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Abstract. Diabetic Retinopathy (DR) is a severe complication of dia-
betes that can cause blindness. Although effective treatments exist (no-
tably laser) to slow the progression of the disease and prevent blind-
ness, the best treatment remains prevention through regular check-ups
(at least once a year) with an ophthalmologist. Optical Coherence To-
mography Angiography (OCTA) allows for the visualization of the reti-
nal vascularization, and the choroid at the microvascular level in great
detail. This allows doctors to diagnose DR with more precision. In re-
cent years, algorithms for DR diagnosis have emerged along with the
development of deep learning and the improvement of computer hard-
ware. However, these usually focus on retina photography. There are no
current methods that can automatically analyze DR using Ultra-Wide
OCTA (UW-OCTA). The Diabetic Retinopathy Analysis Challenge 2022
(DRAC22) provides a standardized UW-OCTA dataset to train and test
the effectiveness of various algorithms on three tasks: lesions segmenta-
tion, quality assessment, and DR grading. In this paper, we will present
our solutions for the three tasks of the DRAC22 challenge. The obtained
results are promising and have allowed us to position ourselves in the
TOP 5 of the segmentation task, the TOP 4 of the quality assessment
task, and the TOP 3 of the DR grading task. The code is available at
https://github.com/Mostafa-EHD/Diabetic_Retinopathy_OCTA.

Keywords: Diabetic Retinopathy Analysis Challenge · UW-OCTA ·
Deep Learning · Segmentation · Quality Assessment · DR Grading.
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1 Introduction

Diabetes, specifically uncontrolled diabetes causing Diabetic Retinopathy (DR),
is among the leading causes of blindness. DR is a condition that affects approx-
imately 78% of people with a history of diabetes of 15 years or more [23]. In
the early stages, DR is considered a silent disease. For this reason, seeing an
ophthalmologist regularly, especially if you have diabetes, is essential to avoid
the risk of serious complications, including blindness.

DR is diagnosed by visually inspecting fundus images for retinal lesions such
as Microaneurysms (MA), Intraretinal Microvascular Anomalies (IRMA), ar-
eas of Non-Perfusion, and Neovascularization. Fundus photography and fundus
fluorescein angiography (FFA) are the two most commonly used tools for DR
screening. Traditional diagnosis of DR relies mainly on these two modalities,
especially for Proliferative Diabetic Retinopathy (PDR), which seriously endan-
gers visual health. However, fundus photography has difficulty detecting early
or small neovascular lesions, and FFA is an invasive fundus imaging that cannot
be used in allergic patients, pregnant women, or those with impaired liver and
kidney function.

Optical Coherence Tomography Angiography (OCTA) is a new non-invasive
imaging technique that generates volumetric angiographic images in seconds. It
can display both structural, and blood flow information [3]. Due to the quantity
and quality of the information provided by this modality, OCTA is being increas-
ingly used for diagnosing DR at the early stages. In addition, the Swept-Source
OCTA (SS-OCTA) allows the individual assessment of choroidal vasculariza-
tion and the Ultra-Wide Optical Coherence Tomography (UW-OCTA) imaging
modality has shown a more significant pathological burden in the retinal periph-
ery that was not captured by typical OCTA [26].

Several DR diagnosis algorithms have emerged in recent years through im-
proved computer hardware, deep learning, and data availability [15][14][25][8][1]
[2][13][19][9]. Some works have already used SS-OCTA to assess the qualita-
tive characteristics of DR [18] and others have used UW-OCTA on DR analysis
[26][17][8]. However, there is currently no work that can automatically analyze
DR using UW-OCTA. In the DR analysis process, the image quality of the
UW-OCTA must first be evaluated, and the best quality images are selected.
Then, DR analysis, such as lesion segmentation and PDR detection, is per-
formed. Therefore, it is crucial to build a full pipeline to perform automatic
image quality assessment, lesion segmentation, and PDR detection.

The Diabetic Retinopathy Analysis Challenge 2022 (DRAC22) provides a
standardized UW-OCTA dataset to train and test the effectiveness of various
algorithms.
DRAC22 is a first edition associated with MICCAI 2022 that offers three tasks
to choose from:

– Task 1: Segmentation of DR lesions.
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– Task 2: Image quality assessment.

– Task 3: Classification of DR.

This article will present our three proposed solutions to solve each task of
the DRAC22 challenge.

2 Materials and methods

2.1 Datasets

The instrument used to gather the dataset in this challenge was an SS-OCTA
system (VG200D, SVision Imaging, Ltd., Luoyang, Henan, China), which works
near 1050nm and features a combination of industry-leading specifications, in-
cluding an ultrafast scan speed of 200,000 AScans per second 12.

The following table summarizes the data collected by the DRAC22 Challenge
organizers. All images are 2D en-face images.

Table 1: DRAC 2022 datasets
Task # Training images # Test images

Task 1 - Segmentation 109 65

Task 2 - Quality assessment 665 438

Task 3 - Classification 611 386

The training set consists of 109 images and corresponding labels for the
first task. The dataset, as shown in Figure 1a, contains three different Diabetic
Retinopathy Lesions: Intraretinal Microvascular Abnormalities (1), Nonperfu-
sion Areas (2), and Neovascularization (3). The test set consists of 65 images.

For the second task, quality assessment, the organizers propose a dataset of
665 and 438 images for training and testing, respectively. These images (see Fig-
ure 1b) are grouped into three categories: Poor quality level (0), Good quality
level (1), and Excellent quality level (2).

The third dataset is dedicated to the classification task. It contains 611
images for learning and 386 for testing, grouped into three different diabetic
retinopathy grades as shown in Figure 1c: Normal (0), NPDR (1), and PDR (2).

1https://drac22.grand-challenge.org/Data/
2https://svisionimaging.com/index.php/en_us/home/

https://drac22.grand-challenge.org/Data/
https://svisionimaging.com/index.php/en_us/home/
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(a) Segmentation dataset

(b) Quality assessment dataset (c) Diabetic Retinopathy grading dataset

Fig. 1: DRAC22 Challenge Dataset

2.2 Task 1 - Segmentation

In this section, we introduce the models and techniques used to solve the seg-
mentation problem: nnU-Net and V-Net.

U-Net is a simple and successful architecture that has quickly become a
standard for medical image segmentation [16]. However, adapting U-Net to new
problems is not straightforward, as the exact architecture and the different pa-
rameters would have to be chosen. The no-new-U-Net (nnU-Net) method pro-
vides an automated end-to-end pipeline that can be trained and inferred on any
medical dataset for segmentation [6]. nnU-Net outperformed state-of-the-art ar-
chitectures in the Medical Decathlon Challenge3.

After analyzing the dataset of the segmentation task, we noticed that the
three labels overlapped on several images, so we opted to train three binary seg-
mentation models for the segmentation of each of the labels.

We first trained an nnU-Net model for each label. Initial results showed that
the trained nnU-Net for label 2 (nonperfusion areas) performed well. However,
the other two models trained on label 1 (intraretinal microvascular anomalies)
and label 3 (neovascularization) did not learn well, and the results were poor.
As a second solution, we trained a binary V-Net model for the segmentation of

3http://medicaldecathlon.com/results/

http://medicaldecathlon.com/results/
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each of the labels: 1 and 3. V-Net is a U-Net-based network that incorporates
residual blocks into the network. Residual linking encourages the training pro-
cess to converge faster [12]. The hyperparameters can be continuously tested to
improve segmentation performance over nnU-Net.

We observed that the model for label 3 tended to over-segment. To allevi-
ate this issue, we added a classification step to predict the probability that an
image contains label 3. The added classifier (based on ResNet) allowed us to
improve our results on the test base since an image that has been classified as
not containing label 3 will not be segmented. The models and parameters are
summarized in Table 2.

Table 2: Implementations of different labels
Segmentation

Task
Architecture Image Size Data Augmentation Loss Optimizer

Label 1 -
Intraretinal

Microvascular
Abnormalities

2D V-Net 1024×1024

RandomAffine
Rand2DElastic
Default Data
Augmentation

Dice loss

Adam
lr = 1e-3

ExponentialLR
(gamma = 0.99)

Label 2 -
Nonperfusion

Areas
2D nnU-Net

1024×1024
Normalization

Random rotations,
Random scaling,
Random elastic
Deformations,

Gamma correction
and mirroring

Dice loss +
Cross-entropy

loss

Adam
lr = 0.01

Label 3 -
Neovascularization

2D V-Net 1024×1024

RandomAffine
Rand2DElastic
Default Data
Augmentation

Dice loss

Adam
lr = 1e-3

ExponentialLR
(gamma = 0.99)

Label 3
Classifier

ResNet101 1024×1024
Default Data
Augmentation

Cross-entropy
loss

Adam
lr = 1e-4

weight decay=1e-4
ExponentialLR
(gamma = 0.99)

Dice and cross-entropy loss are used to train the nnU-Net network. The dice
loss formulation is adapted from the variant proposed in [6]. It is implemented
as follows:

Ldice = − 2

|K|
∑
k∈K

∑
i∈Iu

k
i v

k
i∑

i∈Iu
k
i +

∑
i∈Iv

k
i

(1)

Where u is the softmax output of the network and v is the one hot encoding
for the ground truth segmentation map. Both u and v have shape I ×K with
i ∈ I being the number of pixels in the training patch/batch and k ∈ K being
the classes.
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Adam optimizer is used to train the nnU-Net network with an initial learning
rate of 0.01. A five-fold cross-validation procedure is used, and the model has
been trained over 1000 epochs per fold with a batch size is fixed to 2. Whenever
the exponential moving average of the training losses did not improve by at least
5 × 10−3 within the last 30 epochs, the learning rate was reduced by factor 5.
The training was stopped automatically if the exponential moving average of
the validation losses did not improve by more than 5× 10−3 within the last 60
epochs, but not before the learning rate was smaller than 10−6 [6].

Dice loss (include background = False) is used to train the V-Net network.
Besides the default data augmentation (random crop, random flip, and random
rotation), RandomAffine and Rand2DElastic were also used. And mean Dice is
used to select the best checkpoint. The training epoch is 1000, the optimzer is
Adam, and the batch size is 3. Finally, for the classifier of label 3, the batch size
is 4 and the epoch is 500.

2.3 Task 2&3 - Quality assessment & Classification of DR

As both Task 2 and Task 3 involved three-labels classifications, the pipeline was
the same. To verify the performance of the different models, we used five-fold
cross-validation to test six architectures (17 backbones): ResNet [4], DenseNet
[5], EfficientNet [22], VGG [21], ConvNeXt [11], Swin-Transformer [10].
These backbones were pre-trained using ImageNet and originated from the timm
library [24]. We kept the original size of the image during training, i.e., 1024×1024.

We have performed several experiments to improve our models using dif-
ferent optimizers (SGD, Adam, AdamW, RMSprop), schedulers (ReduceLROn-
Plateau, ExponentialLR, LambdaLR, OneCycleLR), and loss functions. Among
the strategies we have tested:

1. Training with the Cross Entropy (CE)
2. Training with the Weighted Cross Entropy (WCE)
3. Training with the KappaLoss
4. Training with the WCE + λ ·KappaLoss
5. Training with the α·WCE + (1− α)·KappaLoss
6. Training with the WCE and finetuning with the KappaLoss

With:

– KappaLoss= 1 - Quadratic Weighted Kappa Score. The Quadratic Weighted
Kappa Score was computed using the TorchMetrics framework.

– λ is a balancing weight factor and α is a weight factor that decreases linearly
with the number of epochs.

We faced convergence issue during the training of our approaches with the
KappaLoss alone or in combination with WCE in our objective function. We
were not able to optimize the weights of our models correctly. The best results
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were obtained with the CE.

CE is used as a loss function, and Kappa is used to select the best checkpoint.
The default data augmentation and Adam optimizer with an initial learning rate
of 10−4 (weight decay=10−4) were used to train different backbones. The learn-
ing rate decay strategy is ExponentialLR with gamma equal to 0.99. The training
epoch is 1000 and the batch size is 4.

Once our baselines were trained, we proceeded to improve them. We used the
pseudo-labeling technique. Pseudo-labeling is a process that consists in adding
confidently predicted test data to the training data and retraining the models
[7]. Through pseudo-label learning, we improved the classification performance of
the model after obtaining a good baseline model. Fig. 2 illustrates our proposed
pseudo-label learning method.

Fig. 2: Our pseudo-label learning method.

According to the probabilities generated by the baseline model on the test
set, we have separated the result into two chunks: the first is the high confidence
data, and the second is the low confidence data. As with traditional pseudo-label
learning methods [7], we considered data with predicted classification probabili-
ties greater than 0.95 to be high-confidence and passed their probability through
the Softmax function to determine the pseudo-label.

Repeated training on hard-to-classify samples, like those involved in the On-
line Hard Example Mining method [20], can enhance the model’s performance.
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Therefore, we used data with probabilities between 0.5 and 0.65, and generated
pseudo-labels based on five backbones through hard voting. In order to ensure
the accuracy of pseudo-labeling of low-confidence data, the following filtering
rules were applied.

1. The baseline model results as pseudo-labels if at least two of the other four
backbones have the same result.

2. The results of the other four backbones as pseudo-labels if they are consis-
tent.

Those remaining cases cannot be pseudo-labeled, so their data will not be used.

Since our baseline model performed well, the high-confidence pseudo-labels
are more accurate, adding additional data to the training set can improve model
robustness.
By hard voting and developing filtering rules, we made the pseudo-labels as ac-
curate as possible for low-confidence data. With the help of this part of the data,
the model can make more accurate judgments on data without distinctive fea-
tures (with probabilities of between 0.65 and 0.9) and improve confidence levels
on the remaining uncertain data.
Both pseudo-labels were added to the training set, and the baseline model was
fine-tuned. Due to the small size of the second part of the pseudo-label data, we
repeated it twice. Furthermore, the results can be further enhanced by iterative
pseudo-label learning.

3 Results and discussion

3.1 Evaluation metrics

For the first task (segmentation), the Dice similarity coefficient (DSC) and the
intersection of union (IoU) are used to evaluate the performance of the segmen-
tation methods.

The Dice coefficient (also known as the Sørensen–Dice coefficient and F1
score) is defined as two times the area of the intersection of A and B, divided
by the sum of the areas of A and B. The IOU (Intersection Over Union, also
known as the Jaccard Index) is defined as the intersection’s area divided by the
union’s area.

For tasks 2 (quality assessment) and 3 (classification), the organizers propose
to use the quadratic weighted kappa and the area under the curve (AUC) to
evaluate the performance of classification methods. In particular, they used the
macro-AUC One VS One to calculate the AUC value.



Segmentation, Classification, and Quality Assessment for OCTA of DR 9

Table 3: Segmentation results
Version Label 1 Label 2 Label 3

V1 - nnU-Net 0.2278 0.6515 0.4621

V2 - V-Net 0.4079 0.6515 0.5259

V3 - V-Net + Classifier 0.4079 0.6515 0.5566

3.2 Segmentation results

The segmentation task dataset contains 109 images, and each image can have
one or more labels. In the training set, there are 86 images that contain the label
(1), 106 images that possess the label (2), and only 35 images with the label (3).

We first used the nnU-net method to test the segmentation of the three la-
bels. By analyzing the first results, we noticed that the amount of data for the
label (2) is relatively large, so nnU-Net obtained good performances (Dice =
0.6515). However, for labels (1) and (3), the model performed poorly. Therefore,
we chose V-Net as the backbone of our binary segmentation for both these labels.

We fine-tuned the V-Net by modifying the loss function, the optimizer, the
scheduler, the learning rate, etc. During these experiments, we divided the train-
ing dataset into two subsets: 90% for training and 10% for validation. After sev-
eral runs, we got good results; label (1) has a dice of 0.4079.

After the first tests, we noticed that the distribution of the 65 images in
the test set differed from the training set; more than 40 images in the V-Net
prediction result contained the label (3). Therefore, we improved our proposed
solution by adding a classifier that can detect whether the image contains the
label (3) or not.

After the training, the model classified 28 images in class (1), and the rest in
class (0), which means that only 28 images contain the label (3), and the others
are over-segmented. The label (3) was removed from all the images classified
as (0) by the counter-classifier. This step improved the segmentation results for
label (3) from 0.5259 to 0.5566.

3.3 Quality assessment results

The second task of the DRAC22 challenge concerns the image quality assess-
ment. The training set consists of 665 data, distributed as follows: 97 images
belonging to class (0) Poor quality level, 518 belonging to class (1) Good qual-
ity level, and 50 images belonging to class (2) Excellent quality level. The first
observation is that the data set is very unbalanced.
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We used a nested five-fold cross-validation strategy to evaluate different mod-
els and backbones. We respected the distribution of the training set in the gen-
eration of the folds. For each split, we used four folds for training and validation
(20% random as the validation set and 80% as the training set) and one fold for
testing. A suitable checkpoint is selected from the validation set, and the final
performance of the model is calculated using the test set (one-fold data). This
strategy avoids overfitting and provides a more accurate representation of the
model’s classification performance.

Table 4 summarizes the different backbones used and the results obtained.
The model performed poorly on the Fold 4 dataset. On the other hand, the
different backbones perform well on Folds 0, 1, 2, and 3. Therefore, we chose the
two most optimally performing checkpoints for each fold and tested them on the
test set. Their results are shown in Table 5. Val Kappa refers to the one-fold
test results in Table 4, whereas Test Kappa refers to the DRAC22 test dataset
results. The V5 - VGG19-Fold2 and V2 - VGG16-Fold0 checkpoints performed
the best out of the eight selected checkpoints. In order to optimize the use of
the training data, we selected the checkpoints V5 - VGG19-Fold2 and performed
fine-tuning (random 20% validation set) on the entire training dataset, which
gave us the baseline model V9 - VGG19-Finetune that has a kappa value of
0.7447 on the test set.

Table 4: Kappa results for different backbones on a one-fold test set.
Backbone Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Mean

Resnet50 0.7179 0.8247 0.7502 0.8409 0.5585 0.7384

Resnet101 0.7540 0.7857 0.7515 0.8060 0.6199 0.7434

Resnet152 0.8135 0.7600 0.8537 0.8559 0.5291 0.7624

Resnet200d 0.5488 0.7910 0.7889 0.8593 0.5486 0.7073

Densenet121 0.8525 0.7814 0.8299 0.7966 0.5274 0.7575

Densenet161 0.8357 0.7666 0.8761 0.8358 0.5569 0.7742

Densenet169 0.7942 0.7547 0.8680 0.7908 0.4468 0.7309

Densenet201 0.7980 0.8028 0.8289 0.8563 0.5132 0.7598

Efficientnet b0 0.7048 0.7617 0.7859 0.8246 0.5367 0.7227

Efficientnet b1 0.8267 0.7503 0.8349 0.7958 0.5759 0.7567

Efficientnet b2 0.8406 0.8039 0.8434 0.8563 0.5311 0.7750

Efficientnet b3 0.7710 0.7787 0.8821 0.7768 0.4801 0.7377

Efficientnet b4 0.8367 0.8202 0.8855 0.8468 0.5254 0.7829

VGG11 0.8420 0.7730 0.8795 0.8606 0.6199 0.7950

VGG16 0.8592 0.8231 0.8551 0.9168 0.5077 0.7923

VGG19 0.8787 0.8042 0.8933 0.8632 0.3192 0.7517

VGG13 0.8302 0.8409 0.8504 0.8233 0.6704 0.8030

Convnext base 0.8343 0.8118 0.8531 0.8516 0.5451 0.7792

Swin base patch4 window7 224 0.7560 0.7181 0.7236 0.7677 0.2665 0.6464
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Table 5: Performance of different checkpoints on the test set.
Check-points Val Kappa Test Kappa

V1 - VGG19-Fold0 0.8787 0.7034

V2 - VGG16-Fold0 0.8592 0.7202

V3 - VGG13-Fold1 0.8409 0.7045

V4 - VGG16-Fold1 0.8231 0.6991

V5 - VGG19-Fold2 0.8933 0.7333

V6 - Efficientnet b4-Fold2 0.8855 0.7184

V7 - VGG16-Fold3 0.9168 0.6987

V8 - VGG19-Fold3 0.8632 0.7154

V9 - VGG19-Finetune 0.8548 0.7447

We generated pseudo-labels for each image on the test set based on the
baseline model using the classification probabilities. As illustrated in Fig. 2, we
treated prediction results for data with probabilities greater than 0.95 (part 1)
as pseudo-labels. In cases where the classification probability was between 0.5
and 0.65 (part 2), pseudo-labels were generated using a hard-voting method.

Using all the training sets, we retrained the best-performing four backbones
based on the mean of each checkpoint in Table 4. Together with the baseline
model, these four checkpoints were hard-voted. Table 6 shows the hard voting
results for some of the low-confidence data. The pseudo-labels for 14 of the 20 (6
Unsure) part 2 data were generated and added to the training set by repeating
them twice.

Table 6: Hard voting to produce pseudo labels.
Image VGG19 VGG13 VGG16 VGG11 Efficientnet b4 Pseudo label

952.png 2 1 2 1 1 Unsure

986.png 2 2 1 2 1 2

1220.png 1 2 1 1 2 1

1283.png 2 1 1 1 1 1

901.png 2 1 1 2 1 Unsure

897.png 2 2 2 2 2 2

611.png 1 1 2 1 1 1

Table 7 illustrates the effectiveness of our pseudo-label learning method. Fol-
lowing pseudo-label learning with the data from part 1, the Kappa value in-
creased from 0.7447 to 0.7484. As a result of pseudo-label learning using data
from part 2, the Kappa value increased from 0.7447 to 0.7513. The results in-
dicate that both parts of the data are essential for improving the classification
performance. The baseline model’s classification performance was significantly
improved with a Kappa value of 0.7589 when both parts of the data were used
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for pseudo-label learning.

In addition to the baseline model VGG19, we also performed pseudo-label
learning on VGG16, resulting in a Kappa of 0.7547. Thus, our Kappa improved
to 0.7662 after performing the model ensemble on VGG19 and VGG16.

This result was used to update the pseudo-labels in the second round. There
are 399 images from part 1, and 7 from part 2 (4 pseudo labels, 3 unsure). As a
result of the first round of pseudo-label learning, the model was also enhanced.
The updated pseudo-labels were used to finetune VGG19, resulting in a kappa
value of 0.7803.

Table 7: Pseudo-label Ablation study
Method Val Kappa Test Kappa

VGG19 (Baseline) 0.8548 0.7447

VGG19-Pseudo-label
part 1

0.9458 0.7484

VGG19-Pseudo-label
part 2

0.8830 0.7513

VGG19-Pseudo-label
part 1 + part 2

0.8733 0.7589

3.4 Classification results

The objective of this third task is DR grading. The training dataset groups 611
patients into three grades: label (0) - Normal - (329 images), label (1) - NRDP
- (212 images), and finally label (2) - RDP - (70 images).

To process this task, we followed the same steps as task 2. Firstly, we per-
formed five-fold cross-validation and selected the eight best-performing check-
points on the test set. The two most appropriate checkpoints were selected based
on the kappa in the test set: V1 - DenseNet121-Fold1 and V2 - Efficientnet b3-
Fold3. The baseline model was then fine-tuned using all the training sets: V3
- DenseNet121-Finetune and V4 - Efficientnet b3-Finetune. Secondly, we gen-
erated pseudo-labels based on the classification results of V3 - DenseNet121-
Finetune. In the first round of pseudo-label learning, there were 266 images for
part 1, and 20 images for part 2 (15 pseudo labels, 5 unsure). We then per-
formed the first round of pseudo-label learning for DenseNet121 and Efficient-
net b3. Next, we performed a model ensemble (Kappa = 0.8628) and obtained
new pseudo-labels. In the second round of pseudo-label learning, there were 332
images for part 1 and 12 images for part 2 (7 pseudo labels, 5 unsure). After
the second round of pseudo-label learning, we performed a model ensemble on
DenseNet121 and Efficientnet b3 and obtained the final Kappa 0.8761.
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Table 8: Classification results for different steps
Chick-point Val Kappa Test Kappa

V1 - DenseNet121-Fold1 0.8275 0.8100

V2 - Efficientnet b3-Fold3 0.8776 0.8069

V3 - DenseNet121-Finetune 0.9335 0.8370

V4 - Efficientnet b3-Finetune 0.9728 0.8239

V5 - DenseNet121-First round 0.9542 0.8499

V6 - Efficientnet b3-First round 0.9112 0.8545

V7 - DenseNet121-Second round 0.9674 0.8520

V8 - Efficientnet b3-Second round 0.9558 0.8662

4 Conclusion

In this article, we summarized our participation in the DRAC22 challenge. We
showed that despite the efficiency of the nnU-Net method in the segmentation
task, it does not always give good results, especially when the data set is rela-
tively small. However, the fine-tuning of the V-Net model allowed us to overcome
this limitation by obtaining better results for both labels (1) and (3).

During the test phase, we noticed many images containing label (3), which
was inconsistent with the distribution of the training set. Adding an independent
model for the binary classification of the images (either containing label (3) or
not) before the segmentation improved our result for this label.

For tasks 2 and 3, the pseudo-labeling allowed us to improve our models pro-
gressively. Indeed, training baselines, using them to label the test set, and then
keeping the labeled images with high confidence allows the model to have more
data in the second training round. This iterative process allowed our models to
perform better.

We have also shown that ensembles of models can generate good performance
and allow us to label low-confident data. Indeed, the ensembles can overcome
bias and variance from different architectures. Models help each other and cancel
each other’s errors, resulting in higher accuracy.

As for our work in progress, we are combining tasks for better segmentation
and classification. We think that using the segmentation results could guide the
classifier of task 3. Also, we noticed that when the image quality is poor, this
image is still segmented in task 1, giving us segmented regions that should not
exist. So we believe that using the models of task 2 before the segmentation
could improve the performance.
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