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Abstract. This work presents a mitosis detection method with only
one vanilla Convolutional Neural Network (CNN). Our method consists
of two steps: given an image, we first apply a CNN using a sliding window
technique to extract patches that have mitoses; we then calculate each
extracted patch’s class activation map to obtain the mitosis’s precise
location. To increase the model performance on high-domain-variance
pathology images, we train the CNN with a data augmentation pipeline,
a noise-tolerant loss that copes with unlabeled images, and a multi-
rounded active learning strategy. In the MIDOG 2022 challenge, our
approach, with an EfficientNet-b3 CNN model, achieved an overall F1
score of 0.7323 in the preliminary test phase, and 0.6847 in the final test
phase (task 1). Our approach sheds light on the broader applicability of
class activation maps for object detections in pathology images.

Keywords: Mitosis detection · Domain shift · Convolutional neural net-
work · Class activation map.

1 Introduction

Mitotic activity is a crucial histopathological indicator related to cancer ma-
lignancy and patients’ prognosis [7]. Because of its importance, a considerable
amount of literature has proposed datasets [2,3] and deep learning models [11,12]
for mitosis detection. To date, a number of state-of-the-art deep learning ap-
proaches detect mitoses with the segmentation task [10,16]. However, these meth-
ods usually require generating pixel-level segmentation maps as ground truth.
Another school of techniques utilizes object detection with a two-stage setup
— a localization model (e.g., RetinaNet) is employed for extracting interest lo-
cations, followed by a classification model to tell whether these locations have
mitoses [2,11,12]. Such a two-stage setup was reported to improve the perfor-
mance of mitosis detection compared to that with the localization model only
[2].
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Since adding a classification model can improve the performance, we argue
that using only one CNN model for mitosis detection is also viable. Because
CNNs cannot directly report the location of mitosis, previous works either mod-
ified the structure of CNNs [6], or used CNNs with a small input size to reduce
the localization errors [14]. Instead, our approach extracts the location of mitoses
with the class activation map (CAM) [17], which allows CNNs to accept a larger
input size for more efficient training. Also, our approach is model-agnostic, and
can work with vanilla CNNs because calculating CAMs does not require chang-
ing the network structure.

We validated our proposed method in MItosis DOmain Generalization (MI-
DOG) 2022 Challenge [1]. The challenge training set consists of 403 Hematoxylin
& Eosin (H&E) regions of interest (ROIs, average size=5143×6860 pixels), cov-
ering six tumor types scanned from multiple scanners. 354/403 ROIs have been
labeled and have 9,501 mitotic figures. The preliminary test set includes 20 cases
from four tumor types, and the final test set has 100 independent tumor cases
from ten tumor types. Given the dataset’s high variance, we employed three
techniques to improve the CNN’s performance:

1. An augmentation pipeline with balanced-mixup [8] and stain augmentation
[14];

2. The utilization of unlabeled images for training (treated as negative), and
training with the Online Uncertainty Sample Mining (OUSM) [15] to gain
robustness with noisy labels;

3. A multi-rounded, active learning training strategy that adds false-positive,
false-negative, and hard-negative patches after each round of training.

2 Methods

2.1 Extracting Patches for Initial Training

We randomly used ∼ 90% of the image instances in the MIDOG 2022 Challenge
to generate the training set and ∼ 10% for the validation set. To maximally
utilize the dataset, we included unlabelled images in the training set and treated
them as negative images (i.e., no mitoses inside). For each image, we extracted
patches with the size of 240 × 240 × 3 pixels surrounding the location of each
annotation (provided by the challenge) and placed them into the train/validation
set.

2.2 Model Training

We trained an EfficientNet-b3 [13] model (input size: 240 × 240 × 3) with pre-
trained ImageNet weights. Here, we tried to improve model performance by con-
structing an online data augmentation pipeline. The pipeline includes general
image augmentation techniques, including random rotation, flip, elastic trans-
form, grid distortion, affine, color jitter, Gaussian blur, and Gaussian noise.
Besides, we added two augmentation methods – stain augmentation [14] and
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Fig. 1. (a) Illustration of the active learning training strategy used in this work; (b)
Examples of augmented patches according to our augmentation pipeline; (c) Overall
data processing pipeline our approach: detecting mitosis using a convolution neural
network and the class activation map.

balance-mixup [8] – to deal with the domain shift in pathology images. Exam-
ples of augmented patches are shown in Figure 1(b). The model was trained
with an SGD optimizer with momentum 0.9, a Cosine Annealing learning rate
scheduler with warm restart (max LR=6×10−4). Since we treated all unlabeled
images as negative, we further used an OUSM[15] + COnsistent RAnk Logits
(CORAL) loss [4] to deal with noisy labels. Each round of training had 100
epochs, and we selected the model with the highest F1 score on the validation
set for inferencing.

2.3 Inferencing

We slid the trained EfficientNet on train and validation images with window
size 240 × 240 and step-size 30. We then cross-referenced the CNN predictions
with the ground truth. Here, we define a positive window classification as a
true-positive if mitoses were inside the window and a false-positive otherwise.
We further define false-negative if no positive windows surround a mitosis anno-
tation.

2.4 Incrementing the Patch Dataset with Active Learning

We employed a multi-round active learning process to boost the performance
of the EfficientNet (Figure 1(a)). Each round starts with the model training on
the current train/validation set (Section 2.2). Then, the best model is selected
and applied to the images (Section 2.3). After that, false-positive, false-negative,
and hard-negative patches are added to the train/validation set. The procedure
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was repeated six times until the model’s F1 score on the validation set does
not increase. Eventually, there are 103,816 patches in the final training set, and
23,638 in the validation set.

2.5 Extracting Mitosis Locations with CAMs

We used the best model from the final round in Section 2.4 for the test im-
ages. A window with a CNN probability > 0.84 was considered positive, and
non-maximum suppression with a threshold of 0.22 was used to mitigate the
overlapping windows. For each positive window, we calculated the CAM with
GradCAM++ [5], and extracted the hotspot’s centroid as the mitosis location
(Figure 1(c)). Examples of CAMs are shown in Figure 2(a). Specific numbers
and thresholds were selected according to the best F1 performance from the
validation images.

3 Results

On the preliminary test phase of the MIDOG 2022 Challenge, our approach
achieved an overall F1 score of 0.7323, with 0.7313 precision and 0.7333 recall.
In the final test phase of the challenge (task 1), our approach achieved the F1
score of 0.6847 (precision:0.7559, recall: 0.6258). In sum, our approach is 2.34%
higher than the baseline RetinaNet approach regarding the overall F1 score in
the preliminary test phase, but 4.21% lower in the final test phase. Please refer
to the Grand-Challenge Leader-board5 for more details of the test result.

a b

Fig. 2. Examples of positive patches detected by CNN and corresponding CAMs gen-
erated by GradCAM++ from image 240.tiff. (a) Patch samples and CAMs if there
is one mitosis inside (pointed by the green arrow); (b) Patch samples and CAMs if
there are multiple mitoses inside. Note that generated CAMs might not report strong
signals for some mitoses.

5 https://midog2022.grand-challenge.org/evaluation/

final-test-phase-task-1-without-additional-data/leaderboard/

https://midog2022.grand-challenge.org/evaluation/final-test-phase-task-1-without-additional-data/leaderboard/
https://midog2022.grand-challenge.org/evaluation/final-test-phase-task-1-without-additional-data/leaderboard/
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4 Discussion & Conclusion

Although CAMs are primarily used for explaining CNN classifications, we demon-
strate their potential usage to help detect mitoses in H&E images. We believe our
approach has the potential to work with mobile/edge devices, which have limited
computational power and are not optimized for special-structured deep-learning
models.

It is noteworthy that CAMs might fail to highlight all mitoses when there
are multiple in an image. As shown in Figure 2(b), if there were multiple mitoses
inside one positive patch, CAMs might report a strong signal for one mitosis,
while giving weak signals for others. However, we argue that our approach as-is
can still be helpful in diseases where mitosis is not a high-prevalent histological
pattern (e.g., meningiomas [9]).

On the other hand, we believe that the limitation is partly caused by using
classification models for localization tasks: given a patch with multiple mitoses,
a CNN only needs to find at least one to predict it as positive. As such, other
mitoses are more or less ignored. To compensate for the limitation, we suggest
future works to improve the quality of CAMs by aligning them with ground-
truth mitosis location maps. For example, a “CAM-loss” might be designed to
penalize the misalignment between the CAM and mitosis location heatmaps [18].
Different from the segmentation task, generating mitosis location maps does not
require pixel-level segmentation masks: simply applying a Gaussian kernel over
the locations of mitoses can generate a mitosis location map similar to Figure 2.
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6. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection
in breast cancer histology images with deep neural networks. In: International
conference on medical image computing and computer-assisted intervention. pp.
411–418. Springer (2013)

7. Cree, I.A., Tan, P.H., Travis, W.D., Wesseling, P., Yagi, Y., White, V.A.,
Lokuhetty, D., Scolyer, R.A.: Counting mitoses: Si (ze) matters! Modern Pathology
34(9), 1651–1657 (2021)
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