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Abstract. The execution of different cases of a process is often restricted by
inter-case dependencies through e.g., queueing or shared resources. Various high-
level Petri net formalisms have been proposed that are able to model and analyze
coevolving cases. In this paper, we focus on a formalism tailored to conformance
checking through alignments, which introduces challenges related to constraints
the model should put on interacting process instances and on resource instances
and their roles. We formulate requirements for modeling and analyzing resource-
constrained processes, compare several Petri net extensions that allow for in-
corporating inter-case constraints. We argue that the Resource Constrained ν-
net is an appropriate formalism to be used the context of conformance checking,
which traditionally aligns cases individually failing to expose deviations on inter-
case dependencies. We provide formal mathematical foundations of the globally
aligned event log based on theory of partially ordered sets and propose an ap-
proximation technique based on the composition of individually aligned cases
that resolves inter-case violations locally.

Keywords: Petri nets · Conformance checking · Inter-case dependencies · Shared
resources.

1 Introduction

Event logs record which activity is executed at which moment of time, and additionally
they often include indications which resources were involved in which activity, men-
tioning the exact person(s) or machine(s). The availability of such event logs enables
the use of conformance checking for resource-constrained processes, analyzing not only
the single instance control-flow perspective, but also checking whether and where the
actual process behavior recorded in an event log deviates from the resource constraints
prescribed by a process model.

Process models, and specifically Petri nets with their precise semantics, are often
used to describe and reason about the execution of a process. In many approaches, a
process model considers a process instance (a case) in isolation from other cases [1]. In
practice, however, a process instance is usually subject to interaction with other cases
and/or resources, whose availability puts additional constraints on the process execu-
tion. In order to expose workflow deviations caused by inter-case dependencies, it is
crucial to use models considering multiple cases simultaneously.
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There are several approaches to modeling and analysis of processes with inter-case
dependencies. In [7] and [12], Petri nets are extended with resources to model availabil-
ity of durable resources, with multiple cases competing by claiming and releasing these
shared resources. To distinguish the cases, ν-Petri nets [22] incorporate name creation
and management as a minimal extension to classical Petri nets, with the advantage
that coverability and termination are still decidable, opposed to more advanced Petri
net extensions. The functionality of ν-Petri nets is inherited in other extensions such
as Catalog Petri nets [11], synchronizing proclet models [10], resource and instance-
aware workflow nets (RIAW-nets) [18], DB-nets [19] and resource constrained ν-Petri
nets [24], all with the ability to handle multiple cases simultaneously. For the latter, the
cases are assumed to follow the same process, interacting via (abstract) shared resources
in a one-to-many relation, i.e., a resource instance can be claimed by one case at a time.
More sophisticated extensions allow for cases from various perspectives with many-
to-many interactions, via e.g., concepts from databases, shared resources and proclet
channels. This may impose, however, problems of undecidability during conformance
checking, which we discuss in this work.

Many conformance checking techniques use alignments to expose where the behav-
ior recorded in a log and the model agree, which activities prescribed by the model are
missing in the log and which log activities should not be performed according to the
model [8,3]. The usual focus is on the control flow of the process. In more advanced
techniques [6,15,16,17], data and/or resource information is additionally incorporated
in the alignments by considering these perspective only after the control flow [15], by
balancing the different perspectives in a customizable manner [16] or by considering all
perspectives at once [17]. These three types of techniques operate on a case-by-case ba-
sis, which can lead to misleading results in case of shared resources, e.g., when multiple
cases claim the same resource simultaneously.

In our previous work we considered the execution of all process instances by align-
ing the complete event log to a resource constrained ν-Petri nets [24]. In this paper, we
present our further steps: (1) We compare how the existing Petri net extensions support
modeling and analysis of processes with inter-case dependencies by formulating the
requirements to such models, and we argue that ν-nets are an appropriate formalism.
(2) We employ the poset theory to provide mathematical foundations for aligning the
complete event log and exposing deviations of inter-case dependencies; (3) We propose
an approximation method for computing optimal alignments in practice, which tackles
the limitation of the computational efficiency when computing the complete event log
alignment. The approximation method is based on composing alignments for isolated
cases first and then resolving inter-case conflicts and deviations in the log locally.

The paper is organized as follows. In Section 2 we introduce basic concepts of
the poset theory, Petri nets and event logs. In Section 3 we compare different Petri
net extensions. We provide the mathematical foundations of the complete event log
alignment in Section 4. Section 5 presents the approximation method for computing
alignments. We discuss implications of our work in Section 6.
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2 Preliminaries

In this section, we introduce basic concepts related to Petri nets and event logs and
present the notations that we will use throughout the paper.

2.1 Multisets and posets

We start with definitions and notation regarding multisets and partially ordered sets.

Definition 1. (Multiset) A multiset m over a set X is m : X → N. X⊕ denotes the
set of all multisets over X . We define the support supp(m) of a multiset m as the set
{x ∈ X | m(x) > 0}. We list elements of the multiset as [m(x) · x | x ∈ X], and write
|x| for m(x), when it is clear from context which multiset it concerns.

For two multisets m1,m2 over X , we write m1 ≤ m2 if ∀x∈Xm1(x) ≤ m2(x),
and m1 < m2 if m1 ≤ m2 ∧m1 6= m2. We define m1 +m2 = [(m1(x) +m2(x)) · x |
x ∈ X], and m1 −m2 = [max(0,m1(x)−m2(x)) · x | x ∈ X] for m1 ≥ m2.

Furthermore, m1 t m2 = [max(m1(x),m2(x)) · x | x ∈ X], m1 u m2 =
[min(m1(x),m2(x)) · x | x ∈ X].

In some cases, we consider multisets over a set X as vectors of length |X|, assuming
an arbitrary but fixed ordering of elements of X .

Definition 2. (Partial order, Partially ordered set, Antichains) A partially ordered set
(poset) X = (X̄,≺X) is a pair of a set X̄ and a partial order ≺X⊆ X × X . We
overload the notation and write x ∈ X if x ∈ X̄ . For x, y ∈ X , we write x‖Xy if
x ⊀ y ∧ y ⊀ x and x � y if x ≺ y ∨ x = y.

Given ≺X , we define ≺+
X to be the smallest transitively closed relation containing

≺X . Thus ≺+
X is a partial order with ≺X⊆≺+

X .
We extend the standard set operations of union, intersection, difference and subsets

to posets: for any two posets X and Y , X ◦ Y = (X̄ ◦ Ȳ , (≺X ◦ ≺Y )+), with ◦ ∈
{∪,∩, \} and Y ⊆ X iff Ȳ ⊆ X̄ and ≺Y =≺X ∩(Ȳ × Ȳ ).

A poset A is an antichain if no elements of A are comparable, i.e., ∀x,y∈A x‖y. For
poset X , A(X) denotes the set of all antichains A ⊆ X , and A+(X) is the set of all
maximal antichains: A+(X) = {A | A ∈ A(X),∀B∈A(X) B ⊆ A =⇒ B = A}.

Two special maximal antichains are the minimum and maximum elements of X ,
defined by min(X) = {x | x ∈ X,∀y∈Xy ⊀ x} ∈ A+(X) and max(X) = {x | x ∈
X,∀y∈Xx ⊀ y} ∈ A+(X).

We define X< = {(Ȳ ,≺Y ) | Ȳ = X̄,≺X⊆≺Y ,∀a,b∈Y,a6=b a 6 ‖Y b} to be the set
of totally ordered permutations of X that respect the partial order.

Definition 3. (Interval, prefix and postfix in a poset) With a posetX and two antichains
A,B ∈ A(X), the closed jhkcbvinterval fromA toB is the subposet defined as follows:
[A,B] = (AB,≺X ∩(AB × AB)) with AB = {x | x ∈ X,A � x � B}, and
the half open and open intervals: (A,B] = [A,B] \ A, [A,B) = [A,B] \ B and
(A,B) = [A,B) \A.

Artificial minimal and maximal elements are denoted as ⊥ and > respectively, i.e.,
∀x∈X⊥ ≺ x ≺ >. (⊥, A], (⊥, A), [A,>) (A,>) denote the corresponding prefixes
and postfixes of an antichain A ∈ A(X) in X .
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2.2 Petri nets

Petri nets can be used as a tool for the representation, validation and verification of
workflow processes to provide insights in how a process behaves [21].

Definition 4. (Labeled Petri nets, Pre-set, Post-set) A labeled Petri net [20] is a tuple
N = (P, T,F , `), with sets of places and transitions P and T , respectively, such that
P ∩T = ∅, and a multiset of arcs F : (P ×T )∪ (T ×P )→ N defining the flow of the
net. ` : T → Στ = Σ ∪ {τ} is a labeling function, assigning each transition t a label
`(t) from alphabet Σ or `(u) = τ for silent transitions.

We assume that the intersection, union and subsets are only defined for two labeled
Petri nets N1, N2 where ∀t∈T1∩T2`1(t) = `2(t).

Given an element x ∈ P ∪ T , its pre- and post-set •x (x•) are multisets defined by
•x = [F(y, x) · y | y ∈ P ∪ T ] and x• = [F(x, y) · y | y ∈ P ∪ T ] resp.

Definition 5. (Marking, Enabling and firing of transitions, Reachable markings) A
marking m ∈ P⊕ of a (labeled) Petri net N = (P, T,F , `) assigns how many tokens
each place contains and defines the state of N .

With m and N , a transition t ∈ T is enabled for firing iff m ≥ •t. We denote the
firing of t by m t−→ m′, where m′ is the resulting marking after firing t and is defined
by m′ = m− •t+ t•. For a transition sequence σ = 〈t1, . . . , tn〉 we write m σ−→ m′ to
denote the consecutive firing of t1 to tn. We say that m′ is reachable from m and write
m
∗−→ m′ if there is some σ ∈ T ∗ such that m σ−→ m′.
M(N) = P⊕ and it denotes the set of all markings in net N and R(N,m) the set

of markings reachable in net N from marking m.

Definition 6. (Place invariant) Let N = (P, T,F , `) be a Petri net. A place invariant
[14] is a row vector I : P→ Q such that I ·F = 0, with P and F vector representations
of P and F . We denote the set of all place invariants as IN , which is a linear subspace
of QP .

The main property of a place invariant I in a net N with initial marking mi is that
∀m1,m2∈R(N,mi)I ·m1 = I ·m2.

Definition 7. (Net system, Execution poset and sequence, Language) A net system is
a tuple SN = (N,mi,mf ), where N is a (labeled) Petri net, and mi and mf are
respectively the initial and final marking. An execution sequence in a net system SN =
(N,mi,mf ) is a firing sequence from mi to mf . Additionally, an execution poset is a
poset of transition firings, where each totally ordered permutation is a firing sequence.
The language of a net system SN is the set of all execution sequences in SN .

2.3 Event logs

An event log records activity executions as events including at least the occurred ac-
tivity, the time of occurrence and the case identifier of the corresponding case. Often
resources are also recorded as event attributes, e.g., the actors executing the action. It is
generally known beforehand in which activities specific resource roles R are involved
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and which resource instances Idr are involved in the process for each role r ∈ R. We
assume that each resource has only one role (function) allowing to execute a predefined
number of tasks, and therefore define the set IdR of resource instances of all roles as the
disjoint union of resource instance sets of roles: IdR = ]r∈RIdr. A resource instance
ρ ∈ IdR with role r ∈ R is equipped with capacity, making Idr and IdR both multisets.

Definition 8. (Event, Event log, Trace) An event e is a tuple (a, t, c, Id′R), with an
activity a = activity(e) ∈ Σ, a timestamp t = time(e) ∈ R, a case identifier
c = case(e) ∈ Idc and a multiset of resource instances Id′R = Res(e) ≤ IdR. Such
an event represents that activity a occurred at timestamp t for case c and is executed by
resource instances from Id′R belonging to possibly different resource roles.

An event log L is a set of events with partial order ≺L that respects the chrono-
logical order of the events, i.e., ∀e1,e2∈Ltime(e1) < time(e2) =⇒ e2 6≺L e1. An
event log can be partitioned into traces, defined as projections e.g., on the case iden-
tifiers or on the resources names. For every c ∈ Idc, Lc denotes a trace projected
on the case identifier c defined by Lc = ({e | e ∈ L, case(e) = c},≺Lc) with
≺Lc= {(e, e′) | (e, e′) ∈≺L, case(e) = case(e′) = c}.

Alternatively, we write 〈e1, e2, · · ·〉 for an event log which is totally ordered, and
aId
′
R and aId

′
R for events where the case is identified by the activity color (and bar

position) and the time of occurrence is abstracted away from.
For a (labeled) Petri net modeling a process, the transitions’ names or labels corre-

spond to the activity names found in the recorded event log.

3 Modeling, analysis and simulation of case handling systems with
inter-case dependencies

A classical Petri net models a process execution using transition firings and the cor-
responding changes of markings without making distinctions between different cases
on which the modeled system works simultaneously. To create a case view, Workflow
nets [2] model processes from the perspective of a single case. Systems in which cases
interact with each other, e.g., by queueing or sharing resources, need to be modeled in
a different way. We show from a modeling point how this boils down to multiple cases
competing over shared tokens representing resources in a Petri net, which requires an
extension on the formalism of the classical Petri nets. In Sec. 3.1, we motivate the re-
quirements by providing examples, after which, in Sec. 3.2, we discuss whether existing
Petri net extensions satisfy these requirements. We end, in Sec. 3.3 by proposing a min-
imal extension based on ν-Petri nets [22] that meets each requirement for simulation
and analysis of resource-constrained processes.

3.1 Requirements imposed by inter-case dependencies

When modeling systems with inter-case dependencies, i.e., shared resources, simulta-
neous cases can interfere in each other’s processing via the resources, causing inter-case
dependencies. To model, simulate and analyze such behavior, the cases and resources,
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Fig. 1: Example Petri net N1 to argue the requirements, with token colors denoting
different instances.

represented as tokens in a Petri net, should be handled together and simultaneously in
the process model. This introduces the need for case (R1) and resource isolation (R2)
as well as durable resources (R3) and case-resource correlations (R4), which regular
Petri nets are not capable of. For analysis, like computing alignments (see Section 4),
non-invertible functions can cause state-space explosions (R5). We show for each re-
quirement, when not satisfied, how simulation and/or analysis concerning multiple si-
multaneous cases fails:

R1 Distinguishable cases are required when dealing with multiple cases. Tokens in-
volved in a firing of a transition should not belong to different cases, unless case
batching is used. Mixing tokens from different cases, possible in classical Petri
nets, can potentially cause model behavior that is not possible in the modeled sys-
tem: Suppose we have a simple operation process modeled by Petri net N1, shown
in Fig. 1, where a patient undergoes an operation involving the activities of prepa-
ration (op), assistance (oa), closed surgery (osc) and open surgery (oso) which is
followed by closeup (oc). We assume case tokens to be indistinguishable. The lan-
guage of (N1, [pi, 2ps], [pf , 2ps]) is {〈op, oa, osc〉, 〈op, osc, oa〉, 〈op, oa, oso, oc〉,
〈op, oso, oa, oc〉} and the language of the same net processing two cases with suffi-
cient resources has to consist of all possible interleaving of two traces belonging to
single cases. However, {〈op, oa, osc, op, oa, oso,oc〉} is included in the language of
(N1, [2pi, 2ps], [2pf , 2ps]), which is impossible to obtain by an interleaving of two
single cases, as oc is never enabled after osc fires. Here and later we use underlined
symbols when referring to the second case in examples. From now on, we assume
case tokens are distinguishable and we have mi(pi) = (c, c);

R2 Distinguishable resources are required when resource instances are uniquely iden-
tifiable. If the tokens in ps are indistinguishable, 〈. . . , o{x}so , osc

{x}, o
{x}
c 〉 belongs

to the language of (N1, [2pi, 2ps], [2pf , 2ps]). However, resource instance x can
only be claimed by the second case after it has been released by the first case (by
firing transition oc), hence it should not be included in the language. From now on,
we assume resource tokens are distinguishable and we have mi(ps) = (x, y);

R3 Resources are required to be durable when having a variable number of cases in
the system simultaneously. In N1, the resource instances in ps are modeled to be
durable, since these instances are always released after being claimed. However,
were arc (oc, ps) to be removed, problems arise when observed behavior concerns
more than two cases, since after transition oso fired twice, it is never enabled again,
causing a deadlock;
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R4 Capturing case-resource correlation is required when dealing with multiple dis-
tinguishable cases and resources in order to keep track of which resource handles
which case. Without it, the language of (N1, [2pi, 2ps], [2pf , 2ps]) includes e.g.,
〈. . . , o{x}so , oso

{y}, oc
{x}, o

{y}
c 〉, which is undesirable as resources x and y have

switched cases after transition oso is fired twice. Case-resource correlation should
ensure, in this case, that transition oc can only be fired using the same resource as
was claimed by firing transition oso;

R5 Operations on token values (e.g., guards, arc inscriptions) should be invertible and
computable when aligning observed and modeled behavior in order to keep the
problem decidable. Consider e.g., that patients enter the process by their name and
birthdate v, which is transformed to an identifier c in the first transition by an op-
eration f(v) on (op). When activity op is missing for a patient, it is undecidable
which value v should be inserted for the firing of op when f is not invertible.

3.2 Existing Petri net extensions

Several extensions on Petri nets have been proposed focusing on multi-case and/or
multi-resource processes able to handle (some) inter-case dependencies. We go over
each extension, describing how they satisfy (and violate) requirements listed in Sec. 3.1.
We propose an extension, which combines concepts of the described extensions and sat-
isfies all requirements.

Resource constrained workflow nets (RCWF-nets) [12] are Petri nets extended with
resource constraints, where resources are durable units: they are claimed and then re-
leased again (R3). They define structural criteria for its correctness.

Definition 9. (Resource-constrained workflow net [12]) Let R be a set of resource
roles. A net system N = (Pp ] Pr, T,Fp ] Fr,mi,mf ) is a resource-constrained
workflow net (RCWF-net) with the set Pp of production places and the set Pr = {pr |
r ∈ R} of resource places iff

– Fp : (Pp × T ) ∪ (T × Pp)→ N and Fr : (Pr × T ) ∪ (T × Pr)→ N;
– Np = (Pp, T,Fp, [mi(p) · p | p ∈ Pp], [mf (p) · p | p ∈ Pp]) is a net system, called

the production net of N .

The semantics of Petri nets is extended by having colored tokens on production places
(R1) and as resources are shared across all cases, tokens on resource places are colorless
(¬R2, ¬R4). A transition is enabled if and only if there are sufficient tokens on its
incoming places using tokens of the same color on production places.

ν-Petri nets [22] are an extension of Petri nets with pure name creation and name
management, strictly surpassing the expressive power of regular Petri nets and they
essentially correspond to the minimal object-oriented Petri nets of [13]. In a ν-Petri
net, names can be created, communicated and matched which can be used to deal with
authentication issues [23], correlation or instance isolation [9]. Name management is
formalized by replacing ordinary tokens by distinguishable ones, thus adding color the
the Petri net.
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Definition 10. (ν-Petri net [22]) Let Var be a fixed set of variables. A ν-Petri net is a
tuple ν-N = 〈P, T,F〉, with a set of places P , a set of transitions T with P∩T = ∅, and
a flow functionF : (P×T )∪(T×P )→ Var⊕ such that ∀t∈T , Υ∩•t = ∅ ∧ t•\Υ ⊆ •t,
where •t =

⋃
p∈P

supp(F(p, t)) and t• =
⋃
p∈P

supp(F(t, p)). Υ ⊂ Var denotes a set of

special variables ranged by ν, ν1, . . . to instantiate fresh names.
A marking of ν-N is a function m : P → Id⊕. Id(m) denotes the set of names in

m, i.e. Id(m) =
⋃
p∈P

supp(m(p)).

A mode µ of a transition t is an injection µ : Var(t) → Id , that instantiates each
variable to an identifier.

For a firing of transition t with mode µ, we write m
tµ−→ m′. t is enabled with mode

µ if µ(F(p, t)) ⊆ m(P ) for all p ∈ P and µ(ν) /∈ Id(m) for all ν ∈ Υ ∩ Var(t) =
supp(∪p∈PF(p, t)). The reached state after the firing of t with mode µ is the marking
m′, given by:

m′(p) = m(p)− µ(F(p, t)) + µ(F(t, p)) for all p ∈ P (1)

We denote Tµ to be the set of all possible transition firings.

ν-Petri nets support instance isolation for cases and resources requiring the tokens in-
volved in a transition firing to have matching colors (R1, R2). Due to the tokens having
singular identifiers, correlation between cases and resources can not be captured (¬R4).

Resource and instance-aware workflow nets (RIAW-nets) [18], are Petri nets com-
bining the notions from above by defining similar structural criteria for handling re-
source constraints on top of ν-Petri nets. However, the resource places are assumed to
only carry black tokens, not allowing for resource isolation and properly capturing the
case-resource correlation.

Synchronizing proclets [10] are a type of Petri net that describe the behavior of pro-
cesses with many-to-many interactions: unbounded dynamic synchronization of transi-
tions, cardinality constraints limiting the size of the synchronization, and history-based
correlation of token identities (R1,R2). This correlation is captured by message-based
interaction, specifying attributes of a message as correlation attributes (R4). The corre-
lation constraints are Cinit, C

⊆
match and C=

match, for initializing the attributes, partially
and fully matching them. ν-Petri nets are at the basis of proclets handling multiple ob-
jects by separating their respective subnets. While the proclet formalism is sufficient for
satisfying all requirements listed above, they extend to many-to-many relations, which
lifts the restriction that a resource can only be claimed by a single case.

Object-centric Petri nets [4], similarly to synchronizing proclets, describe the be-
havior of processes with multiple perspectives and one-to-many and many-to-many re-
lations between the different object types. These nets are a restricted variant of colored
Petri nets where places are typed, tokens are identifiable referring to objects (R1,R2),
and transitions can consume and produce a variable number of tokens. Correlation can
be achieved with additional places of combined types (R4). Again, due to many-to-
many relations, our one-to-many restriction on resources is lifted.

Database Petri nets (DB-nets) [19] are extensions of ν-Petri nets with multi-colored
tokens that allows for multiple types of objects and their correlation (R1,R2,R4). Addi-
tionally, they support underlying read-write persistent storage consisting of a relational
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database with full-fledged constraints. Special “view” places in the net are used to in-
spect the content of the underlying data, while transitions are equipped with database
update operations. These are in the general sense not invertible causing undecidability
(¬R5).

Catalog Petri nets (CLog-nets) [11] are similar to DB-nets, but without the “write”
operations (R1,R2,R4). The queries from view places in DB-nets have been relocated
to transition guards, relying solely on the “read-only” modality for a persistent stor-
age, however suffering from the same undecidability problem as these guards are not
invertible in the general sense (¬R5).

3.3 Resource constrained ν-Petri net with fixed color types

We combine conceptual ideas from the extensions described above, by extending RIAW-
nets, which inherit the modeling restrictions from RCWF-nets and name management
from ν-Petri nets, using concepts from DB-nets and CLog-nets.

The resource places from RCWF-nets model the availability of resource instances
by tokens, which is insufficient to capture correlation of cases by which they are claimed
and released. We propose a minimal extension resource constrained ν-Petri nets (RC ν-
net) which additionally contain busy places P̄r = {p̄r | r ∈ R} for each resource role.
Token moves from pr to p̄r show that the resource gets occupied, and moves from p̄r to
pr show that the resource becomes available. Also tests whether there are free/occupied
resources can be modeled. A structural condition is imposed on the net to guarantee
that resources are durable, meaning that resources can neither be created nor destroyed.
This also implies that in the corresponding net system with initial and final marking mi

and mf , mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r), for any resource role r ∈ R.
Furthermore, similar to DB-nets and CLog-nets, we extend the tokens from carry-

ing single data values to multiple. Where DB-nets and CLog-nets allow for a variable
number of predefined color types, we restrict ourselves to two which are strictly typed,
to distinguish between both cases and resources.

Definition 11. (Resource-constrained ν-Petri net) Let Cε be the set of case ids Idc
extended with ordinary tokens, i.e., ε ∈ Idc, and IdεR be the set of resource ids extended
with ordinary tokens. A resource-constrained ν-Petri net N = (P, T,F ,mi,mf ) is a
Petri net system with F : (P × T )∪ (T × P )→ (Varεc ×Varεr)

⊕, where Var c denote
case variables and Varr denote resource variables, allowing for two colored tokens.
P = (Pp ] Pr ] P̄r), with production places Pp and resource availability and busy
places Pr = {pr | r ∈ R} and P̄r = {p̄r | r ∈ R}. The following modeling restrictions
are imposed on N for each r ∈ R:

1. •pr + •p̄r = p•r + p̄•r , i.e., ∀t∈T F(pr, t) + F(p̄r, t) = F(t, pr) + F(t, p̄r);
2. mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r) = 0;

A marking of N is a function m : P → (Cε ×Rε)⊕ with case ids C and resources
R, which is a mapping from places to multisets of colored tokens.

A mode of a transition t is an injection µ : (Varεc × Varεr)(t) → (Cε × Rε), that
instantiates each variable to an identifier.
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Proposition 1. The resource-constrained ν-Petri nets as defined in Def. 11 satisfy re-
quirements R1-R5, i.e., they allow to distinguish cases and resource instances which are
durable, and capture case-resource correlation while restricting to operations that are
invertible.

Proof. The two-colored strictly typed tokens distinguish both the cases (R1) and re-
source instances (R2) in the system. The modeling restrictions imposed on the RC ν-
net enforce that for each resource role r ∈ R, tokens can only move between pr and
p̄r, i.e., we have the place invariant (1, 1) on pr and p̄, implying that m(pr) +m(p̄r) =
mi(pr) for any reachable marking m, and that all resource tokens are returned to pr
when the net reaches its final marking, ensuring that resources are durable (R3). The
two colors on tokens residing in p̄ capture correlation between cases and resources in-
stances (R4), denoting by which case a resource instance is claimed throughout their
interaction. As the transition firing’s modes are bijective functions, each operation on
N is invertible (R5). ut

Note that the RC ν-net formalism is a restricted version of DB-nets, CLog-net and
synchronizing proclets, as all three can capture the behavior that can be modeled by
RC ν-nets. DB-nets and CLog-nets additionally have database operations which we
deem not relevant for our purposes. Synchronizing proclets allow for many-to-many
interactions, while we assume that a resource instance cannot be shared by several cases
at the same time.

4 Complete event logs alignments

Several state-of-the-art techniques in conformance checking use alignments to relate the
recorded executions of a process with a model of this process [5]. An alignment shows
how a log or trace can be replayed in a process model, which can expose deviations
explaining either how the process model does not fit reality or how the reality differs
from what should have happened.

Traditionally, this is computed for individual traces, however, as we show in pre-
vious work [24], this fails to expose deviations on a multi-case and -resource level in
processes with inter-case dependencies as described in Sec. 3.3. In this section, we go
over the foundations of alignments in Sec. 4.1 and show how we extend this to compute
alignments of complete event logs in Sec.4.2.

4.1 Foundations of alignments

At the core of alignments are three types of moves: log, model, and synchronous moves
(cf. Def. 12), indicating, respectively, that an activity from the log can not be mim-
icked in the process model, that the model requires the execution of some activity not
observed in the log, and that observed and modeled behavior of an activity agree.

Definition 12. (Log, model and synchronous moves) Let L be an event log and N =
(P, T,F , `,mi,mf ) be a labeled ν-Petri net with Tµ the set of all possible firings inN .
We define the set of log moves Γl = {(e,�) | e ∈ L}, the set of model moves Γm =
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{(�, tµ) | tµ ∈ Tµ} and the set of synchronous moves Γs = {(e, tµ) | e ∈ L, tµ ∈
Tµ, activity(e) = `(t)}. As abbreviations, we write Γls = Γl ∪ Γs, Γlm = Γl ∪ Γm,
Γms = Γm ∪ Γs, and Γlms = Γl ∪ Γm ∪ Γs.
Log moves and model moves can expose deviations of the real behavior from the model,
by an alignment (cf. Def. 13) on a net (N,mi,mf ) and event log L (possibly a single
trace) which is a poset of moves from Def. 12 incorporating the event log and execution
sequences in N from mi to mf :

Definition 13. (Alignment) An alignment γ = align(N,L) of an event log L = (L̄,≺L
) and a labeled Petri net N = (P, T,F , `,mi,mf ) is a poset γ = (γ̄,≺γ), where
γ̄ ⊆ (Γl ∪ Γs ∪ Γ⊕m), having the following properties:

1. γ�L = L̄ and ≺L⊆≺γ�L
2. mi

γ�T−−→ mf , i.e., ∀σ∈(γ�T )< ,mi
σ−→ mf

with alignment projections on the log events γ�L and on the transition firings γ�Tµ :

γ�L =
(
{e | (e, tµ) ∈ γ ∩ Γls} ,

{
(e, e′) | ((e, tµ), (e′, t′µ)) ∈≺γ ∩(Γls × Γls)

})
(2)

γ�T =
(
{tµ | (e, tµ) ∈ γ ∩ Γms} ,

{
(tµ, t

′
µ) | ((e, tµ), (e′, t′µ)) ∈≺γ ∩(Γms × Γms)

})
(3)

Note the slight difference in the definition of an alignment as opposed to our previ-
ous work in [24], where the alignment is simplified from a distributed run to a poset
of moves. The process’s history of states (markings) as it has supposedly happened
in reality can be extracted from the alignment. For the general case, we introduce the
pseudo-firing of transitions from corresponding alignment’s non-log moves in the pro-
cess model, to obtain a pseudo-marking, which can be unreachable or contain a negative
number of tokens:

Definition 14. (Pseudo-markings) A pseudo-marking m of a Petri net N = (P, T,F)
is a multiset P → Z, i.e., the assigned number of tokens a place contains can be
negative. M̃(N) denotes the set of all pseudo-markings in N .

Definition 15. (Pseudo-firing of posets) LetN = (P, T,F ,mi,mf ) be a RC ν-net and
γ be an alignment on N . We define a function m̃ : P(γ) → M̃(N), with powerset P ,
to obtain the model pseudo-marking of every subposet of γ. For every subposet γ′ ⊆ γ,
we have for every p ∈ P :

m̃(γ′)(p) = mi(p) +
∑

(e,tµ)∈γ′:tµ 6=ε

(µ (F(t, p))− µ (F(p, t))) (4)

i.e., the pseudo-marking is obtained by firing all the transitions of γ′ with corresponding
modes. Note that it is not necessarily reachable.

An antichain in an alignment denotes a possible point in time, and therefore a state
of the process. By pseudo-firing the respective (open) prefix of the antichain, we obtain
the corresponding pre- (or post-)antichain marking:

Definition 16. (Pre- and post-antichain marking) Let γ be an alignment andG ∈ A(γ)
an antichain in γ. The pre- (post-)antichain marking defines the marking reached after
the pseudo-firing of (⊥, G) ((⊥, G]), i.e., m̃((⊥, G)) (m̃((⊥, G])).
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4.2 Alignments extended to include inter-case dependencies

The foundational work on constructing alignments is presented in [5] and it relies on the
synchronous product of the Petri net N = (P, T,F , `,mi,mf ) modeling a process and
a trace Petri net Nσ = (P (σ), T (σ),F (σ), `(σ),m

(σ)
i ,m

(σ)
f ) (a Petri net representation

of a trace in the event log). The synchronous product consists of the union ofN andNσ ,
and a transition ts for each pair of transitions (tm, tl) ∈ T ×T (σ) with •ts = •tm + •tl
and t•s = t•m + t•l , iff tm and tl share the same label and variables on the incoming arcs,
i.e., `(tm) = `(σ)(tl) and V ar(tm) = V ar(tl). The alignment is then computed by a
depth-first search on the synchronous product net from mi +m

(σ)
i to mf +m

(σ)
f using

the A∗ algorithm, with the firings of transition from T (σ), T and T (s) corresponding to
the log, model and synchronous moves from Def. 12 [5].

With c : Γlms → R+ a cost function, usually defined for each (e, tµ) ∈ Γlms as
follows:

c((e, tµ)) =


0 (e, tµ) ∈ Γs
1 (e, tµ) ∈ Γlm ∧ `(t) 6= τ

ε `(t) = τ

(5)

The optimal alignment is an alignment γ such that
∑
g∈γ c(g) ≤

∑
g∈γ′ c(g) holds

for any alignment γ′, which prefers synchronous moves over model and log moves.
In terms of conformance checking and exposing realistic deviations, the optimal align-
ment provides the “best” explanation for the relation between observed and modeled
behavior.

In Sec. 3.3, we have shown how a RC ν-net is a Petri net formalism with capabil-
ity of modeling inter-case dependencies and suitability for conformance checking. We
extend the alignment problem in order to expose inter-case deviations by adapting the
synchronous product net to ν-nets: an RC ν-net and the log ν-net:

Definition 17. (Log ν-Petri net) Given an event log L, a log ν-Petri net N (L) =

(P (L), T (L),F (L), `(L),m
(L)
i ,m

(L)
f ) is a labeled ν-net constructed as follows. For ev-

ery e ∈ L, we make a transition te ∈ T (L) with `(L)(t) = activity(e), and for
each resource instance ρr ∈ supp(Res(e)) we make a place p ∈ P (L) with •p = ∅,
•p = [|ρr| · t], F (L)(p, t) = [|ρr| · (ε, r)] and m(L)

i (p)((ε, ρ)) = |ρ|. Further, for every
pair (e1, e2) ∈≺L, we make a place p ∈ P (L) with •p = [te1 ], p• = [te2 ] and

F (L)(te1 , p) = F (L)(p, te2) =

{
[(c, ε)] case(e1) = case(e2)

[(ε, ε)] otherwise
(6)

For every e− ∈ min(L), we make a place p− ∈ P (L) with •p− = ∅, p−• = [te− ] and
m

(L)
i (p−)((case(e−), ε)) = 1. Similarly, for every e+ ∈ max(L), we make a place

p+ ∈ P (L) with •p+ = [te+ ], p+• = ∅ and m(L)
f (p+)((case(e+), ε)) = 1.

Computing the complete event log alignment is again a matter of finding a path
from the initial to the final marking in the synchronous product net, i.e., from mi +

m
(L)
i to mf + m

(L)
f , for which we can use any of the existing methods as described
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before. The optimal alignment is again the one with lowest cost. In terms of complexity,
the alignment problem with an empty event log and an all-zero cost function can be
reduced to the reachability problem for bounded Petri nets from mi to mf , which has
exponential worst-case complexity[20]. Adding event to the log ν-Petri net and a non-
zero costs on moves makes the problem strictly more complex.

Note that while ν-Petri nets are inherently unbounded in general due to the genera-
tion of fresh tokens, we can retain boundedness in the context of alignments, since the
bound is predicated by the event log and we can get this information by preprocessing
it.

For our running example, modeled in Fig. 2, we extend the small operation process
from Fig. 1 with an assistant resource during the operation, an intake subprocess (is, ip)
involving a general practitioner (GP), and a prescription subprocess with a FIFO waiting
room (pw, we, wl, pr), where the prescription can only be written by the GP involved
in the intake, if appropriate. Both the intake and operation subprocesses can be skipped
via silent transitions τ1 and τ3 respectively in N . Fig. 3 shows the recorded event log L
of this process which concerns two patients. An optimal complete event log alignment
on N and L, computed by the method above is presented in Fig. 4.

5 Approximation by composition and local realignments

Since multiple cases are executed in parallel, computing the alignment on the complete
event log L, as described in Section 4, is a computationally expensive task. At the same
time, one can see that the multi-case and -resource alignment only deviates from the
classical individual alignments when violations occur on the inter-case dependencies,
e.g., when a resource is claimed while it is already at maximal capacity.

We can approximate the alignment of a complete event log L and a Petri net N by
using a composition of individually aligned cases. An overview of this method is illus-
trated in Fig. 7, which we subdivide into two parts, described respectively in Sec. 5.1
and 5.2.

1. L is decomposed into the individual cases (Lc, Lc), which are aligned to N (γc, γc)
and composed using the event log’s partial order ≺L (γ̃). The result is not neces-
sarily an alignment as inter-case deviations may be left unresolved;

2. We transform this composed alignment into a valid alignment by taking a permuta-
tion (γ̃′) and realigning parts ([A1, B1], [A2, B2], [A3, B3]) of the event log locally
to resolve the violations. The approximated alignment (γ∗) is obtained by substi-
tuting the realignments (γAB1

, γAB2
, γAB3

).

The implementation of both the original method from [24] and the approximation
method for computing complete event log alignments is available at gitlab.com/dominiquesommers/mira,
including the examples used in this paper and some additional examples.

5.1 Composing individual alignments

For every case c ∈ Idc, we have the trace Lc (cf. Def. 8) projected on the case identifier
c. As described in Sec.4, the optimal complete event log alignment γL consists of in-
dividual alignments γc, on N and Lc for every c ∈ Idc, composed together respecting

https://gitlab.com/dominiquesommers/mira
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Arc labels:

Fig. 2: Process model RC ν-net N , with initial and final marking, annotated with circu-
lar and square tokens respectively.

Fig. 3: Event log L.

Fig. 4: Complete event log alignment γ, with the colors depicting the move types; green,
purple, and yellow for synchronous, model, and log moves respectively.

Fig. 5: Composed alignment γ̃ with annotated permutation and realignment intervals.

z

Fig. 6: Approximated alignment γ∗.
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Fig. 7: Overview of our approximation method.

the event log’s partial order ≺L, where each γc is not necessarily optimal with regard
to Lc.

It is computationally less expensive to compute the optimal alignments γc = align(N,Lc)
for each c ∈ Idc and then approximate γL. We create a composed alignment γ̃ with the
optimal individual alignments and the event log’s partial order, as defined in Def. 18.
Fig.5 shows the composed alignment for the running example with additional annota-
tions (in red) which we cover later.

Definition 18. (Composed alignment) Given a Petri net N and an event log L with
traces Lc for c ∈ Idc, let γc = align(N,Lc) be the corresponding optimal individual
alignments. The composed alignment γ̃ = dc∈Idcγc is the union of individual align-
ments with the extended partial order on the synchronous moves, defined as the transi-
tive closure of the union of partial orders from the individual alignments and the partial
order on moves imposed by the partial order ≺L of the event log:

≺γ̃ =

( ⋃
c∈Idc

≺γc ∪ ≺γL

)+

(7)

with ≺γL=
{(

(e, tµ), (e′, t′µ)
)
| e ≺L e′, (e, tµ), (e′, t′µ) ∈ (γ ∩ Γls)

}
.

Recall that for every sequence σ ∈ γ̃�T of an alignment γ̃, we havemi
σ−→ mf , i.e., σ is

a firing sequence in N . This property is not guaranteed for a composed alignment, even
in the absence of inter-case deviations. In the presence thereof, we say that a composed
alignment is violating as there exists no such sequence.

Definition 19. (Violating composed alignment) Let ρr ∈ supp(IdR) be a resource in-
stance and γ̃ = dc∈Idcγc a composed alignment. We define

S(γ̃) = {(¯̃γ
′
,≺γ̃′) | ¯̃γ = ¯̃γ

′
,≺γ̃⊆≺γ̃′ ,≺γ̃′= (≺γ̃′)+,∀g∈γ̃g ⊀γ̃′ g} (8)

as the set of transitively closed and acyclic antichain permutations of γ̃ that respect the
partial order ≺γ̃ .

γ̃ is in violation with any of the resource instances if and only if:

∀γ̃′∈S(γ̃)∃G∈A+(γ̃′) viol(G) (9)

with violation criteria viol : A+(γ̃) → B defined for each maximal antichain G ∈
A+(γ̃) as follows:

viol(G) = ∃ρr∈supp(IdR)

m̃((⊥, G))(pr)((ε, ρr)) <
∑

(e,tµ)∈G

F(pr, t)(µ
−1((ε, ρr)))


(10)
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i.e., there is no way of firing all transitions in the alignment such that at all times enough
capacity is available.

In Fig. 5, antichains meeting the violation criteria are the single moves with an incoming
red arc. In Theorem 1 we show that for every sequence of transitions σ ∈ γ̃�T in
violating composed alignment γ̃, we have mi 6

σ−→ mf , i.e., γ̃ is not firable.

Theorem 1. (A violating composed alignment is not firable) Let γ̃ = dc∈Idcγc be a
composed alignment on RC ν-net N = (P, T,F ,mi,mf ) and event log L, such that γ̃
is violating. Then there exists no firing sequence σ in γ̃ such that mi

σ−→ mf .

Proof. γ̃ is violating, therefore, for every γ̃′ ∈ S(γ̃), there is a maximal antichain
G ∈ A+(γ̃′) and resource instance ρr ∈ supp(IdR), such that

m̃((⊥, G))(pr)((ε, ρr)) <
∑

(e,tµ)∈G

F(pr, t)(µ
−1((ε, ρr))) (11)

m̃((⊥, G))(pr)((ε, ρr)) −
∑

(e,tµ)∈G

F(pr, t)(µ
−1((ε, ρr))) < 0 (12)

hence firing the transitions in G leads to a negative marking for (ε, ρr) in place pr,
which is invalid. ut

With an antichain G ⊆ A(γ̃), we show in Lemma 1 that m̃((⊥, G)) (and m̃(⊥, G]) is
reachable if an only if the prefix (⊥, G) ((⊥, G]) is not violating.

Lemma 1. (A pre- (and post-)antichain marking in a composed alignment is reachable
iff the corresponding prefix is not violating.) Let γ̃ = dc∈Idcγc be a composed alignment
on RC ν-netN = (P, T,F ,mi,mf ) and event logL and letG ∈ A(γ̃) be an antichain.
Then the pre- (and post-)antichain marking m̃((⊥, G)) (m̃((⊥, G])) is reachable if and
only if (⊥, G) ((⊥, G]) is not violating.

Proof. We prove the lemma by proving both sides of the bi-implication:
( =⇒ ) mG = m̃((⊥, G)) is reachable, hence there exists a sequence σ ∈ (⊥, G)∗

with≺(⊥,G)⊆≺σ such thatmi
σ−→ mG. Let γ̃′ ∈ S(γ̃) be an antichain permutation with

≺σ⊆≺γ̃′ . Then by definition of reachable marking, for every maximal antichain G ∈
A+(γ̃′) and every resource instance ρr ∈ supp(IdR), we have m̃((⊥, G))(pr)((ε, ρr)) ≥∑

(e,tµ)∈G F(pr, t)(µ
−1((ε, ρr))). Thus (⊥, G) is not violating.

( ⇐= ) (⊥, G] is not violating, hence there exists a γ̃′ ∈ S((⊥, G]), such that for
all G′ ∈ A+(γ̃′) and all ρ ∈ supp(IdR) we have:

m̃((⊥, G))(pr)((ε, ρr)) ≥
∑

(e,tµ)∈G

F(pr, t)(µ
−1((ε, ρr))) (13)

mi
σ−→ m̃((⊥, G]) with σ respecting the partial order ≺γ̃′ . ut
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5.2 Resolving violations in the composed alignment

Let γ̃′ ∈ S(γ) be an antichain permutation of γ̃. Then, by Def. 19, we have a set
of violating maximal antichains (which is empty when γ̃ is not violating) where the
corresponding transitions are not enabled. Instead of needing to align the complete event
log, we show that we can resolve violations locally around such antichain. For each
violating antichain G, there exists an interval [A,B] ⊆ γ̃′ with A � G � B such that
[A,B] is alignable, formally defined in Def. 20.

Definition 20. (Alignable interval) Let γ = dc∈Idcγc be a composed alignment on RC
ν-net N = (P, T,F ,mi,mf ) and event log L, and let A,B ∈ A(γ) be two antichains.
We say that the interval [A,B] is alignable if and only ifmB = m̃((⊥, B]) is reachable
from mA = m̃((⊥, A)), i.e., mA

∗−→ mB , assuming mA is reachable.

Note that [min(γ′),max(γ′)] is always an alignable interval. We use our running
example to show that it can be taken locally around G instead, e.g., [{is}, {ip}] with
G = {is} (cf. Fig. 5). Note how the violation can be resolved by substituting [A,B] by
a subalignment from mA = m̃((⊥, A)) to mB = m̃((⊥, B]).

In order to prove statements that do not depend on a chosen realignment mechanism,
we now assume that there exists a function fγ̃ : A+(γ̃) → P(γ̃) that produces an
alignable interval [A,B] for an arbitrary G ∈ A+(γ̃).

W (γ̃′V ) = {[min(γv),max(γv)] | γv ⊆ γ̃′V ,∀g∈γv,g′∈γ̃′V \γvg‖γ̃′V g
′, (14)

∀g∈γv∃g′∈γvg 6 ‖γvg′}

with γ̃′V =
⋃
G∈A+(γ̃′) fγ̃′(G), denotes the set of alignable intervals covering every

violating antichain in γ̃′, and it is annotated in red for the running example in Fig. 5,
with the three intervals [{is}, {ip}], [{op}, {of}], and [{we}, {τ}] covering the violat-
ing antichains {is}, {op}, {oso}, and {we}.

We resolve the violations in γ̃′ by substituting every interval [A,B] ∈ W (γ̃′V ) by
an alignment γAB on N and [A,B]�L from mA = m̃((⊥, A)) to mB = m̃((⊥, B]).

Since, for now, we assume that every interval f(G) is alignable, a subalignment
γAB exists. The approximated alignment γ∗ = (γ̄∗,≺γ∗) is then defined as follows:

γ̄∗ =
⋃

[A,B]∈W (γ̃′V )

γ̄AB ∪ (¯̃γ \ ¯̃γ
′
V ) (15)

≺γ∗ =

 ⋃
[A,B]∈W (γ̃′V )

≺γAB ∪{(g1, g2) | g1, g2 ∈ γ \ γ̃′V , g1 ≺γ̃′ g2}

+

(16)

γ∗ for the running example is shown in Fig. 6 with substituted realignments for the
intervals annotated in red from Fig. 5. Note that γ∗ is an approximation of the optimal
alignment γ from Fig. 4 as c(γ∗) ≥ c(γ), due to the local realignments. In Theorem 2
we show that γ∗ is a valid alignment.
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Theorem 2. (γ∗ is an alignment.) Let γ̃ = dc∈Idcγc be a composed alignment on RC
ν-net N = (P, T,F ,mi,mf ) and event log L and let γ̃′ ∈ S(γ̃) be an antichain
permutation of γ̃, with W (γ̃′V ) the set of alignable intervals covering every violating
antichain in γ̃′.

γ∗ = (γ̄∗,≺γ∗), following Eqs. 15 and 16, is a valid alignment, i.e., it has proper-
ties (1), (2) and (3) from Def. 13.

Proof. We prove that γ∗ is an alignment by induction on the size of W (γ̃′V ). For the
base case with |W (γ̃′V )| = 0, we have γ̄∗ = ¯̃γ and ≺γ∗=≺γ̃′ . By definition, ¯γ̃�L = L̄
and ≺L⊆≺γ̃�L . Furthermore, since |W (γ̃′V )| = 0, we know that for all G ∈ A+(γ̃′),

we have ¬ viol(G), implying that mi
γ̃′−→ mf .

Let us assume that γ∗ is an alignment for |W (γ̃′V )| = w. We prove the statement for
W ′(γ̃′V ) = W (γ̃′V )∪{[A,B]}with |W ′(γ̃′V )| = w+1 and [A,B] ∈ min(W ′(γ̃′V )). For
every maximal antichain G ∈ A+((⊥, A)) before A, i.e., G ≺ A, we have ¬ viol(G),
which we prove by contradiction. Assume viol(G), then by our assumption of the ex-
istence of fγ̃′ , there is an alignable interval [A′, B′] ⊆ γ̃′ with A′ � G � B′, thus,
by G ≺ A, we have [A′, B′] ≺ [A,B], implying that [A,B] /∈ min(W ′(γ̃′)) which is
a contradiction. By Lemma 1 and the assumption that fγ̃′(G) is an alignable interval,
mi

∗−→ mA
∗−→ mB and [A,B] can be substituted by γAB without violations in (⊥, B],

completing the proof. ut

5.3 Obtaining minimal local alignable intervals

We propose a method to find an antichain permutation of a composed alignment γ̃
together with the intervalsW (γ̃V ) such that all violations can be resolved by realigning
these intervals as described in Sec. 5.2. For computational efficiency, we choose to
minimize the number of moves in the intervals that need to be realigned.

We formulate this as an Integer Linear Programming (ILP) problem. The objective
of the ILP problem is to adjust the partial order of γ̃, such that alignable intervals can
be identified around violating antichains, preferring intervals with fewer moves.

Let there be a (possibly arbitrary) fixed order in γ̃ and IdR such that each element
has a unique index, i.e., for every 1 ≤ i ≤ nγ̃ , γ̃(i) and (e(i), tµ(i)) both denote the ith

move in γ̃, with nγ̃ = |γ̃|. Furthermore, for every 1 ≤ j ≤ nr, IdR(j) denotes the jth

resource instance, with nr = |supp(IdR)|.
Let R be a nγ̃×nγ̃ matrix, with R defined for every two indices 1 ≤ i, j ≤ nγ̃ such

that Rij is a binary value denoting (γ̃(i), γ̃(j)) ∈≺γ̃ . For each c ∈ Idc, we introduce
the set Ic of indices corresponding to moves in γ̃�γc . Furthermore, we use [1..n] =
{1, . . . , n} as an abbreviation for the set of all indices from 1 to n.

The set of minimal alignable intervals containing all violations, denoted byW (γ̃′V ),
with γ̃′V given by

γ̃′V =
⋃

i,j∈[1..nγ̃ ]:Xij−Rij=1

[γ̃(j), γ̃(i)] (17)
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where X denotes the new partial order relation between alignment moves which re-
spects the resources capacities and provides the solution to

Minimize
∑

i,j∈[1..nγ̃ ]

(1−Rij)RjiXij + ε · (1−Rij)(1−Rji)Xij (18)

subject to

∀i,j∈[1..nγ̃ ] Xij ∈ {0, 1} (19)

∀c∈Idc∀i,j∈Ic Xij = Rij (20)
∀i,j∈[1..nγ̃ ] Rij + (1−Xij)−Xji ≤ 1 (21)

∀i,j,k∈[1..nγ̃ ] Xij + Xjk −Xik ≤ 1 (22)

∀i∈[1..nγ̃ ] (1−Xi•)C
↓ −XT

•iC
↑ ≤ k (23)

with C↓ and C↑ both nγ̃ × nr matrices counting how many resource instances are
claimed and released respectively for every alignment move. Both are defined for every
i ∈ [1..nγ̃ ] and k ∈ [1..nr] with (e, tµ) = γ̃(i) and ρr = IdR(k):

C↓ik = F(pr, t)((ε, µ
−1(ρr))) and C↑ik = F(t, pr)((ε, µ

−1(ρr))) (24)

and capacity vector k of length nr, defined as kk = |IdR(k)| for every k ∈ [1..nr].
X provides the solution of a new partial order of moves in γ̃ such that all violations

are resolved and the least number of partial order relations is removed. For the running
example, the additional arcs from the solution X are shown in red in Fig. 5.

We refer to App. A for the correctness proof of the ILP problem, where we show (1)
the effectiveness of each constraint, (2) that there always exists a solution, (3) that the
optimal solution has zero cost if and only if the composed alignment is not violating,
and (4) that each interval obtained in W (γ̃′V ) is alignable.

6 Conclusion

We have formulated the requirements for modeling and analyzing processes with inter-
case dependencies and argued that our previously proposed Petri net extension named
Resource Constrained ν-Petri nets meets them. This paper continues on work presented
in [24], where we showed that the traditional methods of aligning observed behavior
with the modeled one fall short when dealing with coevolving cases, as they consider
isolated cases only. The technique we present here aligns multiple cases simultane-
ously, exposing violations on inter-case dependencies. We developed and implemented
an approximation technique based on a composition of individual alignments and local
resolution of violations, which is an important advancement for the use of the technique
in practice.

There can be ambiguity in the interpretation of the exposed violations, e.g., was the
activity executed but not recorded, executed by an “incorrect” resource instance, or not
executed at all? In [24], we briefly touched upon relaxations of the synchronous prod-
uct model as a means to improve the deviations’ interpretability. One such relaxation
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helps to detect situations when a step required by the model was skipped in a process
execution, and the resources needed for the step were not available at the time when it
should have been executed. Adding “resource-free” model moves for transitions allows
to capture such deviations. Such special moves, when present in the alignment, reduce
the ambiguity and provide a better explanation, e.g., that the activity was not executed
at all, rather than it might also have been executed but not recorded. For future work,
we plan to extend and formalize the relaxations, and evaluate the insights obtained with
the alignments based on a real-life case study.

Acknowledgments. This work is done within the project “Certification of production
process quality through Artificial Intelligence (CERTIF-AI)”, funded by NWO (project
number: 17998).
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A Correctness of the ILP problem

We first show the effectiveness of each constraint:

– Constraint 20 ensures that the original partial order of the individual alignments is
preserved. Note that this also ensures g ⊀ g for every g ∈ γ̃;

– Const. 21 enforces that when a relation g ≺ g′ is removed, the opposite g′ ≺ g is
added:

Rij = 1 ∧Xij = 0 =⇒ Xij = 1 (25)

– Const. 22 enforces that the transitive closure is covered:

Xij = Xjk = 1 =⇒ Xik = 1 (26)

With Const. 22 together with g ⊀ g for every g ∈ γ̃ from Const. 20, there can be
no loops in the solution of the ILP problem;

– Const. 23 enforces that the solution is not violating with regard to any resource
instance capacities, which we show in Lemma 2.

Lemma 2. (Constraint 23 ensures there are no violations) With a composed align-
ment γ̃ = dc∈Idcγc and X a solution to the ILP problem formulated above. The per-
mutation γ̃′ = (¯̃γ

′
,≺γ̃′) of γ̃ following the partial order of X, i.e., ¯̃γ

′
= ¯̃γ and

≺γ̃′= {(γ̃′(i), γ̃′(j)) | i, j ∈ [1..nγ̃ ],Xij = 1}, is not violating (cf. Def. 19).

Proof. First, let us rewrite Const. 23 to

∀i∈[1..nγ̃ ]∀k∈[1..nr](1−Xi•)C
↓
•k −XT

i•C
↑
•k ≤ kk = |IdR(k)| (27)

For ever move index i ∈ [1..nγ̃ ], we can define Gi = {γ̃(j) | j ∈ [1..nγ̃ ],Xij =
Xji = 0} to be the maximal antichain in X that contains γ̃(i). (1 − Xij) and XT

ij)
relate to Gi as follows:

(1−Xij) = 1 ⇐⇒ γ̃(j) ∈ (⊥, Gi] and XT
ij = 1 ⇐⇒ γ̃(j) ∈ (⊥, Gi) (28)

We can now rewrite the Eq. 27 to match the property in Eq. 9, with abbreviations
C↓ρr ((e, tµ)) = F(pr, t)((ε, µ

−1(ρr))) and C↓ρr ((e, tµ)) = F(t, pr)((ε, µ
−1(ρr))).

Note that C↓jk = C↓IdR(k)(γ̃(j)) and C↑jk = C↑IdR(k)(γ̃(j)) for every j ∈ [1..nγ̃ ] and
k ∈ [1..nr]. For every i ∈ [1..nγ̃ ] and k ∈ [1..nr] with ρ = IdR(k), the following
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holds:

(1−Xi•)C
↓
•k −XT

i•C
↑
•k ≤ |ρ| (29)

⇐⇒
∑

j∈[1..nγ ]

(
(1−Xij)C

↓
jk −XT

ijC
↑
jk

)
≤ |ρ| (30)

⇐⇒
∑

g∈(⊥,Gi]

C↓ρ(g)−
∑

g∈(⊥,G)

C↑ρ(g) ≤ |ρ| (By Eq. 28) (31)

⇐⇒
∑

g∈(⊥,Gi)

(
C↓ρ(g)− C↑ρ(g)

)
+
∑
g∈G

C↓ρ(g) ≤ |ρ| (32)

⇐⇒ |ρ| −
∑

g∈(⊥,Gi)

(
C↓ρ(g)− C↑ρ(g)

)
+
∑
g∈G

C↓ρ(g) ≥ 0 (33)

⇐⇒ m̃((⊥, G))(pr)((ε, ρr)) +
∑
g∈G

C↓ρ(g) ≥ 0 (By Def. 15) (34)

ut

Next, we go over two important properties of the ILP problem. In Lemma 3, we
show that a solution respecting the constraints always exists for any composed align-
ment γ̃, and in Lemma 4 we show that if and only if γ̃ is not violating as defined in
Def. 19, the cost of the solution is 0.

Lemma 3. (There always exists a solution to the ILP problem.) With a composed align-
ment γ̃ = dc∈Idcγc and the ILP problem formulated as above, there exists a solution
for X such that all constraints hold.

Proof. We show by construction that there is always a solution X′ to the ILP problem,
which respects all constraints. Let there be a (possibly arbitrary) order in Idc, such that
cx denotes the xth case identifiers for every x ∈ [1..nc], with nc = |Idc|.

X′ =


Rc1 1 · · · 1
0 Rc2 · · · 1
...

...
. . .

...
0 0 · · · Rcnc

 (35)

with Rc = RIcIc for each c ∈ Idc the |γc|×|γc| submatrix containing only the elements
of the case.

Const. 20 X′ trivially respects this constraint as it contains Rc for each c ∈ Idc;
Const. 21 Let i ∈ Icx and j ∈ Icy be two indices. If x = y, this trivially holds, since X′

contains Rcx . Otherwise, by construction of Xij , Rij = 1 ∧Xij = 0 =⇒ j <
i =⇒ Xji = 1;

Const. 22 Let i, j, k ∈ Icx , Icy , Icz respectively. When x = y = z, this trivially holds, since
X′ contains Rcx which is transitively closed. Otherwise, we know by construction
of X′ that with x 6= y, X′ij = 1 ⇐⇒ x < y and X′ij = 0 ⇐⇒ x > y which we
use two prove the two cases:
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(1) X′ij = 1 ∧ x 6= y =⇒ x < y. X′jk = 1 =⇒ y ≤ z =⇒ x < z =⇒
X′ik = 1;

(2) X′jk = 1 ∧ y 6= z =⇒ y < z. X′ij = 1 =⇒ x ≤ y =⇒ x < z =⇒
X′ik = 1.

Hence X′ is transitively closed;
Const. 23 For every x ∈ [1..nc] and every i ∈ Icx , let Ji = {j | j ∈ [1..nγ̃ ], 1 −X′ij = 1}

and J ′i = {j | j ∈ [1..nγ̃ ],X′Tij = 1}, note that J ′ ⊆ J . We know by construction
of X′ that for every y ∈ [1..nc] and every j ∈ Icy , 1 −X′ij = 1 =⇒ y ≤ x and
X′Tij = 1 =⇒ y ≤ x. Therefore

∀y∈[1..nc]\{x}Icy ⊆ J
′ ∨ Icy ∩ J ′ = ∅ (36)

holds. Since γcy is an alignment for every y ∈ [1..nc], we have for every resource
index k ∈ [1..nr],

∑
j∈Icy

(C↓jk −C↑jk) = 0 which together imply that

∑
j∈J

C↓jk −
∑
j∈J′

C↑jk =
∑

y∈[1..nc]

 ∑
j∈J∩Icy

C↓jk −
∑

j∈J′∩Icy

C↑jk


=

∑
j∈J∩Icx

C↓jk −
∑

j∈J′∩Icx

C↑jk ≤ |IdR(k)|
(37)

since γcx is a non-violating alignment.
ut

Lemma 4. (Cost=0 if and only if the composed alignment is not violating.) With a
composed alignment γ̃ = dc∈Idcγc, the solution to the ILP problem formulated above
has zero cost if and only if γ̃ is not violating as defined in Def. 19, i.e., Eq. 9 does not
hold for γ̃.

Proof. We prove the two sides of the bi-implication:

( =⇒ ) Assuming the cost is zero, we have for every i, j ∈ [1..nγ̃ ], Rij = 1 =⇒ Xij = 1
by the objective function, and therefore {(γ̃(i), γ̃(j)) | i, j ∈ [1..nγ̃ ],Rij =
1} =≺R⊆≺X= {(γ̃(i), γ̃(j)) | i, j ∈ [1..nγ̃ ],Xij = 1}. Since X respects
Const. 23, R is not violating either;

(⇐= ) Assuming γ̃ is not violating, there exists a γ̃′ ∈ S(γ̃), such that the resource capac-
ities are respected. Any X such that ≺γ̃⊆≺γ̃′⊆≺X results in zero cost, since for
every i, j ∈ [1..nγ̃ ], Rij = 1 =⇒ Xij = 1. Furthermore, the cost can not be
negative as (1−Rij)Xij ≥ 1 for every i, j ∈ [1..nγ̃ ].

ut

Lastly, to fulfill the assumption in Sec. 5 that the intervals around violating an-
tichains are alignable, we show in Lemma 5 that this is the case for each interval in
W (γ̃′V ).

Lemma 5. (Each interval [A,B] ∈ W (γ̃′V ) is alignable) Let γ̃ = dc∈Idcγc be a
composed alignment and W (γ̃′V ) with γ̃′V = ∪i,j∈[1..nγ̃ ],Xij−Rij=1[γ̃(j), γ̃(i)] the
set of intervals obtained from the ILP problem formulated above with solution X.
For every [A,B] ∈ W (γ̃′V ), [A,B] is alignable, i.e., (by Def. 20) mA

∗−→ mB with
mA = m̃((⊥, A)) and mB = m̃((⊥, B]).
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Proof. Let [A,B] ∈ W (γ̃′V ) be any interval in W (γ̃′V ). We prove that mA
∗−→ mB by

construction of a subalignment γAB = (γ̄AB ,≺γAB ) constructed as follows:

γ̄AB =
⋃

(e,tµ)∈[A,B]∩Γs

{(�, tµ), (e,�)} (38)

≺γAB = ({((�, tµ(i)), (�, tµ(j))) | i, j ∈ [1..nγ ], γ(i), γ(j) ∈ [A,B] \ Γl,Xij = 1}
(39)

∪ {((e, tµ), (e′, t′µ)) | (e, tµ), (e′, t′µ)) ∈≺γ′L , (e,�), (e′,�) ∈ γAB})+

i.e., all synchronous moves are split into a corresponding model and log move and the
partial order for model moves is defined by X and for the log moves by the event log’s
partial order ≺L. There is a σ ∈ N(γAB)∗ such that mA

σ−→ mB because of two
properties of γAB :

– By Const. 23 and Lemma 2, ∀G∈A+(γAB),ρ∈supp(IdR)¬ viol(G);
– For every c ∈ Idc, we have, by construction of γAB and the ILP’s constraints,
γAB�Tc = [A,B]�Tc , with Tc = {tµ | tµ ∈ Tµ,∃vc∈V arc,vr∈V arr)µ((vc, vr)) =
(c, ∗)}. Therefore, γAB�c = γAB ∩ Γc is an alignment, with Γc = {(e, tµ) |
(e, tµ) ∈ γAB , case(e) = c ∨ tµ ∈ Tc}.

ut
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