order procedure
which uses an SMT solver to address this problem.

1 Introduction

State-based probabilistic systems are typically modelled as Markov chains [28],
i.e., transition systems where transitions are annotated with probabilities. This
admits an intuitive graphical visualization and efficient analysis techniques [17].
By introducing additional non-determinism, one can model a system where a
player can make decisions, enriched with randomized choices. This leads to the
well-studied model of Markov decision processes (MDPs) [6,15] and the challenge
is to synthesize strategies that maximize the reward of the player.

In this paper we study stochastic systems enriched with a mechanism for
decision making in the setting of concurrent systems. Whenever a system exhibits
a substantial amount of concurrency, i.e., events that may potentially happen
in parallel, compiling it down to a state-based system – such as an MDP – can
result in a combinatorial state explosion and a loss in efficiency of MDP-based
methods. We base our models on stochastic Petri nets [21], where Petri nets are
a standard formalism for modelling concurrent systems, especially such systems
where resources are generated and consumed. When considering the discrete-
time semantics of such stochastic nets, it is conceptually easy to transform them
into Markov chains, but this typically leads to a state space explosion.

There exist successful partial order methods for analyzing concurrent systems
that avoid explicit interleavings and the enumeration of all reachable states. In-
stead, they work with partial orders – instead of total orders – of events. While

ar
X

iv
:2

30
3.

13
34

4v
1

 [
cs

.L
O

]
 2

3
M

ar
 2

02
3

https://orcid.org/0000-0001-8307-503X
https://orcid.org/0000-0002-3240-0952
https://orcid.org/0000-0003-4719-0772
https://orcid.org/0000-0003-3371-8564
https://orcid.org/0000-0002-4193-2889

such techniques are well understood in the absence of random choices, leading
for instance to methods such as unfoldings [14], there are considerable difficul-
ties to reconcile probability and partial order. Progress has been made by the
introduction of the concept of branching cells [1] that encapsulate independent
choices, but to our knowledge there is no encompassing theory that provides
off-the-shelf partial order methods for computing the probability of reaching a
certain goal (e.g. marking a certain place) in a stochastic net.

The contributions of this paper are the introduction of a new model: stochas-
tic decision Petri nets (SDPNs) and its connection to Markov decision processes
(MDPs). The transformation of SDPNs into MDPs is relatively straightforward,
but may lead to state space explosion, i.e., exponentially many markings, due
to the concurrency inherent in the Petri net. This can make the computation of
the optimal policy infeasible. We restrict ourselves to a subclass of nets which
are safe, acyclic and free-choice (SAFC) and to constant policies and study the
problem of determining a policy that guarantees a payoff above some bound.
Our result is that the problem SAFC-POL of determining such a policy, despite
the restrictions, is still NPPP-complete. We reduce from the D-MAP problem
for Bayesian networks [24] (in fact the two problems are interreducible under
mild restrictions) and show the close connection of reasoning about stochas-
tic Petri nets and Bayesian networks. Furthermore, for SAFC nets, there is a
partial-order solution procedure via an SMT solver, for which we obtain encour-
aging runtime results. For the simpler free-choice occurrence nets, we obtain an
NP-completeness result.

Note that the main body of the paper contains some proof sketches, while
full proofs and an additional example can be found in the appendix.

2 Preliminaries

By N we denote the natural numbers without 0, while N0 includes 0.
Given two sets X,Y we denote by (X → Y) the set of all functions from

X to Y . Given a function f : X → N0 or f : X → R with X finite, we define
‖f‖∞ = maxx∈X f(x) and supp(f) = {x ∈ X | f(x) 6= 0}.

Complexity Classes: In addition to well-known complexity classes such as P and
NP, our results also refer to PP (see [23]). This class is based on the notion of
a probabilistic Turing machine, i.e., a non-deterministic Turing machine whose
transition function is enriched with probabilities, which means that the accep-
tance function becomes a random variable. A language L lies in PP if there exists
a probabilistic Turing machine M with polynomial runtime on all inputs such
that a word w ∈ L iff it is accepted with probability strictly greater than 1/2. As
probabilities we only allow numbers ρ that are efficiently computable, meaning
that the i-th bit of ρ is computable in a time polynomial in i. (See [2] for a dis-
cussion on why such probabilistic Turing machines have equal expressivity with
those based on fair coins, which is not the case if we allow arbitrary numbers.)

Given two complexity classes A,B and their corresponding machine models,
by AB we denote the class of languages that are solved by a machine of class

A, which is allowed to use an oracle answering yes/no-questions for a language
L ∈ B at no extra cost in terms of time or space complexity. In particular
NPPP denotes the class of languages that can be accepted by a non-deterministic
Turing machine running in polynomial time that can query a black box oracle
solving a problem in PP.

By Toda’s theorem [27], a polynomial time Turing machine with a PP oracle
(PPP) can solve all problems in the polynomial hierarchy.

In order to prove hardness results we use the standard polynomial-time many-
one reductions, denoted by A ≤p B for problems A,B (see [16]).

Stochastic Petri Nets: A stochastic Petri net [21] is given by a tuple N =
(P, T, •(), ()•, Λ,m0) where P and T are finite sets of places and transitions,
•(), ()• : T → (P → N0) determine for each transition its pre-set and post-set
including multiplicities, Λ : T → R>0 defines the firing rates and m0 : P → N0

is the initial marking. By M(N) we denote the set of all markings of N , i.e.,
M(N) = (P → N0).

We will only consider the discrete-time semantics of such nets. The firing rates
determine stochastically which transition is fired in a marking where multiple
transitions are enabled: When transitions t1, . . . , tn ∈ T are enabled in a mark-
ing m ∈M(N) (i.e., •ti ≤ m pointwise), then transition ti fires with probability
Λ(ti)/

∑n
j=1 Λ(tj), resulting in a discrete step m→ti m

′ := m− •ti+ ti
•. In par-

ticular, the firing rates have no influence on the reachability set R(N) := {m ∈
M(N) | m0 →∗ m} but only define the probability of reaching certain places
or markings. Defining “empty” transitions m →ε m for markings m ∈ R(N)
where no transition is enabled, such a stochastic Petri net can be interpreted as
a Markov chain on the set of markings M(N).

This Markov chain thus generates a (continuous) probability space over
sequences (m0,m1, . . .) ∈ M(N)ω where a sequence is called valid if m0 is
the initial marking of the Petri net and for a prefix (m0, . . . ,mn) all cones
{(m′0,m′1, . . .) ∈ M(N)ω | ∀k = 0, . . . , n : m′k = mk} have non-zero proba-
bility. We write FS(N) := {µ ∈ M(N)ω | µ is valid} to denote the set of valid
sequences. We assume that no two transitions have the same pre- and postcon-
ditions to have a one-to-one-correspondence between valid sequences and firing
sequences µ : (m0 →t1 m1 →t2 . . .).

For a firing sequence µ, we write µk : m0 →t1 m1 →t2 · · · →tk mk to denote
the finite subsequence of the first k steps, len(µ) := min{k ∈ N | tk = ε} − 1, for
its length, as well as

pl(µ) :=

∞⋃
n=0

supp(mn) tr(µ) := {tn | n ∈ N} \ {ε}

to denote the set of places reached in µ (or, analogously, µk), and the set of fired
transitions in µ (independent of their firing order), respectively.

We are, furthermore, interested in the following properties of Petri nets: A
Petri net N as above is called

– ordinary iff all transitions require and produce at most one token in each
place (‖ •t‖∞, ‖t•‖∞ ≤ 1 for all t ∈ T);

– safe iff it is ordinary and all reachable markings also only have at most one
token in each place (‖m‖∞ ≤ 1 for all m ∈ R(N));

– acyclic iff the transitive closure ≺+
N of the causal relation ≺N (with p ≺N t

if •t(p) > 0 and t ≺N p if t•(p) > 0) is irreflexive;
– an occurrence net iff it is safe, acyclic, free of backward conflicts (all places

have at most one predecessor transition, i.e., |{t | t•(p) > 0| ≤ 1 for all
p ∈ P) and self-conflicts (for x ∈ P ∪T , there exist no two distinct conflicting
transitions t, t′ ∈ T , i.e., transitions sharing preconditions, on which x is
causally dependent, i.e., t, t′ ≺+

N x), and the initial marking has no causal
predecessors (for all p ∈ P with m0(p) = 1, we have t•(p) = 0 for all t ∈ T);

– free-choice [13] iff it is ordinary and all transitions t, t′ ∈ T are either both
enabled or disabled in all markings (i.e., •t =• t′ or supp(•t)∩supp(•t′) = ∅);

– ϕ-bounded (for ϕ : N0 → N0) iff all its runs, starting from m0, have at most
length ϕ(|P | + |T |), i.e., iff len(µ) ≤ ϕ(|P | + |T |) for all firing sequences
µ ∈ FS(N).

We will abbreviate the class of free-choice occurrence Petri nets as FCON,
safe and acyclic free-choice nets as SAFC nets, and the class of ϕ-bounded Petri
nets as [ϕ]BPN. Note that FCON ⊆ SAFC and also SAFC ⊆ [id]BPN for the
identity id .4

We also introduce some notation specifically for SAFC nets: As common
in the analysis of safe Petri nets, we will interpret markings as well as pre-
and postconditions of transitions as subsets of the set P of places rather than
functions P → {0, 1} ⊆ N0.

The set of maximal configurations will be denoted by Cω(N) := {tr(µ) | µ ∈
FS(N)} and configurations by C(N) := {tr(µk) | µ ∈ FS(N), k ∈ N0}.

An important notion in the analysis of a (free-choice) net are branching
cells (see also [8,1]). We will define a cell to be a subset of transitions C ⊆ T
where all transitions t ∈ C share their preconditions and all t′ ∈ T \ C share no
preconditions with t ∈ C. In other words, C is an equivalence class of a relation
↔ on T defined by

∀t, t′ ∈ T : t↔ t′ ⇐⇒ •t = •t′.

We will write Ct := [t]↔ to denote the equivalence class of transition t ∈ T and
•C :=

⋃
t∈C

•t as well as C• :=
⋃
t∈C t

• to denote the sets of pre- and postplaces
of C, respectively. The set of all cells of a net N is denoted by BC (N).

Markov decision processes: A Markov decision process (MDP) is a tuple (S,A, δ,
r, s0) consisting of finite sets S, A of states and actions, a function δ : S × A→
D(S) of probabilistic transitions (where D(S) is the set of probability distribu-
tions on S), a reward function r : S ×A×S → R of rewards and an initial state
s0 ∈ S (see also [6,15]).

4 Indeed, [id]BPN contains any safe and acyclic Petri net, omitting the free-choice
constraint.

A policy (or strategy) for an MDP is some function π : S → A. It has been
shown that such stationary deterministic policies can act optimally in such an
(infinite-horizon) MDP setting (see also [15]). A policy gives rise to a Markov
chain on the set of states with transitions s 7→ δ(s, π(s)) ∈ D(S). The associated
probability space is s0S

ω, the set of all infinite paths on S starting with s0, which
– due to its uncountable nature – has to be dealt with using measure-theoretic
concepts. As before we equip the probability space with a σ-algebra generated
by all cones, i.e., all sets of words sharing a common prefix.

The value (or payoff) of a policy π is then given as the expectation of the
(undiscounted) total reward (where si, i ∈ N0 are random variables, mapping an
infinite path to the i-th state, i.e., they represent the underlying Markov chain):

E

[∑
n∈N0

r(sn, π(sn), sn+1)

]
.

To avoid infinite values, we have to assume that the sum is bounded.

The problem of finding an optimal policy π : S → A for a given MDP
(S,A, δ, r, s0) with finite state and action space is known to be solvable in poly-
nomial time using linear programming [15,19].

Bayesian Networks: Bayesian networks are graphical models that give compact
representations of discrete probability distributions, exploiting the (conditional)
independence of random variables.

A (finite) probability space (Ω,P) consists of a finite set Ω and a probability
function P : Ω → [0, 1] such that

∑
ω∈Ω P(ω) = 1. A Bayesian network [25] is a

tuple (X,∆,P) where

– X = (Xi)i=1,...,n is a (finite) family of random variables Xi : Ω → Vi, where
Vi is finite.

– ∆ ⊆ {1, . . . , n}×{1, . . . , n} is an acyclic relation that describes dependencies
between the variables, i.e., its transitive closure ∆+ is irreflexive. By ∆i =
{j | (j, i) ∈ ∆} we denote the parents of node i according to ∆.

– P = (Pi)i=1,...,n is a family of probability matrices Pi :
∏
j∈∆i Vj → D(Vi),

whose entries are given by Pi(vi | (vj)j∈∆i).

A probability function P is consistent with such a Bayesian network whenever
for v = (vi)i=1,...,n ∈

∏n
i=1 Vi we have

P(X = v) =

n∏
i=1

Pi(vi | (vj)j∈∆i).

The size of a Bayesian network is not just the size of the graph, but the sum
of the size of all its matrices (where the size of an m × n-matrix is m · n). In
particular, note that a node with k parents in a binary Bayesian network (i.e.,
with |Vi| = 2 for all i) is associated with a 2× 2k probability matrix.

Example 2.1. An example Bayesian network is given in Figure 1. There are
four random variables (a, b, c, d) with codomain {0, 1}. The tables in the figure
denote the conditional probabilities, for instance Pd(0 | 01) = P(Xd = 0 | Xa =
0, Xb = 1) = 1/6, i.e., one records the probability that a random variable has a
certain value, dependent on the value of its parents in the graph. The probability
P(X = 0100) = P(Xa = 0, Xb = 1, Xc = 0, Xd = 0) is obtained by multiplying
Pa(0) · Pb(1) · Pc(0 | 0) · Pd(0 | 01) = 1/3 · 1/2 · 2/3 · 1/6 = 1/54.

Fig. 1. A Bayesian Network

We are interested in the following two prob-
lems for Bayesian networks (see also [24]):

– D-PR: Given the Bayesian network (X,∆,P)
and E = {Xi1 , . . . , Xi`} ⊆ X, e ∈ VE :=∏`
j=1 Vij (the evidence) and a rational p > 0,

does it hold that P(E = e) > p? This problem
is known to be PP-complete [20].

– D-MAP: Given a Bayesian network (X,∆,P),
a rational number p > 0, disjoint subsets
E,F ⊆ X,5 and evidence e ∈ VE , does there
exist f ∈ VF such that P(F = f,E = e) > p, or, if P(E = e) 6= ∅, equiv-
alently, P(F = f | E = e) > p (by adapting the bound p). It is known
that this problem, also known as maximum a-posteriori problem, is NPPP-
complete (see [20,11]).

The corresponding proof in [24] also shows that the D-MAP problem remains
NPPP-complete if F only contains uniformly distributed ‘input’ nodes, i.e., nodes
Xi with ∆i = ∅ and Pi(xi) = 1/|Vi|, as well as Vi = {0, 1} for all i = 1, . . . , n.

In particular, the following problem (where E,F are switched!) is still NPPP-
complete: Given a binary Bayesian network (X,∆,P) (i.e., Vi = {0, 1} for all
i), a rational p > 0, disjoint subsets E,F ⊆ X where F only contains uniformly
distributed input nodes, as well as evidence e ∈ VE , does there exist f ∈ VF
such that P(E = e | F = f) > p (as P(F = f) = 1/2|F | is independent of f
and known due to uniformity)? We will, in the rest of this paper, refer to this
modified problem as D-MAP instead of the original problem above.

Example 2.2 (D-MAP). Given the Bayesian Network in Figure 1 with F =
{Xa} (MAP variable), E = {Xc, Xd}, e = (0, 1) ∈ Vc × Vd (evidence) and
p = 1/3, we ask whether ∃f ∈ {0, 1} : P(Xc = 0, Xd = 1 | Xa = f) > 1/3.
When choosing f = 1 ∈ Va, the probability P(Xc = 0, Xd = 1 | Xa = 1) =
3/4 · (1/2 · 3/4 + 1/2 · 1/3) = 13/32 > 1/3 exceeds the bound. Note that to compute
the value in this way, one has to sum up over all possible valuations of those
variables that are neither evidence nor MAP variables, indicating that this is
not a trivial task.

5 The variables contained in F are called MAP variables.

3 Stochastic decision Petri nets

We will enrich the definition of stochastic Petri nets to allow for interactivity,
similar to how MDPs [6] extend the definition of Markov chains.

Definition 3.1. A stochastic decision Petri net (SDPN) is a tuple (P, T, •(), ()•,
Λ,m0, C,R) where (P, T, •(), ()•, Λ,m0) is a stochastic Petri net; C ⊆ T is a set
of controllable transitions; R : P(P)→ R is a reward function.

Here we describe the semantics of such SDPNs in a semi-formal way. The
precise semantics is obtained by the encoding of SDPNs into MDPs in Section 4.

Given an SDPN, an external agent may in each step choose to manually deac-
tivate any subset D ⊆ C of controllable transitions (regardless of whether their
preconditions are fulfilled or not). As such, if transitions D ⊆ C are deactivated
in marking m ∈ M(N), the SDPN executes a step according to the semantics
of the stochastic Petri net ND = (P, T \D, •(), ()•, ΛD,m0) where the pre- and
post-set functions and ΛD are restricted accordingly. p1

p2

p3

p4 p5

t1 t2

t3 t4

t5 t6

Fig. 2. Example SDPN

For all rewarded sets Q ∈ supp(R), the agent
receives an “immediate” reward R(Q) once all the
places p ∈ Q are reached at one point in the ex-
ecution of the Petri net (although not necessarily
simultaneously). In particular, any reward is only
received once. Note that this differs from the usual
definition of rewards as in MDPs, where a reward
is received each time certain actions is taken in
given states. However, logical formulae over reached places (such as “places p1
and p2 are reached without reaching place q”) are more natural to represent
by such one-time rewards instead of cumulative rewards.6 The framework can
be extended to reward markings instead of places but at the cost of an expo-
nential explosion, since to be able to compute the one-time step-wise rewards
not only already reached places but already reached markings would have to be
memorized. Note that a reward need not be positive.

More formally, given a firing sequence µ : m0 →t1 m1 →t2 . . . , the agent
receives a value or payoff of V (pl(µ)) where V (M) :=

∑
Q⊆M R(Q).

Example 3.2. As an example consider the SDPN in Figure 2. The objective is
to mark both places coloured in yellow at some point in time (not necessarily at
the same time). This can be described by a reward function R which assigns 1
to the set {p4, p5} containing both yellow places and 0 to all other sets.

The transitions with double borders (t1, t2) are controllable and it turns out
that the optimal strategy is to deactive both t1 and t2 first, in order to let t5 or
t6 mark either of the two goal places before reaching the marking (1, 1, 0, 0, 0)
from which no information can be gained which of the two goal places have been
marked. An optimal strategy thus has to have knowledge of already achieved sub-
goals in terms of visited places. In this case, the strategy can deactivate one of
the transitions (t1, t2) leading to the place already visited.

6 Firings of transitions can also easily be rewarded by adding an additional place.

Policies may be dependent on the current marking and the places accu-
mulated so far. Now, for a given policy π : M(N) × P(P) → P(C), deter-
mining the set π(m,Q) ⊆ C of deactivated transitions in marking m for the
set Q of places seen so far, we consider the (continuous) probability space
m0M(N)ω, describing the infinite sequence m0 →t1 m1 →t2 . . . of markings
generated by the Petri net under the policy π (i.e., if in step n the transitions

Dn := π(mn−1,
⋃n−2
k=0 supp(mk)) are deactivated).

Then we can consider the expectation of the random variable V ◦ pl , i.e.,

Vπ := Eπ [V ◦ pl] ,

over the probability space m0M(N)ω. We will call this the value of π and, if
π ≡ D ⊆ C is constant, simply write VD which we will call the value of D.

For the complexity analyses we assume that R is only stored on its support,
e.g., as a set R ⊆ P(P)×R which we will interpret as a dictionary with entries
[Q : R(Q)] for some Q ⊆ P , as for many problems of interest the size of the
support of the reward function can be assumed to be polynomially bounded
w.r.t. to the set of places and transitions.

We consider the following problems for stochastic Petri nets, where we pa-
rameterize over a class N of SDPNs and (for the second problem) over a class
Ψ ⊆ (M(N)× P(P)→ P(C)) of policies:

– N -VAL: Given a rational p > 0, a net N ∈ N and a policy π ∈ Ψ for N ,
decide whether Vπ > p.

– N -POL: Given a rational p > 0 and a net N ∈ N , decide whether there exist
a policy π ∈ Ψ such that Vπ > p.
Although paramterized over sets of policies, we will omit Ψ if is clear from the
context (in fact we will restrict to constant policies from Section 5 onwards).

4 Stochastic decision Petri nets as Markov decision
processes

We now describe how to transform an SDPN into an MDP, thus fixing the
semantics of such nets. For unbounded Petri nets, the resulting MDP has an
infinite state space, but we will restrict to the finite case later.

Definition 4.1. Given an SDPN N = (P, T, F, Λ,C,R,m0) where m0 is not
the constant zero function, the MDP for N is defined as the tuple (S,A, δ, r, s0)
where

– S = R(N)× P(P) (product of reachable markings and places collected),
– A = P(C) (sets of deactivated transition as actions),
– δ : (R(N)× P(P))× P(C)→ D(R(N)× P(P)), with

δ((m,Q), D)((m′, Q′)) :=

{
p(m′ | m,D) if Q′ = Q ∪ supp(m),

0 otherwise,

where

p(m′ | m,D) =

∑
t∈En(m,D),m→tm′

Λ(t)∑
t∈En(m,D) Λ(t)

whenever En(m,D) := {t ∈ T\D | •t ≤ m} 6= ∅. If En(m,D) = ∅, we set
p(m′ | m,D) = 1 if m = m′ and 0 if m 6= m′. That is, p(m′ | m,D) is the
probability of reaching m′ from m when transitions D are deactivated.

– r : S ×A× S → R (reward function) with

r((m,Q), D, (m′, Q′)) :=

{∑
Q⊆Y⊆Q′ R(Y) if Q = ∅,∑
Q(Y⊆Q′ R(Y) if Q 6= ∅.

– s0 = (m0, ∅)

The transition probabilities are determined as for regular stochastic Petri
nets where we consider only the rates of those transitions that have not been
deactivated and that can be fired for the given marking. If no transition is
enabled, we stay at the current marking with probability 1.

Note that the reward for the places reached in a marking m is only collected
when we fire a transition leaving m. This is necessary as in the very first step
we also obtain the reward for the empty set, which might be non-zero, and due
to the fact that the initial marking is assumed to be non-empty, this reward for
the empty set is only collected once.

The following result shows that the values of policies π : S → A (note that
these are exactly the policies for the underlying SDPN) over the MDP are equal
to the ones over the corresponding SDPN.

Proposition 4.2. Let N = (P, T, F, Λ,C,R,m0) be an SDPN and M = (S,A, δ,
r, s0) the corresponding MDP. For any policy π : S → A, we have

(Vπ =)Eπ [V ◦ pl] = Eπ
[∑
n∈N0

r(sn, π(sn), sn+1)

]

where (sn)n is the Markov chain resulting from following policy π in M .

This provides an exact semantic for SDPNs via MDPs. Note, however, that
for analysis purposes, even for safe Petri nets, the reachability set R(N) (as a
subset of P(P)) is generally of exponential size whence the transformation into
an MDP can at best generally only yield algorithms of exponential worst-case-
time. Hence, we will now restrict to specific subproblems and it will turn out that
even with fairly severe restrictions to the type of net and the policies allowed,
we obtain completeness results for complexity classes high in the polynomial
hierarchy.

5 Complexity analysis for specific classes of Petri nets

For the remainder of this paper, we will consider the problem of finding optimal
constant policies for certain classes of nets. In other words, the agent chooses
before the execution of the Petri net which transitions to deactivate for its entire
execution. For a net N , the policy space is thus given by

Ψ(N) = {π :M(N)→ P(C) | π ≡ D ⊆ C} =̂ P(C).

Since one can non-deterministically guess the maximizing policy (there are
only exponentially many) and compute its value, it is clear that the complexity
of the policy optimization problem N -POL is bounded by the complexity of the
corresponding value problem N -VAL as follows: If, for a given class N of Petri
nets, N -VAL lies in the complexity class C, then N -POL lies in NPC.

We will now show the complexity of these problems for the three Petri net
classes FCON, SAFC, and [ϕ]BPN and work out the connection to Bayesian
networks. In the following we will assume that all probabilities are efficiently
computable, allowing us to simulate all probabilistic choices with fair coins.

5.1 Complexity of safe and acyclic free-choice decision nets

We will first consider the case of Petri nets where the length of runs is bounded.

Proposition 5.1. For any polynomial ϕ, the problem [ϕ]BPN-VAL is in PP. In
particular, [ϕ]BPN-POL is in NPPP.

Proof (sketch). Given a Petri net N , a policy π and a bound p, a PP-algorithm
for [ϕ]BPN-VAL can simulate the execution of the Petri net and calculate the
resulting value, checking whether the expected value for π is greater than the pre-
defined bound p. For this, we have to suitably adapt the threshold (with an affine
function ψ) so that the probabilistic Turing machine accepts with probability
greater than 1/2 iff the reward for the given policy is strictly greater than p.

As the execution of the Petri net takes only polynomial time in the size of
the Petri net (ϕ), this can be performed by a probabilistic Turing machine in
polynomial time whence [ϕ]BPN-VAL lies in PP.

Since a policy can be guessed in polynomial time, we can also infer that
[ϕ]BPN-POL is in NPPP.

This easily gives us the following corollary for SAFC nets.

Corollary 5.2. The problem SAFC-VAL is in PP and SAFC-POL in NPPP.

Proof. This follows directly from Proposition 5.1 and the fact that SAFC ⊆
[id]BPN.

Proposition 5.3. The problem SAFC-POL is NPPP-hard and, therefore, also
NPPP-complete.

Proof (sketch). This can be proven via a reduction D-MAP ≤p SAFC-POL, i.e.,
representing the modified D-MAP problem for Bayesian networks as a decision
problem in safe and acyclic free-choice nets. NPPP-completeness then follows
together with Corollary 5.2. Note that we are using the restricted version of the
D-MAP problem as explained in Section 2 (uniformly distributed input nodes,
binary values).

We sketch the reduction via an example: we take the Bayesian network in
Figure 1 and consider a D-MAP instance where E = {Xc, Xd} (evidence, where
we fix the values of c, d to be 0, 1), F = {Xa} (MAP variables) and p is a
threshold. That is, the question being asked for the Bayesian network is whether
there exists a value x such that P(Xc = 0, Xd = 1 | Xa = x) > p.

This Bayesian network is
encoded into the SAFC net
in Figure 3, where transitions
with double borders are con-
trollable and the yellow places
give a reward of 1 when both
are reached (not necessarily
at the same time). Transi-
tions either have an already
indicated rate of 1 or the
rate can be looked up in the
corresponding matrix of the
BN. The rate of a transi-
tion tix1x2→x3

is the probabil-
ity value Pi(x3 | x1x2), where
Pi is the probability matrix
for i ∈ {a, b, c, d}.

Intuitively the first level of
transitions simulates the

P
(⊥,a)
() P

(⊥,b)
()

P a0 P a1 P b0 P b1

. . .

P
a,c
0

P
a,d
00

P
a,d
01

P
a,c
1

P
a,d
10 P

a,d
11

P
b,d
00

P
b,d
10

P c0 P c1 P d0 P d1

ta()→0 ta()→1 tb()→0 tb()→1

ta01 ta1 1 tb01 tb1 1

tc0→0 tc0→1 tc1→0 tc1→1 td00→0 td00→1
. . .

Fig. 3. SAFC net corresponding to BN in Figure 1

probability tables of P a, P b, the nodes without predecessors in the Bayesian
network, where for instance the question of whether P a0 or P a1 are marked corre-
sponds to the value of the random variable Xa associated with node a. Since Xa

is a MAP variable, its two transitions are controllable. Note that enabling both
transitions will never give a higher reward than enabling only one of them. (This
is due to the fact that max{x, y} ≥ p1 ·x+p2 · y for p1, p2 ≥ 0 with p1 +p2 = 1.)

The second level of transitions (each with rate 1) is inserted only to obtain
a free-choice net by creating sufficiently many copies of the places in order to
make all conflicts free-choice.

The third level of transitions simulates the probability tables of P c, P d, only
to ensure the net being free-choice we need several copies. For instance, transition
tc0→0 consumes a token from place P a,c0 , a place specifically created for the entry
P c(c = 0 | a = 0) in the probability table of node c.

In the end the aim is to mark the places P c0 and P d1 , and we can find a policy
(deactivating either ta()→0 or ta()→0) such that the probability of reaching both
places exceeds p if and only if the D-MAP instance specified above has a solution.

This proof idea can be extended to more complex Bayesian networks, for a
more formal proof see the appendix.

In fact, a reduction in the opposite direction (from Petri nets to Bayesian
networks) is possible as well under mild restrictions, which shows that these
problems are closely related.

Proposition 5.4. For two given constants k, `, consider the following problem:
let N be a SAFC decision Petri net, where for each branching cell the number
of controllable transitions is bounded by some constant k. Furthermore, given its
reward function R, we assume that |∪Q∈supp(R)Q| ≤ `. Given a rational number
p, does there exist a constant policy π such that Vπ > p?

This problem can be polynomially reduced to D-MAP.

0 1
0 1

Xp1

0 1
F

Xt1

0 1
0 1

Xp2

0 1
F

Xt5

0 1
F

Xt6

Xp1 Xt1 ε t1 t2
0 ∗ 1 0 0
1 0 0 0 1
1 1 0 1/2 1/2

XC1

XC1
0 1

ε 1 0
t1 1 0
t2 0 1

Xp3

Xp2 ε t3 t4
0 1 0 0
1 0 1/2 1/2

XC2

XC2
0 1

ε 1 0
t3 0 1
t4 1 0

Xp4

Xp3 Xp4 Xt5 Xt6 ε t5 t6
0 ∗ ∗ ∗ 1 0 0
∗ 0 ∗ ∗ 1 0 0
1 1 0 0 1 0 0
1 1 0 1 0 0 1
1 1 1 0 0 1 0
1 1 1 1 0 1/2 1/2

XC3

XC1
XC3

0 1
ε ε 1 0
ε t6 1 0
t2 ε 1 0
t2 t6 1 0
t1 ∗ 0 1
∗ t5 0 1

Xp5

XC3
0 1

ε 1 0
t5 0 1
t6 0 1

Xp6

XC3
0 1

ε 1 0
t5 1 0
t6 0 1

Xp7

Xp5 0 0 0 0 1 1 1 1
Xp6 0 0 1 1 0 0 1 1
Xp7 0 1 0 1 0 1 0 1

0 1/2 1/2 1/3 1/2 1/3 1/2 1/3 1/2
1 1/2 1/2 2/3 1/2 2/3 1/2 2/3 1/2

Xrew

Fig. 4. Bayesian network obtained
from the SAFC net in Figure 5 below.
Entries ∗ are ‘don’t-care’ values.

Proof (sketch). We sketch the reduction, which is inspired by [8], via an example:
consider the SAFC net in Figure 5, where the problem is to find a deactivation
pattern such that the payoff exceeds p. We encode the net into a Bayesian net-
work (Figure 4), resulting in an instance of the D-MAP problem.
We have four types of random variables:
place variables (Xp, p ∈ P), which record
which place is marked; transition vari-
ables (Xt1 , Xt5 , Xt6), one for each control-
lable transition, which are the MAP vari-
ables; cell variables (XCi for C1 = {t1, t2},
C2 = {t3, t4}, C3 = {t5, t6}) which are
non-binary and which record which tran-
sition in the cell was fired or whether no
transition was fired (ε); a reward variable
(Xrew) such that P(Xrew = 1) equals the
function ψ applied to the payoff. Note that
we use the affine function ψ from the proof
of Proposition 5.1 to represent rewards
as probabilities in the interval [0, 1]. The
threshold for the D-MAP instance is ψ(p).
Dependencies are based on the structure
of the given SAFC net. For instance, XC3

is dependent on Xp3 , Xp4 (since •C3 =
{p3, p4}) and Xt5 , Xt6 (since t5, t6 are the
controllable transitions in C3).
Both the matrices of cell and place vari-
ables could become exponentially large,
however this problem can be resolved eas-
ily by dividing the matrices into smaller
ones and cascading them. Since the num-
ber of controllable transitions is bounded
by k and the number of rewarded places
by `, they will not cause an exponential
blowup of the corresponding matrix.

Corollary 5.5. The problem SAFC-VAL is PP-hard and, therefore, also PP-
complete.

Proof. We note that using the construction in the proof of Proposition 5.3 with
the set F of MAP variables being empty, we can reduce the D-PR problem for
Bayesian networks to the SAFC-VAL problem, showing that SAFC-VAL is PP-
hard. Using Corollary 5.2, this yields that SAFC-VAL is PP-complete.

Corollary 5.6. For any polynomial ϕ : N0 → N0 fulfilling ϕ(n) ≥ n for all
n ∈ N0, the problem [ϕ]BPN-VAL is PP-complete and [ϕ]BPN-POL is NPPP-
complete.

Proof. As any safe and acyclic free-choice net is an id-bounded net, it is, in par-
ticular, a ϕ-bounded net with ϕ as above, and we have SAFC-VAL≤p [ϕ]BPN-VAL
and SAFC-POL ≤p [ϕ]BPN-POL. Propositions 5.1 and 5.3 as well as Corol-
lary 5.5, therefore show that [ϕ]BPN-VAL is PP-complete and [ϕ]BPN-POL is
NPPP-complete.

5.2 Complexity of free-choice occurrence decision nets

Now we further restrict SAFC nets to occurrence nets, which leads to a substan-
tial simplification. The main reason for this is the absence of backwards-conflicts,
which means that each place is uniquely generated, making it easier to trace
causality, i.e., there is a unique minimal configuration that generates each place.

Proposition 5.7. The problem FCON-VAL is in P. In particular, FCON-POL
is in NP.

Proof (sketch). Determining the probability of reaching a set of places Q in
an occurrence net amounts to multiplying the probabilities of the transitions
on which the places in Q are causally dependent. This can be done for every
set Q in the support of the reward function R, which enables us to determine
the expected value in polynomial time, implying that FCON-VAL lies in P. By
guessing a policy for an occurrence net with controllable transitions, we obtain
that FCON-POL lies in NP.

Proposition 5.8. The problem FCON-POL is NP-hard and, therefore, also NP-
complete.

Proof (sketch). To show NP-hardness we reduce 3-SAT (the problem of deciding
the satisfiability of a propositional formula in conjunctive normal form with at
most three literals per clause) to FCON-POL. Given a formula ψ, this is done
by constructing a simple occurrence net with parallel controllable transitions,
one for each atomic proposition ` in ψ. Then we define a reward function with
polynomial support in such a way that the expected reward for the constructed
net is larger or equal than the number of clauses iff the formula has a model.
The correspondence between the model and the policy is such that transitions
whose atomic propositions are evaluated as true are deactivated.

6 An algorithm for SAFC decision nets

Here we present a partial-order algorithm for solving the policy problem for
SAFC (decision) nets. It takes such a net and converts it into a formula for
an SMT solver. We will assume the following, which is also a requirement for
occurrence nets:

Assumption 6.1. For all places p ∈ m0: •p := {t ∈ T | p ∈ t•} = ∅.

This is a mild assumption since any transition t ∈ •p for a place p ∈ m0 in a
safe and acyclic net has to be dead as all places can only be marked once.

We are now using the notion of (branching) cells, introduced in Section 2:
The fact that the SDPN is safe, acyclic and free-choice ensures that choices in
different cells are taken independently from another, so that the probability of a
configuration τ ∈ C(N) under a specific deactivation pattern D ⊆ C is given by

PD(tr ⊇ τ) =
∏
t∈τ

χT\D(t) · Λ(t)∑
t∈Ct\D Λ(t)

=

{
0 if τ ∩D 6= ∅∏
t∈τ

Λ(t)∑
t′∈Ct\D

Λ(t′) otherwise

where χT\D is the characteristic function of T \D and 0/0 is defined to yield 0.
The general idea of the algorithm is to rewrite the reward function R :

P(P) → R on sets of places to a reward function on sets of transitions that
yields a compact formula for computing the value VD for specific sets D (i.e.,
solving SAFC-VAL), that we can also use to solve the policy problem SAFC-POL
via an SMT solver.

We first need some definitions:

Definition 6.2. For a maximal configuration τ ∈ Cω(ND) for a given deactiva-
tion pattern D ⊆ C, we define its set of prefixes in C(ND) to be

preD(τ) := {τ ′ ∈ C(ND) | τ ′ ⊆ τ}

which corresponds to all configurations that can lead to the configuration τ . We
also define the set of extensions of a configuration τ ∈ C(ND) in Cω(ND), which
corresponds to all maximal configurations that τ can lead to, as

extD(τ) := {τ ′ ∈ Cω(ND) | τ ⊆ τ ′}.

Definition 6.3. Let N be a Petri net with a reward function R : P(P) → R
on places and a deactivation pattern D. A reward function [R] : P(T) → R on
transitions is called consistent with R if for each firing sequence µ ∈ FS(ND):

V (pl(µ)) =
∑

Q⊆pl(µ)

R(Q) =
∑

τ∈preD (tr(µ))

[R](τ).

This gives us the following alternative method to determine the expected
value for a net (with given policy D):

Lemma 6.4. Using the setting of Definition 6.3, whenever [R] is consistent with
the reward function R and [R](τ) = 0 for all τ 6∈ C(N), the expected value for
the net N under the constant policy D is:

VD =
∑
τ⊆T

PD(tr ⊇ τ) · [R](τ).

Note that [R](tr(µ)) := V (pl(µ)) for µ ∈ FS(N) fulfills these properties
trivially. However, rewarding only maximal configurations can lead, already in
occurrence nets with some concurrency, to an exponential support (w.r.t. the
size of the net and its reward function). The goal of our algorithm is to instead
make use of the sum over the configurations by rewarding reached places imme-
diately in the corresponding configuration, generating a function [R] that fulfills
the properties above and whose support remains of polynomial size in occurrence
nets. Hence, we have some form of partial-order technique, in particular concur-
rent transitions receive the reward independently of each other (if the reward is
not dependent on firing both of them).

The rewriting process is performed by iteratively ‘removing maximal cells’
and resembles a form of backward-search algorithm. First of all,�∗N (the reflexive
and transitive closure of causality ≺N) induces a partial order v on the set
BC (N) of cells via

∀C,C′ ∈ BC (N) : C v C′ ⇐⇒ ∃t ∈ C, t′ ∈ C′ : t �∗N t′.

Let all cells (C1, . . . ,Cm) with m = |BC (N)| be ordered conforming to v,
then we let Nk denote the Petri net consisting of places Pk := P \ (

⋃
l>k Cl•) ∪

(
⋃
l≤k Cl•) (where the union with the post-sets is only necessary if backward-

conflicts exist) and transitions Tk :=
⋃
l≤k Cl, the remaining components being

accordingly restricted (note that the initial marking m0 is still contained in Pk
by Assumption 6.1). In particular, it holds that N = Nm as well as T0 = ∅ and
P0 = {p ∈ P | ∀t ∈ T : p /∈ t•}.

Let N be a Petri net with deactivation pattern D, µ ∈ FS(ND) be a firing
sequence and k ∈ {1, . . . , |BC (N)|}. We write tr≤k(µ) := tr(µ) ∩ Tk for the
transitions in the first k cells and tr>k(µ) := tr(µ) \Tk for the transitions in the
cells after the k-th cell as well as pl≤k(µ) := m0 ∪ (

⋃
t∈tr≤k(µ) t

•) for the places

reached after all transitions in the first k cells were fired.

We will now construct auxiliary reward functions R[k] that take pairs of a
set of places (U ⊆ Pk) and of transitions (V ⊆ T \ Tk) as input and return a
reward. Intuitively, R[k](U, V) corresponds to the reward for reaching all places
in U and then firing all transitions in V afterwards where reaching U ensures
that all transitions in V can fire.

Starting with the reward function R[m] : P(P)× {∅} → R, (M, ∅) 7→ R(M),
we iteratively compute reward functions R[k] : P(Pk)×P(T \Tk)→ R for k ≥ 0:

R[k](U, V) :=

R[k + 1](U, V) if Ck+1 ∩ V = ∅∑
U ′∩t• 6=∅

U=U ′\t•∪ •t

R[k + 1](U ′, V \{t}) if Ck+1 ∩ V = {t}

0 otherwise

The first case thus describes a scenario where no transition from the (k+ 1)-
th cell is involved while the second case sums up all rewards that are reached
when some transition t in the cell has to be fired (that is, all rewards that are
given when some of the places in t• are reached). We give non-zero values only
to sets V that contain at most one transition of each cell and U has to contain
the full pre-set of t of the transition t removed from V . This is done in order to
ensure that in subsequent steps those transitions that generate •t are in the set
to which we assign the reward. This guarantees that V is always a configuration
of N after marking U while R[k](U, V) is zero if the transitions in V cannot be
fired after U . In this way, rewards are ultimately only given to configurations
and to no other sets of transitions, enabling us later to compute the probabilities
of those configurations.

And if N is an occurrence net, every entry in R[k+ 1] produces at most one
entry in R[k], meaning that supp(R[k]) ≤ supp(R[k + 1]).

Now we can prove that the value of a firing sequence is invariant when rewrit-
ing the auxiliary reward functions as described above.

Proposition 6.5. The auxiliary reward functions satisfy∑
V⊆tr>k(µ)

∑
U⊆pl≤k(µ)

R[k](U, V) =
∑

V⊆tr>k+1(µ)

∑
U⊆pl≤k+1(µ)

R[k + 1](U, V),

for k ∈ {0, . . . , |BC (N)| − 1}.
Hence, for every µ ∈ FS(N)

V (pl(µ)) =
∑

U⊆pl(µ)

R[|BC (N)|](U, ∅) =
∑

V⊆tr>k(µ)

∑
U⊆pl≤k(µ)

R[k](U, V),

which means that we obtain a reward function on transitions consistent with R
by defining [R] : P(T)→ R as

[R](V) :=
∑
U⊆m0

R[0](U, V).

This leads to the following corollary:

Corollary 6.6. Given a net N and a deactivation pattern D, we can calculate
the expected value

VD = E[V ◦ pl] =
∑
τ⊆T

∏
t∈τ

χT\D(t) · Λ(t)∑
t′∈Ct\D Λ(t′)

[R](τ).

Checking whether some deactivation pattern D exists such that this term is
greater than some bound p can be checked by an SMT solver.

Note that, in contrast to the naive definition of [R] only on maximal con-
figurations, this algorithm constructs a reward function on configurations that,
for occurrence nets, has a support with at most supp(R) elements. For arbitrary
SAFC nets, the support of [R] might be of exponential size.

p1 p2

p3 p4

p7p6p5

t1 t2 t3 t4

t5 t6

Fig. 5. A SAFC decision net.
The goal is to mark one or
both of the yellow places at
some point without ever mark-
ing the red place.

Example 6.7. We take the Petri net from Fig-
ure 5 as an example (where all transitions have
firing rate 1). The reward function R is given in
the table below. By using the inclusion-exclusion
principle we ensure that one obtains reward 1 if
one or both of the yellow places are marked at
some point without ever marking the red place.
The optimal strategy is obviously to only deacti-
vate the one transition (t6) which would mark the
red place.
The net has three cells C1 = {t1, t2},C2 = {t3, t4},
and C3 = {t5, t6} where C1,C2 v C3. As such,
R[3] = R with R below and obtain R[2] (due to
P2 = {p1, p2, p3, p4, p5}). In the next step, we get
(by removing t3 and t4) R[1] and finally R[0], from
which we can derive [R], the reward function on
transitions, as described above.
This allows us to write the value for a set D of deactivated transitions as follows
(where if both t5, t6 ∈ D, we assume the last quotient to be zero)

VD =
χT\D(t1)

χT\D(t1) + 1
+

1

χT\D(t1) + 1

1

2

χT\D(t5)

χT\D(t5) + χT\D(t6)

R =[{p5} : 1, {p6} : 1, {p5, p6} : −1, {p5, p7} : −1, {p6, p7} : −1, {p5, p6, p7} : 1]

R[2] =[({p5}, ∅) : 1, ({p3, p4}, {t5}) : 1, ({p3, p4, p5}, {t6}) : −1]

R[1] =[({p5}, ∅) : 1, ({p2, p3}, {t3, t5}) : 1, ({p2, p3, p5}, {t3, t6}) : −1]

R[0] =[({p1}, {t1}) : 1, ({p1, p2}, {t2, t3, t5}) : 1]

[R] =[{t1} : 1, {t2, t3, t5} : 1]

Writing xi := χT\D(ti) ∈ {0, 1}, i = 1, 5, 6, the resulting inequality

x1
x1 + 1

+
1

2

1

x1 + 1

x5
x5 + x6

> p

can now be solved by an SMT solver with Boolean variables x1, x5, and x6 (i.e.,
x1, x5, x6 ∈ {0, 1}).

Runtime results: To test the performance of our algorithm, we performed run-
time tests on specific families of simple stochastic decision Petri nets, focussing
on the impact of concurrency and backward-conflicts on its runtime. All families
are based on a series of simple branching cells each containing two transitions,
one controllable and one non-controllable, reliant on one place as a precondition.
Each non-controllable transition marks a place to which we randomly assigned a
reward according to a normal distribution (in particular, it can be negative). The
families differ in how these cells are connected, testing performance with concur-
rency, backward-conflicts, and sequential problems, respectively (for a detailed
overview of the experiments see Appendix D).

Rewriting the reward function (and, thus, solving the value problem) pro-
duced expected results: Runtimes on nets with many backward-conflicts are
exponential while the rewriting of reward functions of occurrence nets exhibits
a much better performance, reflecting its polynomial complexity.

To solve the policy problem based on the rewritten reward function, we com-
pared the performances of naively calculating the values of each possible deac-
tivation pattern with using an SMT solver (Microsoft’s z3, see also [12]). Tests
showed a clear impact on the representation of the control variables (describ-
ing the deactivation set D) as booleans or as integers bounded by 0 and 1 with
the latter showing a better performance. Furthermore, the runtime of solving the
rewritten formula with an SMT solver showed a high variance on random reward
values. Nonetheless, the results show the clear benefit of using the SMT solver on
the rewritten formula in scenarios with a high amount of concurrency, with much
faster runtimes than the brute force approach. In scenarios without concurrency,
this benefit vanishes, and in scenarios with many backward-conflicts, the brute
force approach is considerably faster than solving the rewritten function with an
SMT solver. The latter effect can be explained by the rewritten reward function
[R] having an exponential support in this scenario.

All in all, the runtime results reflect the well-known drawbacks and benefits
of most partial-order techniques, excelling in scenarios with high concurrency
while having a reduced performance if there are backward- and self-conflicts.

7 Conclusion

We have introduced the formalism of stochastic decision Petri nets and defined
its semantics via an encoding into Markov decision processes. It turns out that
finding optimal policies for a model that incorporates concurrency, probability
and decisions, is a non-trivial task. It is computationally hard even for restricted
classes of nets and constant policies. However, we remark that workflow nets
are often SAFC nets and a constant deactivation policy is not unreasonable,
given that one cannot monitor and control a system all the time. We have also
presented an algorithm for the studied subproblem, which we view as a step
towards efficient partial-order techniques for stochastic (decision) Petri nets.

Related Work: Petri nets [26] are a well-known and widely studied model of
concurrent systems based on consumption and generation of resources. Several

subclasses of Petri nets have received attention, among them free-choice nets [13]
and occurrence nets, where the latter are obtained by unfolding Petri nets for
verification purposes [14].

Our notion of stochastic decision Petri nets is an extension of the well-known
model of stochastic Petri nets [21]. This model and a variety of generalizations are
used for the quantitative analyses of concurrent systems. Stochastic Petri nets
come in a continuous-time and in a discrete-time variant, as treated in this paper.
That is, using the terminology of [28], we consider the corresponding Markov
chain of jumps, while in the continuous-time case, firing rates determine not only
the probability which transition fires next, but also how fast a transition will fire
dependent on the marking. These firing times are exponentially distributed, a
distribution that is memoryless, meaning that the probability of a transition
firing is independent on its waiting time.

Our approach was motivated by extending the probabilistic model of stochas-
tic Petri nets by a mechanism for decision making, as in the extension of Markov
chains [28] to Markov decision processes (MDPs) [6]. Since the size of a stochastic
Petri net might be exponentially smaller than the Markov chain that it generates,
the challenge is to provide efficient methods for determining optimal strategies,
preferably partial order methods that avoid the explicit representation of con-
current events in an interleaving semantics. Our complexity results show that
the quest for such methods is non-trivial, but some results can be achieved by
suitably restricting the considered Petri nets.

A different approach to include decision-making in Petri nets was described
by Beccuti et al. as Markov decision Petri nets [5,4]. Their approach, based on a
notion of well-formed Petri nets, distinguishes explicitly between a probabilistic
part and a non-deterministic part of the Petri net as well as a set of components
that control the transitions. They use such nets to model concurrent systems and
obtain experimental results. In a similar vein, graph transformation systems –
another model of concurrent systems into which Petri nets can be encoded – have
been extended to probabilistic graph transformation systems, including decisions
in the MDP sense [18]. The decision is to choose a set of rules with the same
left-hand side graph and a match, then a randomized choice is made among these
rules. Again, the focus is on modelling and to our knowledge neither of these
approaches provides complexity results.

Another problem related to the ones considered in this paper is the computa-
tion of the expected execution time of a timed probabilistic Petri net as described
in [22]. The authors treated timed probabilistic workflow nets (TPWNs) which
assumes that every transition requires a fixed duration to fire, separate from the
firing probability. They showed that approximating the expected time of a sound
SAFC TPWN is #P-hard which is the functional complexity class corresponding
to PP. While the problems studied in their paper and in our paper are different,
the fact that both papers consider SAFC nets and obtain a #P- respectively
PP-hardness result seems interesting and deserves further study.

Our complexity results are closely connected with the analysis of Bayesian
networks [25], which are a well-known graphical formalism to represent condi-

tional dependencies among random variables and can be employed to reason
about and compactly represent probability distributions. The close relation be-
tween Bayesian networks and occurrence nets was observed in [8], which gives a
Bayesian network semantics for occurrence nets, based on the notion of branching
cells from [1] that were introduced in order to reconcile partial order methods
– such as unfoldings – and probability theory. We took inspiration from this
reduction in Proposition 3 and another of our reductions (Proposition 5.3) –
encoding Petri nets as Bayesian networks – is a transformation going into the
other direction, from Bayesian networks to SAFC nets.

In our own work [9,7] we considered a technique for uncertainty reasoning,
combining both Petri nets and Bayesian networks, albeit in a rather different
setting. There we considered Petri nets with uncertainty, where one has only
probabilistic knowledge about the current marking of the net. In this setting
Bayesian networks are used to compactly store this probabilistic knowledge and
the main challenge is to update respectively rewrite Bayesian networks repre-
senting such knowledge whenever the Petri net fires.

Future Work: As future work we plan to consider more general classes of Petri
nets, lifting some of the restrictions imposed in this paper. In particular, it
would be interesting to extend the method from Section 6 to nets that allow
infinite runs. Furthermore, dropping the free-choice requirement is desirable,
but problematic. While the notion of branching cells does exist for stochastic
nets (see [1,8]), it does not accurately reflect the semantics of stochastic nets
(see e.g. the discussion on confusion in the introduction of [8]).

As already detailed in the introduction, partial-order methods for analyz-
ing probabilistic systems, modelled for instance by stochastic Petri nets, are in
general poorly understood. Hence, it would already be a major result to ob-
tain scalable methods for computing payoffs values for a stochastic net without
decisions, but with a high degree of concurrency.

In addition we plan to use the encoding of Petri nets into Bayesian networks
from [8] (on which we based the proof of Proposition 5.4) and exploit it to analyze
such nets by using dedicated methods for reasoning on Bayesian networks.

Naturally, it would be interesting to extend analysis techniques in such a way
that they can deal with uncertainty and derive policies when we have only partial
knowledge, as in partially observable Markov decision process (POMDPs), first
studied in [3]. However, this seems complex, given the fact that determining the
best strategy for POMDPs is a non-trivial problem in itself [10].

Similarly, it is interesting to introduce a notion of time as in continuous-time
Markov chains [28], enabling us to compute expected execution times as in [22].

Last but not least, our complexity analysis and algorithm focus on finding
optimal constant policies. A natural step would be to instead consider the prob-
lem of finding optimal positional strategies as defined in Chapter 3, which is the
focus of most works on Markov decision processes (see for example [10]).

References

1. Samy Abbes and Albert Benveniste. True-concurrency probabilistic models:
branching cells and distributed probabilities for event structures. Information and
Computation, 204(2):231–274, 2006.

2. Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

3. Karl Johan Astrom. Optimal control of Markov decision processes with incomplete
state estimation. J. Math. Anal. Applic., 10:174–205, 1965.

4. Marco Beccuti, Elvio Gilberto Amparore, Susanna Donatelli, Dimitri Scheftelow-
itsch, Peter Buchholz, and Giuliana Franceschinis. Markov decision Petri nets
with uncertainty. In Prof. of EPEW ’15, volume 9272 of LNCS, pages 177–192.
Springer, 2015.

5. Marco Beccuti, Giuliana Franceschinis, and Serge Haddad. Markov decision Petri
net and Markov decision well-formed net formalisms. In Petri Nets and Other
Models of Concurrency, volume 4546 of LNCS, pages 43–62. Springer, 2007.

6. Richard Bellman. A Markovian decision process. Journal of mathematics and
mechanics, 6(5):679–684, 1957.

7. Rebecca Bernemann, Benjamin Cabrera, Reiko Heckel, and Barbara König. Un-
certainty reasoning for probabilistic Petri nets via Bayesian networks. In Proc. of
FSTTCS ’20, volume 182 of LIPIcs, pages 38:1–38:17. Schloss Dagstuhl – Leibniz
Center for Informatics, 2020.

8. Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Bayesian network se-
mantics for Petri nets. Theor. Comput. Sci., 807:95–113, 2020.

9. Benjamin Cabrera, Tobias Heindel, Reiko Heckel, and Barbara König. Updating
probabilistic knowledge on Condition/Event nets using Bayesian networks. In
Proc. of CONCUR ’18, volume 118 of LIPIcs, pages 27:1–27:17. Schloss Dagstuhl
– Leibniz Center for Informatics, 2018.

10. Anthony R. Cassandra. Exact and Approximate Algorithms for Markov Decision
Processes. PhD thesis, Brown University, USA, 1998.

11. Cassio P. de Campos. New complexity results for MAP in Bayesian networks. In
Proc. of IJCAI ’11, pages 2100–2106. IJCAI/AAAI, 2011.

12. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. of
TACAS ’08, pages 337–340. Springer, 2008.

13. Jörg Desel and Javier Esparza. Free choice Petri nets. Number 40 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1995.

14. Javier Esparza and Keijo Heljanko. Unfoldings: A Partial Order Approach to Model
Checking. Springer, 2008.

15. E.A. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Processes.
Kluwer, Boston, MA, 2002.

16. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
17. Charles Grinstead and Laurie Snell. Markov chains. In Introduction to Probability,

chapter 11, pages 405–470. American Mathematical Society, second edition, 1997.
18. Christian Krause and Holger Giese. Probabilistic graph transformation systems.

In Proc. of ICGT ’12, volume 7562 of LNCS, pages 311–325. Springer, 2012.
19. Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the com-

plexity of solving Markov decision problems. In Proc. of UAI ’95, pages 394–402.
Morgan Kaufmann, 1995.

20. Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic boolean
satisfiability. Journal of Automated Reasoning, 27(3):251–296, 2001.

21. Marco Ajmone Marsan. Stochastic Petri nets: an elementary introduction. In
Advances in Petri Nets 1989, volume 424 of LNCS, pages 1–29. Springer, 1989.

22. Philipp J. Meyer, Javier Esparza, and Philip Offtermatt. Computing the expected
execution time of probabilistic workflow nets. In Proc. of TACAS ’19, volume
11428 of LNCS, pages 154–171. Springer, 2019.

23. Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
24. James D. Park and Adnan Darwiche. Complexity results and approximation strate-

gies for MAP explanations. Journal of Artificial Intelligence Research, 21:101–133,
2004.

25. Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University
Press, 2000.

26. Wolfgang Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, Germany, 1985.

27. Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20(5):865–877, 1991.

28. Anders Tolver. An introduction to Markov chains. Department of Mathematical
Sciences, University of Copenhagen, 2016.

A Proofs and Additional Material for §4 (Stochastic
decision Petri nets as Markov decision processes)

Proposition 4.2. Let N = (P, T, F, Λ,C,R,m0) be an SDPN and M = (S,A, δ,
r, s0) the corresponding MDP. For any policy π : S → A, we have

(Vπ =)Eπ [V ◦ pl] = Eπ
[∑
n∈N0

r(sn, π(sn), sn+1)

]

where (sn)n is the Markov chain resulting from following policy π in M .

Proof. Consider a sequence of states s1, . . . , sn, n ∈ N0 of the MDP where si =
(mi, Qi), mi ∈ R(N), Qi ⊆ P . Using the notation of Definition 4.1 we obtain

Pπ(s1 = s1, . . . , sn = sn)

=

n∏
k=1

δ(sk−1, π(sk−1))(sk)

=

{∏n
k=1 p(mk | mk−1, π(sk−1)) if for all k = 1, . . . , n : Qk =

⋃k−1
i=0 supp(mi),

0 otherwise

=

{
Pπ((m1, . . . ,mn)) if for all k = 1, . . . , n : Qk =

⋃k−1
i=0 supp(mi),

0 otherwise

where Pπ((m1, . . . ,mn)) is the probability of the sequence (m1, . . . ,mn) in the
Petri net N under policy π.

The result can then be seen from the following equations

Eπ
[∑
n∈N

r(sn−1, π(sn−1), sn)

]

= lim
n→∞

Eπ
[

n∑
k=1

r(sk−1, π(sk−1), sk)

]

= lim
n→∞

∑
s1,...,sn∈S

Pπ(s1 = s1, . . . , sn = sn)

n∑
k=1

r(sk−1, π(sk−1), sk)

= lim
n→∞

∑
m1,...,mn∈M(N)

Pπ((m0, . . . ,mn))
∑

Q⊆
⋃n
k=0 supp(mk)

R(Q)

= lim
n→∞

∑
M⊆P

Pπ(pl≤n = M)
∑
Q⊆M

R(Q)

=
∑
M⊆P

Pπ(pl = M)
∑
Q⊆M

R(Q)

= Eπ [V ◦ pl]

where we use in the first equation that the random variables

rn :=

n∑
k=1

r(sk−1, π(sk−1), sk)

are uniformly bounded by construction.

Example A.1. We consider the Petri net from Example 3.2 and spell out its
corresponding MDP (see Figure 6).

s0

s3

s1

s2

s4

s7

s5

s6

s8

s13

s14

s9

s10

s11

s12

s15

s16

s17

s18

s19

1
4−|π(s0)|

[t5] χT\π(s0)(t1)

4−|π(s0)|
[t1]

χT\π(s0)(t2)

4−|π(s0)|
[t2]1

4−|π(s0)|
[t6]

[t3]

[t3]

[t4]

[t4]

χπ(s7)(t1)χπ(s7)(t2) [ε]

χπ(s8)(t1)χπ(s8)(t2) [ε]

1/2 [t5]

1/2 [t6]

1/2 [t5]

1/2 [t6]

χT\π(s7)(t1)

2−|π(s7)|
[t1]

χT\π(s7)(t2)

2−|π(s7)|
[t2]

χT\π(s8)(t1)

2−|π(s8)|
[t1]

χT\π(s8)(t2)

2−|π(s8)|
[t2]

[t3]

[t4]

[t3]

[t4]

[t3]

[t4]

[t3]

[t4]

Fig. 6. MDP from example Petri net

s0

s3

s4

s7

s8

s14

s15

s18

1/2

1/2

Fig. 7. Markov chain of optimal strategy in MDP for example Petri net.

We note that the reachability graph of the net consists of ten markings:

m0 =

(
1
1
1
0
0

)
, m1 =

(
0
0
1
1
0

)
, m2 =

(
0
0
1
0
1

)
, m3 =

(
1
0
0
1
0

)
, m4 =

(
1
0
0
0
1

)
,

(
1
1
1
0
0

)

(
0
0
1
1
0

)

(
0
0
1
0
1

)

(
1
0
0
1
0

)

(
1
0
0
0
1

)

(
0
1
1
0
0

)

(
1
1
0
0
0

)

(
0
0
0
1
0

)

(
0
0
0
0
1

)
(

0
1
0
0
0

)

[t1]

[t2]

[t5]

[t6]

[t3]

[t4]

[t3]

[t4]

[t5]

[t6]

[t1]

[t2]

[t3]

[t4]

Fig. 8. Reachability graph of example Petri net (Example 3.2)

m5 =

(
0
1
1
0
0

)
, m6 =

(
1
1
0
0
0

)
, m7 =

(
0
0
0
1
0

)
, m8 =

(
0
0
0
0
1

)
, m9 =

(
0
1
0
0
0

)
(see also Figure 8). Firing rates are constant: Λ ≡ 1. The corresponding MDP
has twenty states:

s0 = (m0, ∅), s1 = (m1,M
−,−), s2 = (m2,M

−,−), s3 = (m3,M
−,−),

s4 = (m4,M
−,−), s5 = (m5,M

+,−), s6 = (m5,M
−,+), s7 = (m6,M

+,−),

s8 = (m6,M
−,+), s9 = (m7,M

+,−), s10 = (m8,M
+,−), s11 = (m7,M

−,+),

s12 = (m8,M
−,+), s13 = (m7,M

+,−), s14 = (m8,M
+,−), s15 = (m7,M

−,+),

s16 = (m8,M
−,+), s17 = (m9,M

+,−), s18 = (m9,M
+,+), s19 = (m9,M

−,+),

(see also Figure 6) where M−,− = {p1, p2, p3} signifies that none of the places
p4 and p5 have been reached previously, M+,− = {p1, p2, p3, p4} and M−,+ =
{p1, p2, p3, p5} that p4 or p5 were reached, respectively, and M+,+ = {p1, p2, p3,
p4, p5} that both were reached (and, thus, the reward received).

As previously remarked for the Petri net, in this MDP, the optimal strategy
is to deactivate both t1 and t2 in s0 and then activate only whichever transition
leads to the place that was not yet visited, yielding the Markov chain in Figure 7.

B Proofs and Additional Material for §5 (Complexity
analysis for specific classes of Petri nets)

Proposition 5.1. For any polynomial ϕ, the problem [ϕ]BPN-VAL is in PP. In
particular, [ϕ]BPN-POL is in NPPP.

Proof. We give a PP-algorithm that solves [ϕ]BPN-VAL, i.e., given a [ϕ]-bounded
stochastic Petri net N and a lower bound p ∈ R, determine whether the expected
value of the net is greater than p.

As, by definition, the length of runs of the net N is bounded by ϕ(|T |+ |P |),
each run either terminates after a polynomial number of steps. Hence we can
simulate the net with a probabilistic Turing machine and whenever the run
terminates, we can determine the value for this run.

Hence the main difficulty is the following: A probabilistic Turing machine
can check whether a given property is satisfied in more than half of all runs of
the algorithm. As such, it could, for example, easily check whether, in more than
half of all runs of the Petri net, its value (or payoff) is greater than a pre-defined
threshold. Our goal, however, is to check whether the expected value of the total
reward is greater than a threshold.

We show that this can also be checked in polynomial time. We calculate

Vmin :=
∑

Q∈supp(R−)

R(Q)

where R− is the negative part of the reward function R (i.e., Vmin is the sum of
all negative rewards), and similarly

Vmax :=
∑

Q∈supp(R+)

R(Q)

where R+ is the positive part of R.
As any reward can only be granted once, the value of any run of the Petri

net (and, in particular, its value V) lies in [Vmin, Vmax]. If p /∈ [Vmin, Vmax], we
can, therefore, already safely output that V > p is true (if p < Vmin) or false (if
p > Vmax).

If p ∈ [Vmin, Vmax], we define an affine linear transformation

ψ : R→ R, x 7→ x− Vmin

Vmax − Vmin

which maps any possible value to a number in [0, 1], and define p̃ := ψ(p) ∈ [0, 1].
The probabilistic Turing machine can then simulate a run µ of the Petri net

and calculate the total value for its execution which can be done in polynomial
time by definition of [ϕ]BPN. Then, the linear transformation ψ is applied to the
value Vµ which yields ρµ = ψ(Vµ) ∈ [0, 1]. Assume for now that we terminate
with probability ρµ with success and otherwise with a failure. This ensures that
the algorithm terminates with probability greater than p̃ if and only if the value

ψ(V (pl(µ))) of the run µ is greater than p̃ = ψ(p), which is equivalent to the
value V being greater than p. In more detail:

p̃ <
∑
µ

P(µ) · ρµ =
∑
µ

P(µ) · ψ(V (pl(µ))) = E[ψ(V (pl(µ)))]

⇔ ψ(p) < ψ(
∑
µ

P(µ) · V (pl(µ))) = ψ(E[V (pl(µ))])

⇔ p <
∑
µ

P(µ) · V (pl(µ)) = E[V (pl(µ))] = V

where we use that ψ is a strictly monotone affine linear function (and thus, in
particular, commutes with expected values).

Note however that it should be the case that a word is in the language iff the
PP machine accepts it with probability strictly greater than 1/2.

To adapt the threshold accordingly, we define

σ := (1/2− p̃)/(|1/2− p̃|+ 1/2),

and insert an additional step before simulating the net:
If σ < 0, the algorithm outputs false with probability −σ (and continues its

execution otherwise), and if σ ≥ 0, the algorithm outputs true with probability
σ (and continues its execution otherwise). This ensures that the probability of
reaching a success in the rest of the algorithm has to be at least p̃ instead of 1/2.

This can be seen as follows, where pS denotes the probability of success for
the rest of the execution:

– p̃ > 1/2, which implies σ < 0: then the success probability is (1 + σ)pS and
we have

1

2
< (1 + σ)pS ⇐⇒

1

2
< (1 +

1/2− p̃
p̃

)pS ⇐⇒
1

2
<

1

2p̃
pS ⇐⇒ p̃ < pS

– p̃ ≤ 1/2, which implies σ ≥ 0: then the success probability is σ + (1 − σ)pS
and we have

1

2
< σ + (1− σ)pS ⇐⇒

1

2
<

1/2− p̃
1− p̃

+ (1−
1/2− p̃
1− p̃

)pS ⇐⇒

1/2 · (1− p̃)
1− p̃

<
1/2− p̃
1− p̃

+
(1− p̃)− (1/2− p̃)

1− p̃
)pS ⇐⇒

1/2 · p̃
1− p̃

<
1/2

1− p̃
pS ⇐⇒ p̃ < pS ,

which concludes the proof.

Proposition 5.3. The problem SAFC-POL is NPPP-hard and, therefore, also
NPPP-complete.

Proof. We show NPPP-hardness by reduction of the NPPP-hard D-MAP problem
for Bayesian networks (see also Section 2) to the SAFC-POL problem for (safe
and acyclic free-choice) decision Petri nets.

As such, we are given a Bayesian network ((X1, . . . , Xn), ∆, P), disjoint sets
E,F ⊆ X of evidence and MAP variables, evidence e ∈ E, and a threshold
p ∈ [0, 1]. To prove NPPP-hardness of SAFC-POL, we construct an instance of
the SAFC-POL problem such that

max
D⊆C

VD > p ⇔ max
f∈VF

P(E = e | F = f) > p.

The idea behind the construction is to simulate the computation in the Bayesian
network by a SAFC net N . More intuition for this proof is given in the proof
sketch in the main body of the paper.

We define the set of places P of N to contain all places of the form

– piv for i ∈ {1, . . . , n}, v ∈ {0, 1} (places representing the fact that the random
variable of node i has value v), as well as

– p
(j,i)
ṽ for i ∈ {1, . . . , n}, ṽ ∈ {0, 1}∆i , and j ∈ ∆i if ∆i 6= ∅ and j =⊥

otherwise (auxiliary places, ensuring the fact that the net is free-choice).

Similarly, its transition set T contains two types of transitions:

– transitions tiṽ→v for i ∈ {1, . . . , n}, ṽ ∈
∏
j∈∆i{0, 1}, and v ∈ {0, 1} with

firing rates Λ(tiṽ→v) = Pi(v | ṽ) (transitions simulating the probabilistic
choices in the Bayesian network),

– transitions tiv for v ∈ {0, 1} with firing rate 1 (auxiliary transitions).

All in all, this amounts to 2 + max(1, |∆i|) · 2|∆i| ∈ O(n · 2|∆i|) places and

2 + 2 · 2|∆i| ∈ O(2|∆
i|) transitions for each i ∈ {1, . . . , n}. As the matrices Pi

of the Bayesian network contain 2|∆
i|+1 entries (hence the size of the input is

already exponential in the |∆i|), this SAFC-net is thus of polynomial size in the
size of the network.

The initial marking then puts one token in precisely each place p
(⊥,j)
() and

the flow relation is defined as follows (all values not given are 0):

•(tiv)(p
i
v) = 1

(tjv)
•(p

(j,i)
ṽ) = 1

•(tiṽ→vi)(p
(j,i)
ṽ) = 1

(tiṽ→v)
•(piv) = 1

Note that the only direct (free-choice) conflicts exist between transitions of the
form tiṽ→v for different values v but equal ṽ and i. Intuitively, these conflicts
simulate the probabilistic decision of choosing a value v for the random variable
Xi in the Bayesian network when given the parent values ṽ. In this sense, the
places piv being marked in the execution of the net can be understood as the

variable Xi taking the value v in this simulation of the Bayesian network. The
transitions tiv then forward this signal to the child nodes in the network by

duplicating the token in piv to the places p
(i,j)
ṽ which can be seen as the input

from node i to the node j for the decision when ṽ are all parent values in node
j. For our construction, this duplication step is necessary to ensure that the net
remains free-choice (removing the duplication and directly feeding places piv into
transitions tjṽ→v′ would yield a smaller correct but non-free-choice net).

Now, for the given evidence e ∈ VE , we define the reward function as

R(Q) =

{
1 if Q = {piei | Xi ∈ E},
0 otherwise,

such that the reward is only received if all the places corresponding to e are
marked and the value thus represents the probability of reaching all these places.

Finally, we encode the MAP-variables F in the controllable transitions by
defining

C = {ti()→v | Xi ∈ F, v ∈ {0, 1}}

where we use the fact that F only contains input nodes.
By construction, the resulting net is an SAFC net and can be constructed

in polynomial time from the Bayesian network (as well as evidence and MAP
variables). Furthermore, we have for all f ∈ VF that

VDf = P(E = e | F = f)

for Df := {ti()→gi | Xi ∈ F, gi ∈ {0, 1}\{fi}}, i.e., the set Df that deactivates all

transitions that would mark a place corresponding to a value gi ∈ {0, 1} \ {fi}
for Xi that differs from fi, hence ensuring that all places corresponding to f are
marked (with probability 1).

As such, if
max
f∈VF

P(E = e | F = f) > p,

we also have
max
D⊆C

VD > p.

On the other hand, we note that the maximal value VD has to be reached
for a set D that deactivates all but one transition for all two-element sets of
{ti()→v | v ∈ {0, 1}} for i ∈ {1, . . . , n}.

To see this, note that clearly deactivating both transitions will not maximize
the probability of reaching the goal places. Assume that F = F ′] {f̄} and for
node f̄ we activate both transitions. However, this cannot result in a higher
reward, due to the fact that 7

max
b∈{0,1}

P(E = e | F ′ = f, f̄ = b)

7 Note that since the input nodes are uniformly distributed, the denominators are
always non-zero.

= P(E = e | F ′ = f, f̄ = 0) ∨ P(E = e | F ′ = f, f̄ = 1)

=
P(E = e, f̄ = 0 | F ′ = f)

P(f̄ = 0 | F ′ = f)
∨ P(E = e, f̄ = 1 | F ′ = f)

P(f̄ = 1 | F ′ = f)

≥ P(f̄ = 0 | F ′ = f) · P(E = e, f̄ = 0 | F ′ = f)

P(f̄ = 0 | F ′ = f)
+

P(f̄ = 1 | F ′ = f) · P(E = e, f̄ = 1 | F ′ = f)

P(f̄ = 1 | F ′ = f)

= P(E = e, f̄ = 0 | F ′ = f) + P(E = e, f̄ = 1 | F ′ = f)

= P(E = e | F ′ = f)

where the latter would be the reward that this policy gives us. The inequality
above holds since max{x, y} ≥ p1 · x+ p2 · y for p1, p2 ≥ 0 with p1 + p2 = 1.

Hence, defining fD ∈ DF by (fD)i := v for the unique v ∈ {0, 1} with
ti()→v /∈ D, we have that

VD = P(E = e | F = fD).

Therefore, also if
max
D⊆C

VD > p,

we have
max
f∈VF

P(E = e | F = f) > p

and vice versa.
All in all, this shows that the D-MAP problem can be reduced to the SAFC-POL

problem in polynomial time with the same threshold p ∈ [0, 1].

Proposition 5.4. For two given constants k, `, consider the following problem:
let N be a SAFC decision Petri net, where for each branching cell the number
of controllable transitions is bounded by some constant k. Furthermore, given its
reward function R, we assume that |∪Q∈supp(R)Q| ≤ `. Given a rational number
p, does there exist a constant policy π such that Vπ > p?

This problem can be polynomially reduced to D-MAP.

Proof. Given a net N = (P, T, •(), ()•, Λ,m0, C,R) satisfying the restrictions
and a threshold p we construct a D-MAP problem as follows:

First, we define a Bayesian network (X,∆,P) with a set of random variables
of the form:

– Xp for p ∈ P (variables representing the presence of a token in each place)
– Xt for t ∈ C (variables representing whether a controllable transition is

activated)
– XC for every branching cell C (cf. Section 2) and finally
– Xrew as the only evidence variable in E

The subscripts (p, t,C, rew) correspond to the nodes of the Bayesian network.
Second, we clarify which variables/nodes are dependent on one another:

– ∆p = {C ∈ BC (N) | p ∈ C•}
– ∆t = ∅
– ∆C = •C ∪ (C ∩ C)
– ∆rew = ∪Q∈supp(R)Q

To complete the description of the Bayesian network, we now specify the
probability matrices.

– For nodes representing controllable transitions (Xt, t ∈ C) we have no pre-
decessor variables, hence they are all input nodes. These are the MAP vari-
ables F and will later be set to a specific boolean value according to the
chosen policy π, when solving the D-MAP problem. As required by the con-
sidered variant of the D-MAP problem, we assume that they are uniformly
distributed.

– For random variables representing places (Xp), whenever ∆p = ∅, we set
Pp(1) = 1 if p ∈ m0 and 0 otherwise. If p is in the post-set of a transition let
∆p = {C1, . . . ,Cn}. Keep in mind that cell variables as non-binary variables
return a transition or ε. We define, for tj ∈ Cj ∪ {ε}:

Pp(1 | t1 . . . tn) =
∨

j∈{1...n}

[p ∈ tj•]

The binary operator [p ∈ t•] returns 1 if place p is in the post set of transition
t and 0 otherwise. If t = ε, the value is also 0.
Furthermore Pp(0 | t1 . . . tn) = 1− Pp(1 | t1 . . . tn).

– For a cell variable XC, let ∆C = {p1, . . . , pm, t1, . . . , tk}, vi, uj ∈ {0, 1} where
i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}. That is vi tells us if place pi is marked and
uj specifies if transition tj ∈ C is activated. Let

Act(C, u) = {t ∈ C | t 6∈ C ∨ (t ∈ C ∧ ∃j(t = tj ∧ uj = 1))}

be the set of transitions that are activated in C (since they are either not
controllable or controllable and activated). Now for every t ∈ C we have:

PC(t | v1 . . . vmu1 . . . uk) =
Λ(t)∑

t′∈Act(C,u) Λ(t′)

if v1 . . . vm = 1 . . . 1 and t ∈ Act(C, u). The value is 0 otherwise. Instead:

PC(ε | v1 . . . vmu1 . . . uk) = 1−
∑
t∈C

PC(t | v1 . . . vmu1 . . . uk),

in particular the value is 1 if v1 . . . vm 6= 1 . . . 1.
– For the reward node, we make use of the affine linear transformation ψ

introduced in the proof of Proposition 5.1, using the lower and upper bounds
Vmin, Vmax in order to represent the rewards as probabilities (mapping to
[0, 1]). As already mentioned above, we also have to adapt the threshold p

to p̃ := ψ(p). Let ∆rew = {p1, . . . , pm} and vi ∈ {0, 1}, i ∈ {1, . . . ,m} binary
values indicating whether pi will be marked. Furthermore let Pv = {pi | vi =
1} the corresponding set of marked places. Then

Prew (1 | v1 . . . vm) = ψ(
∑

Q∈supp(R)
Q⊆Pv

R(Q))

Prew (0 | v1 . . . vm) = 1− Prew (1 | v1 . . . vm)

In order to completely define the D-MAP instance, we fix the evidence variables
to E = {Xrew} with e = 1 ∈ Ve = {0, 1}, the MAP variables to F = {Xt | t ∈ C}
and the threshold to p̃.

This D-MAP instance has a solution if there is a deactivation pattern f ∈ VF
such that P(Xrew = 1 | F = f) > p̃. Assuming that UC is the set of all functions
8 u : BC (N)→ T ∪ {ε} such that u(C) = ε ∨ u(C) ∈ C, we ask – by evaluating
the Bayesian network – whether there exists f : C → {0, 1} such that

p̃ <
∑
u∈UC

∑
v : P→{0,1}

∏
p∈P

Pp(v(p) | (u(C))C∈∆p) ·

∏
C∈BC

PC(u(C) | (v(p))p∈∆C∩P , (f(t))t∈∆C∩C) · Prew (1 | (v(p))p∈∆rew)

We observe that for a given u, v, the product equals 0, unless v satisfies: v(p) = 1
iff p ∈ m0 or there exists t ∈ T such that (p ∈ t• ∧ u(C) = t), i.e., p is either
initial or is generated by a transition that was fired. We denote this specific v
by v[u] and the term above becomes:∑

u∈UC

∏
C∈BC

PC(u(C) | (v[u](p))p∈∆C∩P , (f(t))t∈∆C∩C) · ψ
(∑
Q∈supp(R)
Q⊆Pv[u]

R(Q)
)

= ψ
(∑
u∈UC

∏
C∈BC

PC(u(C) | (v[u](p))p∈∆C∩P , (f(t))t∈∆C∩C) ·
∑

Q∈supp(R)
Q⊆Pv[u]

R(Q)
)

This equality is true since ψ commutes with expected values (cf. proof of Propo-
sition 5.1). Note that Pv[u] = m0 ∪ (u[BC (N)] \ {ε})•.

Due to the fact that ψ is strictly monotone, this value in turn is larger than
or equal to p̃ = ψ(p) iff

p <
∑
u∈UC

∏
C∈BC

PC(u(C) | (v[u](p))p∈∆C∩P , (f(t))t∈∆C∩C) ·
∑

Q∈supp(R)
Q⊆Pv[u]

R(Q)

Now we observe that any maximal configuration τ ∈ Cω(ND) (where D =
f−1({0})) can be represented by a function u : BC (N) → T ∪ {ε} defined as

8 These functions choose which transition is fired in each cell. We have to sum over
all these functions to determine the probability.

u(C) = t if C ∩ τ = {t} and ε otherwise. This function u clearly satisfies
u(C) = ε ∨ u(C) ∈ C.

Vice versa, given such a function u it only corresponds to a configuration
τ = u[BC (N)]\{ε} if the places in the initial marking and those generated by
transitions in τ can cover every •τ , i.e., every transition in τ is enabled. In
other words: •t ⊆ Pv[u] for all t ∈ τ . Assume that t ∈ C. If the inclusion
•C = •t ⊆ Pv[u] does not hold, by definition:

PC(u(C) | (v[u](p))p∈∆C∩P , (f(t))t∈∆C∩C) = 0,

which means that such summands disappear.
Furthermore, if u does correspond to a configuration τ , we have that

P(tr = τ) =
∏

C∈BC

PC(u(C) | (v[u](p))p∈∆C∩P , (f(t))t∈∆C∩C),

that is, the probability of a configuration is obtained by multiplying the proba-
bility that its transitions ‘win’ against the other transitions in their cells, taking
deactivated transitions into account.

Summarizing, this means that we check the inequality:

p <
∑

τ∈Cω(ND)

P(tr = τ) ·
∑

Q∈supp(R)
Q⊆m0∪τ•

R(Q) = E[V ◦ pl],

that is, we add up the rewards for each configuration, weighted by its probability,
which is exactly the answer to the SAFC-POL problem.

We give some additional intuition for this construction:
In the reduction above, it is apparent that there are only two types of vari-

ables that have matrix entries unequal to 0 or 1: variables representing cells and
the reward variable. Cell variables are responsible for choosing and returning
the transition firing in that specific cell according to the enabled transitions and
their respective firing rates. All other variables (apart from the aforementioned
reward variable) simply forward these information by adequately setting which
places are marked or empty.

Because we work with acyclic Petri nets, there will be a final marking, in
which no further transitions can fire. This implies that we will reach a point in
time, where all places involved in a reward function have either been marked
at least once or will never be marked. We can take note of this information by
introducing a final reward marking consisting of bits for each of these places
representing whether it was ever marked or always empty. By choosing a policy
π, the transition probabilities in the cell variables are manipulated in order to
fit the firing rates and therefore also how likely it is to reach each possible final
reward marking.

Finally, given a policy π we obtain how probable each final reward marking is
and we simply have to multiply this with the respective reward, which is already
coded into the reward variable (albeit fit to the [0, 1] interval) and sum up these

products. This is achieved through matrix multiplication in the BN and results
in the expected reward for policy π.

Hence, if the policy problem for the SAFC net has a solution for bound p,
the D-MAP problem also has a solution for bound p̃.

Finally, while the size of the graph underlying the Bayesian network is linear
in the size of the Petri net, note that the size of the Bayesian network itself,
i.e., the sum of the size of its matrizes, could still be exponential. In particular,
this occurs for random variables of type XC or Xp, for which the number of
parents is unbounded. Both corresponding types of nodes can easily be split up
by cascading multiple variables with only two input variables, where the sum of
the size of the matrices is only linear, giving us a polynomial reduction.

For the splitting of cell variables XC we remember intermediate results of
whether the places seen so far are all marked, basically by implementing a binary
∧-operator. The matrix corresponding to the random variable Xp1...pj is denoted
by Pp1...pj and we denote the matrix corresponding to X ′C by P ′C. We define:

Pp1...pi(1 | y1y2) = y1 ∧ y2 yi = {0, 1}

P ′C(t | v u1 . . . um) =

PC(t |
n︷ ︸︸ ︷

1 . . . 1 u1 . . . um) , if v = 1

0 , otherwise

P ′C(ε | v u1 . . . um) = 1−
∑
t∈C

P ′C(t | v u1 . . . um)

The last node is given the information whether all places are marked, checks
which controllable transitions are activated and returns the entries of the original
matrix PC.

We now argue why this construction is correct: we define the probability
function specified by the new network (on the right-hand side) by P̄ and the
one by the original network (on the left-hand side) by P. Then we have, given
t ∈ C ∪ {ε}:

P̄(X ′C = t | Xp1 = y1, . . . , Xpn = yn, Xt1 = u1, . . . , Xtm = um)

=
∑

w : {2,...,n}→{0,1}

P ′C(t | w(n)u1 . . . um) ·
n∏
j=3

Pp1...pj (w(j) | w(j − 1) yj) ·

Pp1p2(w(2) | y1y2)

Here w is a function that assigns (boolean) values to the intermediate wires. The
product under the sum is only non-zero if w(n) = 1, due to the definition of P ′C,
and – by induction – w(j) = 1 for all other indices j, otherwise the matrix entry
of Pp1...pj equals 0. Hence, the above sum simplifies to

P ′C(t | 1u1 . . . um) ·
n∏
j=3

Pp1...pj (1 | 1 yj) · Pp1p2(1 | y1y2)

=

{
PC(t | 1 . . . 1u1 . . . um) if y1 = · · · = yn = 1

0 otherwise

=PC(t | y1 . . . ynu1 . . . um)

=P(X ′C = t | Xp1 = y1, . . . , Xpn = yn, Xt1 = u1, . . . , Xtm = um)

Similarly, when splitting a place variable Xp, we save intermediate results on
whether the transitions chosen and fired by the parent cells mark p. Therefore,
here we produce a cascade with the binary ∨-operator.

The probability matrix associated with Xp
C1...Cl is denoted by P pC1...Cl and we

define:

P pC1C2
(1 | t1t2) = [p ∈ t1•] ∨ [p ∈ t2•]

P pC1...Cl(1 | y t) = y ∨ [p ∈ t•]

The correctness argument is analogous to the one above.
The fact that there are always at most k controllable transitions for each cell

C and the reward refers to at most ` places, all possible combinations can be
encoded into the probability matrices for XC and Xrew , which does not cause
an exponential blowup.

Proposition 5.7. The problem FCON-VAL is in P. In particular, FCON-POL
is in NP.

Proof. To show that FCON-VAL is in P, we explain how to compute the value of
a free-choice occurrence net without any controllable decisions. First we notice
that

V = E [V ◦ pl] =
∑

µ∈FS(N)

P(µ) · V (pl(µ)) =
∑
M⊆P

P(pl = M) · V (M)

=
∑
M⊆P

P(pl = M) ·
∑
Q⊆M

R(Q) =
∑
M⊆P

∑
Q⊆M

(
P(pl = M) ·R(Q)

)
=

∑
Q⊆M⊆P

(
P(pl = M) ·R(Q)

)
=
∑
Q⊆P

(∑
Q⊆M⊆P

P(pl = M)

)
·R(Q)

=
∑
Q⊆P

P(pl ⊇ Q) ·R(Q) =
∑

Q∈supp(R)

P(pl ⊇ Q) ·R(Q)

In particular, since R has polynomial support, it suffices to show that we can
compute P(pl ⊇ Q) in polynomial time for any Q ⊆ P which is exactly the
probability of reaching at least all places p ∈ Q (not necessarily simultaneously).

Now, as we are dealing with an occurrence net, we have that reaching p ∈ P
is equivalent to firing all transitions on which p is causally dependent. So let
T ′ = {t ∈ T | ∃q ∈ Q : t ≺N q} be the set of transitions that are causes of places
in Q. If two transitions t, t′ ∈ T ′ are now in conflict (which can be checked in
polynomial time), the probability of reaching Q is zero. Otherwise, due to the net
being free-choice, we can multiply the local firing probabilities of all transitions
in T ′ to obtain the probability of reaching Q in polynomial time.

All in all, this procedure can be used to calculate V whence FCON-VAL is
in P.

That FCON-POL lies in NP follows from the fact that, given an occurrence
net with controllable transitions, we can guess a policy in polynomial time and
then solve the resulting FCON-VAL instance again in polynomial time.

Proposition 5.8. The problem FCON-POL is NP-hard and, therefore, also NP-
complete.

Proof. We show NP-hardness by a polynomial reduction from 3-SAT to FCON-POL.

It is well-known that SAT, the problem of deciding whether a given propo-
sitional formula ψ is satisfiable, is NP-complete [23]. Its variant 3-SAT is still
NP-complete, where the propositional formula ψ is in conjunctive normal form
with exactly three literals per clause, i.e., ψ =

∧
i∈I(`

i
1 ∨ `i2 ∨ `i3), where `ij ∈

{x,¬x | x ∈ X} for a set of atomic propositions X = {x1, . . . , xn}.
Assume that we are given an 3-SAT instance, i.e., a propositional formula ψ =∧

i∈I(`
i
1∨`2i∨`3i) where `ij ∈ {x,¬x | x ∈ X} for a set of propositional formulas

X . Based on ψ we construct a free-choice occurrence SDPN N as follows:

– P = {px, qx | x ∈ X}, T = {tx | x ∈ X}, where •tx(px) = 1 and •tx(p) = 0 if
p 6= px. Similarly tx

•(qx) = 1 and 0 for all other places. Furthermore Λ ≡ 1
(all rates are equal to 1) and m0(px) = 1, m0(qx) = 0 for all x ∈ X .
In other words, the net consists of n = |X | separate subnets, each with a
single transition tx that transfers a token from an input place px into an
output place qx. This construction can be performed in polynomial time in
n and obviously results in a free-choice occurrence net.

– C = T , i.e., all transitions are controllable.

Now, only the reward function, which is central to this result, remains to be
constructed. For this, we note that a place qx for an atomic proposition x ∈ X is
reached if and only if the transition tx is not deactivated. We use this observation
to encode the propositional formula ψ given above into a reward function as a
formula on deactivated transitions tx.

The reward function is constructed as follows: For each positive literal `ij =
x ∈ X , we define a reward function as

Rx : P(P)→ R, Q 7→

1 if Q = ∅,
−1 if Q = {qx},
0 otherwise,

and for negative literals `ij = ¬x for some x ∈ X as

R¬x : P(P)→ R, Q 7→

{
1 if Q = {qx},
0 otherwise.

Intuitively, this interprets x being true as not reaching qx which in turn, due
to the construction of the underlying net, is equivalent to tx being deactivated.
This gives us for sets D ⊆ C = T of deactivated transitions and a literal `ij ∈
{x,¬x | x ∈ X} the corresponding value function

V`ij (M) =
∑
Q⊆M

Rx(Q) =

{
1 if `ij = x and qx /∈M or `ij = ¬x and qx ∈M ,

0 otherwise,

and, thus, using the interpretation that x is true iff tx ∈ D, we obtain the
expected reward (expectation of the random variable V D

`ij
for the constant policy

D)

VD`ij =

{
1 if `ij is true,

0 if `ij is false.

In order to extend this construction to clauses ci = `i1 ∨ `i2 ∨ `i3, we define a
disjunction operator as follows:

(R1 ∨R2)(Q) := R1(Q) +R2(Q)−
∑

Q1∪Q2=Q

R1(Q1) ·R2(Q2).

This gives us for the corresponding value function

(V1 ∨ V2)(M) =
∑
Q⊆M

(R1 ∨R2)(Q)

=
∑
Q⊆M

(R1(Q) +R2(Q)−
∑

Q1∪Q2=Q

R1(Q1) ·R2(Q2))

=
∑
Q⊆M

R1(Q) +
∑
Q⊆M

R2(Q)−
∑
Q⊆M

∑
Q1∪Q2=Q

R1(Q1) ·R2(Q2)

= V1(M) + V2(M)− (
∑
Q⊆M

R1(Q))(
∑
Q⊆M

R2(Q))

= V1(M) + V2(M)− V1(M) · V2(M)

which for binary rewards (i.e., rewards whose corresponding value function has
a value space of {0, 1}) can be written as the maximum of V1(M) and V2(M),
yielding

VDci := VD`i1 ∨ VD`i2 ∨ VD`i3 = max{VD`i1 ,V
D
`i2
,VD`i3} =

{
1 if ci is true,

0 if ci is false.

To prove that the disjunction R1 ∨R2 can be computed in polynomial time,
we emphasize that, if the supports of R1 and R2 are polynomial in size (which
they clearly are), the sum

∑
Q1∪Q2=Q

R1(Q1) · R2(Q2) only adds a polynomial
number of non-zero elements. In fact, viewing R1 and R2 as dictionaries or
partial functions taking on only their non-zero values, we can construct R1 ∨R2

by simply iterating over the supports of R1 and R2, adding entries in R1 ∨R2 if
necessary.

Finally, with a construction of a reward function for clauses in mind, we
define the reward function of the Petri net as

R(Q) :=
∑
i∈I

Rci(Q),

where Rci is the reward function constructed for clause ci, whence

VD =
∑
i∈I

VDci .

This construction gives us a bijection Φ : (X → {0, 1}) → P(C), mapping
assignments A : X → {0, 1} to sets DA = Φ(A) := {tx ∈ T | A(x) = 1} of
deactivated transitions, satisfying

A is a model for ψ =
∧
i∈I

ci ⇐⇒ VDA ≥ |I| ⇐⇒ VDA > |I| − 1.

This shows that the propositional formula
∧
i∈I c

i is satisfiable if and only if
there exists a policy D ⊆ C such that VDA > |I| − 1, proving the reduction
3-SAT ≤p FCON-POL and, thus, the NP-hardness of FCON-POL.

The result that FCON-POL lies in NP has been shown in Proposition 5.7.

C Proofs and Additional Material for §6 (An algorithm
for SAFC decision nets)

Lemma 6.4. Using the setting of Definition 6.3, whenever [R] is consistent with
the reward function R and [R](τ) = 0 for all τ 6∈ C(N), the expected value for
the net N under the constant policy D is:

VD =
∑
τ⊆T

PD(tr ⊇ τ) · [R](τ).

Proof.

VD =
∑

µ∈FS(ND)

PD(µ)
∑

Q⊆pl(µ)

R(Q)

=
∑

µ∈FS(ND)

PD(µ)
∑

τ ′∈preD(tr(µ))

[R](τ ′)

=
∑

τ∈Cω(ND)

PD(tr = τ)
∑

τ ′∈preD(τ)

[R](τ ′)

=
∑

τ∈Cω(ND)

PD(tr = τ)
∑

τ∈extD(τ ′)

[R](τ ′)

=
∑

τ∈Cω(ND)

∑
τ∈extD(τ ′)

PD(tr = τ) · [R](τ ′)

=
∑

τ ′∈C(ND)

∑
τ∈extD(τ ′)

PD(tr = τ) · [R](τ ′)

=
∑

τ ′∈C(ND)

PD(tr ⊇ τ ′) · [R](τ ′),

=
∑

τ ′∈P(T)

PD(tr ⊇ τ ′) · [R](τ ′),

where we use that τ ∈ preD(τ ′) if and only if τ ′ ∈ extD(τ) for (maximal)
configurations τ ′ ∈ Cω(ND) and τ ∈ C(ND). Furthermore, we rely on the fact
that PD(tr ⊇ τ ′) =

∑
τ∈extD(τ ′) PD(tr = τ) for τ ′ ∈ C(ND) and PD(tr ⊇ τ ′) = 0

for τ ′ ∈ C(N) \ C(ND).

Proposition 6.5. The auxiliary reward functions satisfy∑
V⊆tr>k(µ)

∑
U⊆pl≤k(µ)

R[k](U, V) =
∑

V⊆tr>k+1(µ)

∑
U⊆pl≤k+1(µ)

R[k + 1](U, V),

for k ∈ {0, . . . , |BC (N)| − 1}.
Hence, for every µ ∈ FS(N)

V (pl(µ)) =
∑

U⊆pl(µ)

R[|BC (N)|](U, ∅) =
∑

V⊆tr>k(µ)

∑
U⊆pl≤k(µ)

R[k](U, V),

which means that we obtain a reward function on transitions consistent with R
by defining [R] : P(T)→ R as

[R](V) :=
∑
U⊆m0

R[0](U, V).

Proof. Note that, due to safety of the net, we have

pl≤k+1(µ) =

{
pl≤k(µ) ∪̇ t• if t ∈ tr(µ) ∩ Ck+1 6= ∅,
pl≤k(µ) if tr(µ) ∩ Ck+1 = ∅.

As such, if tr(µ) ∩ Ck+1 = ∅, i.e., no transition from the (k + 1)-th cell fired in
the sequence µ, we have∑

V⊆tr>k(µ)

∑
U⊆pl≤k(µ)

R[k](U, V) =
∑

V⊆tr>k+1(µ)

∑
U⊆pl≤k+1(µ)

R[k + 1](U, V)

If, on the other hand, t ∈ tr(µ) ∩ Ck+1 is the unique transition from Ck+1 that
fired in µ, we have∑

V⊆tr>k(µ)

∑
U⊆pl≤k(µ)

R[k](U, V)

=
∑

V⊆tr>k(µ)\{t}

∑
U⊆pl≤k(µ)

(R[k](U, V) +R[k](U, V ∪ {t}))

=
∑

V⊆tr>k+1(µ)

∑
U⊆pl≤k(µ)

(
R[k + 1](U, V) +

∑
U ′∩t• 6=∅

U=U ′\t•∪ •t

R[k + 1](U ′, V)

)

=
∑

V⊆tr>k+1(µ)

(∑
U⊆pl≤k(µ)

R[k + 1](U, V) +
∑

U∩t• 6=∅
U\t•∪ •t⊆pl≤k(µ)

R[k + 1](U, V)

)

=
∑

V⊆tr>k+1(µ)

(∑
U⊆pl≤k(µ)

R[k + 1](U, V) +
∑

U⊆pl≤k+1(µ)

U∩t• 6=∅

R[k + 1](U, V)

)

=
∑

V⊆tr>k+1(µ)

∑
U⊆pl≤k(µ)

R[k + 1](U, V) +
∑
∅6=O⊆t•

R[k + 1](U ∪O, V)

=

∑
V⊆tr>k+1(µ)

∑
U⊆pl≤k(µ) ∪̇ t•

R[k + 1](U, V)

=
∑

V⊆tr>k+1(µ)

∑
U⊆pl≤k+1(µ)

R[k + 1](U, V).

Corollary 6.6. Given a net N and a deactivation pattern D, we can calculate
the expected value

VD = E[V ◦ pl] =
∑
τ⊆T

∏
t∈τ

χT\D(t) · Λ(t)∑
t′∈Ct\D Λ(t′)

[R](τ).

Proof. Lemma 6.4 gives us

VD =
∑
τ⊆T

PD(tr ⊇ τ) · [R](τ)

as [R] is consistent with the reward function R.
We also observe that

PD(tr ⊇ τ) =
∏
t∈τ

Λ(t)∑
t′∈Ct\D Λ(t′)

for τ ∈ C(ND) since the probability of a configuration can be determined by
multiplying the probabilities of all its transitions, where the probability of a
transition is its normalized rate, where the normalization is performed wrt. to
all other deactivated transitions in the cell Ct of t.

Hence, the equality above can be extended to:

VD =
∑

τ∈C(ND)

∏
t∈τ

Λ(t)∑
t′∈Ct\D Λ(t′)

· [R](τ)

=
∑

τ∈C(N)

∏
t∈τ

χT\D(t)Λ(t)∑
t′∈Ct\D Λ(t′)

[R](τ)

=
∑
τ⊆T

∏
t∈τ

χT\D(t)Λ(t)∑
t′∈Ct\D Λ(t′)

[R](τ)

where we use that [R](τ) = 0 for all τ ∈ P(T) \ C(N).

D Runtime results

We performed runtime tests on three families of SAFC-SDPNs, each with a
simple generation procedure with randomly chosen rewards and with a clear
focus on either concurrency, high degree of self- and backward-conflicts, and
absence of both, respectively.

The first family N1 consists of Petri nets with n concurrent simple branching
cells, each with one initially marked place on which two transitions depend. One
of these transitions is not controllable and leads to a place with a random reward
sampled according to the standard normal distribution. The other transition is
controllable but marks no place. Formally, a net of this family is thus given
by P = {p1, . . . , p2n}, T = (t1, . . . , t2n) with •t2k−1 = •t2k = {p2k−1} and

t2k−1
• = {p2k}, t2k• = ∅ for k = 1, . . . , n, m0 = {p2k−1 | k = 1, . . . , n}, Λ ≡ 1,

C = {t2k | k = 1, . . . , n}, and R only non-zero for {p2k} (randomly generated
according to standard normal distribution) for k = 1, . . . , n (see also Figure 9).
Generating these nets with random rewards for each (post-)place as well as a
random bound p for the policy problem (also sampled according to the standard
normal distribution) allows for a variety of nets and problems (some of which
might not be solvable) to test our algorithms with a focus on its performance
on highly concurrent nets. While the optimal strategy for each of these nets
is to deactivate any transition that is in a cell with a positively rewarded place
and activate all others, the random generation ensures that this optimal strategy
results in different optimal sets D of deactivated transitions. Note, however, that
the corresponding MDP of these nets will have an exponential size due to the
2n · n! possible firing sequences.

p1 p3 p2n+1

t1 t2 t3 t4 t2n+1 t2n+2

. . .

p2 p4 p2n+2

Fig. 9. The family N1 of free-choice occurrence SDPNs with a high amount concur-
rency. Yellow places yellow are being rewarded (or punished).

The second family N2 consists, similar to N1, of n branching cells. However,
the post-place of one cell is set to be the initial place of the next cell, resulting
in a sequential line of branching cells of the same type as above. Formally, a
net of this family is thus given by P = {p1, . . . , pn+1}, T = (t1, . . . , t2n) with
•t2k−1 = •t2k = {pk} and t2k−1

• = {pk+1}, t2k• = ∅ for k = 1, . . . , n, m0 = {p1},
Λ ≡ 1, C = {t2k | k = 1, . . . , n}, and R only non-zero for {pk} (randomly
generated according to standard normal distribution) for k = 2, . . . , n + 1 (see
also Figure 10). Finding an optimal strategy for these nets is a bit more intricate
as in N1 since firing the controllable transition in any of these cells results in no
reward for all subsequent cells.

The third and final family N3 also consists of n branching cells as the
ones above. However, both transitions of one cell mark the initial place of
the next cell (while, again, only the non-controllable transition marks the re-
warded place). This ensures that all cells are fired (as in the concurrent fam-
ily N1) but in sequence and, most importantly, with all but the first initial
place having backward-conflicts. Formally, a net of this family is thus given
by P = {p1, . . . , p2n}, T = (t1, . . . , t2n) with •t2k−1 = •t2k = {p2k−1} and
t2k−1

• = {p2k, p2k+1}, t2k• = {p2k+1} for k = 1, . . . , n, m0 = {p1}, Λ ≡ 1,
C = {t2k | k = 1, . . . , n}, and R only non-zero for {p2k} (randomly generated
according to standard normal distribution) for k = 1, . . . , n (see also Figure 11).

p1

t1

t2

p2

t3

t4

p3 pn+1

. . .

t2n+1

t2n+2

pn+2

Fig. 10. The familyN2 family of free-choice occurrence SDPNs. Yellow places are being
rewarded (or punished).

While an optimal strategy for this family of nets is the same as for the first one,
deactivating exactly all controllable transitions in cells with positively rewarded
places, the backward-conflicts result in an exponentially sized rewritten reward
function [R] on the transitions with each of the 2n possible configurations being
rewarded.

p1

t1

t2

p2

p3

t3

t4

p4

p5 p2n+1

. . .

t2n+1

t2n+2

p2n+2

Fig. 11. The family N3 of safe and acyclic free-choice SDPNs with backward-/self-
conflicts. Yellow places are being rewarded (or punished).

For each of these families, we performed runtime tests on 25 randomly gener-
ated nets (i.e., reward values) for each n (as long as it was feasible). The tables
and graphs below show the runtimes for the rewriting algorithm (i.e., solving the
value problem), and solving the policy problem (again with randomly generated
bound according to the standard normal distribution) both by iterating over all
possible deactivation sets (brute force) or by using the z3 SMT solver.

The runtimes of solving the value problem or rewriting the reward function
using the algorithm as described in Section 6 are as expected (see Figure 12): For
the familyN3 containing many backward-conflicts (in particular, a family of non-
occurrence nets), the runtimes rise exponentially with the amount of branching
cells (see also Table 3) while the algorithm performs much better on both families
of free-choice occurrence nets N1 and N2 and, in particular, independent of the
amount of concurrency present (in contrast to the expected time of solving the
value problem using the corresponding MDP which would grow exponentially for
family N1). Furthermore, it is noteworthy that the performance of the rewriting
algorithm mainly depends on the net structure, not on the randomly generated

reward values which is reflected by the relatively small variance (see Tables 1, 2
and 3).

Size Median Mean St.Dev. 90% quantile

1 0 0.40 0.49 1
2 2 2.04 0.20 2
3 6 6.12 0.32 7
4 14 14.28 0.53 15
5 28 28.24 2.10 31
6 49 48.72 1.76 50
7 79 79.16 1.93 80
8 121 121.68 2.28 123
9 179 179.24 2.90 183

10 247 247.28 8.25 257
11 338 339.40 7.98 350
12 464 461.88 9.62 474
13 604 600.76 12.09 614
14 764 761.60 14.35 777
15 971 970.32 7.59 978
16 1196 1190.56 16.57 1208
17 1476 1471.68 21.47 1497
18 1799 1795.56 20.33 1817
19 2136 2145.96 46.15 2213
20 2589 2594.56 38.30 2640
21 3072 3069.04 30.38 3100
22 3632 3621.68 38.97 3665
23 4238 4230.68 30.44 4257
24 4956 4937.44 51.32 4985
25 5703 5698.40 53.57 5738

Table 1. Runtime results of the reward rewriting algorithm for family N1 in ms.

Turning our attention to the performance of solving the policy problem based
on the rewritten reward function, we notice first and foremost that, in all three
families, using an SMT solver produces highly varying runtimes. This can be
seen in both the standard deviations as seen in Tables 4, 5, and 6, as well as in
the boxplot diagrams in Figures 14, 15, and 16.

Boxplots are often used graphical representation to represent statistical re-
sults where, here, the ‘box’ describes the quartiles (i.e., 25%-quantile to 75%-
quantile) with the yellow bar signifying the median. The whiskers have a max-
imal size of 1.5-times the length of the box (being smaller if no other values
are present) and outliers (i.e., values outside of the maximal whisker length) are
marked as circles.

Taking a look at the results for the highly concurrent family N1, we notice
immediately that while using the brute force approach of comparing the values
for all deactivation patterns produces exponential runtimes as expected, using

Size Median Mean St.Dev. 90% quantile

1 0 0.36 0.48 1
2 2 2.00 0.00 2
3 6 5.76 0.43 6
4 13 13.00 0.28 13
5 25 25.16 1.62 26
6 42 42.56 1.58 43
7 69 69.20 2.68 71
8 104 103.44 2.77 106
9 149 149.20 4.24 154

10 210 209.48 4.60 216
11 284 283.56 4.05 289
12 378 377.12 6.36 383
13 486 483.96 10.17 494
14 612 610.20 9.62 621
15 757 759.28 23.27 770
16 931 927.96 9.15 938
17 1133 1145.88 57.85 1189
18 1362 1362.92 27.37 1402
19 1632 1621.60 19.12 1639
20 1922 1916.00 18.51 1936
21 2260 2252.72 20.29 2269
22 2625 2618.68 28.96 2651
23 3140 3104.12 359.93 3299
24 3544 3535.00 44.97 3582
25 4061 4065.24 43.59 4118

Table 2. Runtime results of the reward rewriting algorithm for family N2 in ms.

Size Median Mean St.Dev. 90% quantile

1 0 0.44 0.50 1
2 2 2.32 0.55 3
3 8 7.92 0.27 8
4 22 22.44 1.42 23
5 52 52.24 1.58 53
6 121 135.32 28.71 190
7 263 262.16 5.41 271
8 583 587.48 20.51 614
9 1281 1283.52 21.44 1314

10 2772 2762.00 29.15 2790
11 6018 6018.56 43.54 6069
12 13193 14144.36 1821.25 17375
13 41182 41155.08 478.37 41672
14 90170 90159.60 795.00 91114

Table 3. Runtime results of the reward rewriting algorithm for family N3 in ms.

the SMT solver has a much lower runtime where, despite growing variance,
even the worst-case runtime seems to be polynomial apart from rare outliers
(which are still much more performant than the brute force approach; see Table 4
and Figure 14). While this example is restricted to the simplest of concurrent
SDPNs, this clearly reflects the strength of partial-order techniques to deal with
concurrency where solving the corresponding MDP would necessarily produce
exponential runtimes.

The results for familyN2 which lacks all concurrency but is still an occurrence
net shows the extremely high variance in the runtime of the SMT solver (see
Table 5 or Figure 15). As mentioned in the description of the family N2 above,
finding an optimal deactivation pattern in this scenario is much more intricate
than for the other two families and while, in the best case, the SMT solver
is much faster than the brute force approach, most notably the unusually low
median for n = 13, it can also take a multitude longer in the ‘more difficult’
scenarios.

Finally, while the results for family N1 showed the benefits of partial-order
techniques, the results for family N3 reflect their drawbacks. Note that the
rewritten reward function [R] on configurations already has an exponential sup-
port (w.r.t. n) which not only leads to a longer computation time of the value,
explaining the much higher runtime of the brute force approach. The exponen-
tial support also results in a much more complex SMT expression, the effect of
which being that the z3 solver can only find answers efficiently for very small n
as can be seen in Table 6 and Figure 16.

Brute Force SMT Solver
Size Median Mean St.Dev. 90% Median Mean St. Dev. 90%

1 0 0.00 0.00 0 4 4.20 0.40 5
2 0 0.64 3.14 0 5 4.68 0.73 5
3 0 0.60 2.94 0 5 5.00 0.89 6
4 0 1.52 4.44 4 5 5.92 2.28 8
5 15 8.88 7.73 16 5 6.56 2.35 10
6 15 12.96 5.67 16 6 7.88 2.83 12
7 31 30.28 4.58 33 8 9.60 5.36 15
8 63 65.24 6.03 78 9 12.04 7.66 21
9 149 148.76 8.02 157 8 10.52 5.95 18

10 337 336.96 7.32 344 6 9.28 5.67 20
11 780 774.00 16.96 791 10 16.12 13.01 29
12 1701 1695.00 20.39 1718 9 13.20 10.71 24
13 3759 3748.76 43.43 3796 8 18.36 18.04 49
14 8264 8250.76 79.50 8331 7 14.12 12.10 31
15 10 15.20 15.17 38
16 10 18.84 20.87 45
17 10 21.88 21.46 54
18 15 32.00 33.81 85
19 9 28.24 29.26 82
20 22 39.68 38.46 99
21 10 98.20 283.86 204
22 15 90.64 241.91 157
23 15 24.36 21.66 53
24 21 227.88 602.75 230
25 11 39.08 61.17 99

Table 4. Runtime results of solving the policy problem for family N1 based on its
rewritten reward function in ms.

Brute Force SMT Solver
Size Median Mean St. Dev. 90% Median Mean St. Dev. 90%

1 0 0.04 0.20 0 3 3.24 0.81 4
2 0 0.24 0.43 1 4 3.88 0.52 4
3 1 0.64 0.48 1 4 4.68 0.93 6
4 2 2.00 0.00 2 6 8.72 5.35 18
5 6 5.60 0.49 6 10 14.92 12.64 33
6 14 14.72 1.22 15 37 52.48 50.65 114
7 35 35.44 1.13 36 68 166.88 187.83 477
8 86 85.92 1.41 87 104 335.16 476.87 1207
9 199 198.88 5.57 206 518 3064.64 4734.68 9352

10 605 602.56 87.71 709 1506 6250.28 7470.27 14787
11 1440 1415.28 101.87 1562 1291 10406.56 13460.78 32612
12 2725 2824.12 248.15 3182 24194 28207.96 34708.02 62627
13 6392 6301.04 360.13 6703 31 27871.40 48568.88 80423
14 14295 14354.60 507.15 14898 23752 80045.08 110595.76 285170
15 32547 32540.48 923.48 33695 94357 242712.04 386185.05 880569

Table 5. Runtime results of solving the policy problem for family N2 based on its
rewritten reward function in ms.

Brute Force SMT Solver
Size Median Mean St. Dev. 90% Median Mean St. Dev. 90%

1 0 0.64 3.14 0 7 7.15 1.46 8
2 0 1.96 5.19 10 9 9.95 5.13 18
3 15 9.24 7.66 16 33 61.4 61.10 163
4 32 36.40 6.98 48 237 724.25 915.76 1683
5 160 160.64 11.89 175
6 634 637.80 16.86 653
7 2675 2677.64 17.46 2702
8 11441 11453.40 68.32 11543
9 49029 52364.28 4530.39 59670

Table 6. Runtime results of solving the policy problem for family N3 based on its
rewritten reward function in ms.

5 10 15 20 25
100

101

102

103

104

105

Cell count

T
im

e
in

m
s

Rewriting

Fig. 12. Runtime of the rewriting of the reward function on N1 (green), N2 (red), and
N3 (blue).

0 2 4 6 8 10 12 14
100

101

102

103

Cell count

T
im

e
in

m
s

Brute Force

Fig. 13. Runtime of the solving the policy problem by brute force (iterating over all
possible deactivation patterns) on N1 (green), N2 (red), and N3 (blue).

Fig. 14. Runtime of the solving the policy problem using the z3 SMT solver on the
rewritten reward function on N1.

Fig. 15. Runtime of the solving the policy problem using the z3 SMT solver on the
rewritten reward function on N2.

Fig. 16. Runtime of the solving the policy problem using the z3 SMT solver on the
rewritten reward function on N3.

	Stochastic Decision Petri Nets

