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Abstract. Surface matching usually provides significant deformations
that can lead to structural failure due to the lack of physical policy. In
this context, partial surface matching of non-linear deformable bodies is
crucial in engineering to govern structure deformations. In this article, we
propose to formulate the registration problem as an optimal control prob-
lem using an artificial neural network where the unknown is the surface
force distribution that applies to the object and the resulting deforma-
tion computed using a hyper-elastic model. The optimization problem
is solved using an adjoint method where the hyper-elastic problem is
solved using the feed-forward neural network and the adjoint problem
is obtained through the backpropagation of the network. Our process
improves the computation speed by multiple orders of magnitude while
providing acceptable registration errors.

Keywords: Optimal control · Artificial neural network · Hyper-elasticity.

1 Introduction

We consider an elastic shape-matching problem between a deformable solid and
a point cloud. Namely, an elastic solid in its reference configuration is represented
by a tridimensional mesh, while the point cloud represents a part of the solid
boundary in a deformed configuration. The objective of the procedure is not only
to deform the mesh so that its boundary matches the point cloud, but also to
estimate the displacement field inside the object.

This situation also arises in computer-assisted liver surgery, where augmented
reality is used to help the medical staff navigate the operation scene [3]. Most
methods for intra-operative organ shape-matching revolve around a biomechan-
ical model to describe how the liver is deformed when forces are applied to its
boundary. Sometimes, a deformation is created by applying forces [13] or con-
straints [11; 7] to enforce surface correspondence. Other approaches prefer to
solve an inverse problem, where the final displacement minimizes a cost func-
tional among a range of admissible displacements [5]. However, while living tis-
sues are known to exhibit a highly nonlinear behavior [8], using hyperelastic
models in the context of real-time shape matching is prohibited due to high
computational costs. For this reason, the aforementioned methods either fall
back to linear elasticity [5] or to the linear co-rotational model [13]. In this
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paper, we perform real-time hyperelastic shape matching by predicting nonlin-
ear displacement fields using a neural network. The network is included in an
adjoint-like method, where the backward chain is executed automatically using
automatic differentiation.

Neural networks are used to predict solutions to partial differential equa-
tions, in compressible aerodynamics [14], structural optimization [15] or astro-
physics [6]. Here we work at a small scale, but try to obtain real-time simulations
using complex models. Also, the medical image processing literature is full of
networks that perform shape-matching in one step [12]. However, the range of
available displacement fields is limited by the training dataset of the network,
and thus less robust to unexpected deformations. On the other hand, assigning a
very generic task to the network results in a very flexible method, where details
of the physical model, including the range of forces that can be applied to the
liver and the zones where they apply may be chosen after the training. Therefore,
our shape-matching approach provides a good compromise between the speed of
learning-based methods with the flexibility of standard simulations. We want to
mention that for the rest of this article due to how the method is formulated we
interchangeably use the terms "shape-matching" and "registration".

We start by presenting the method split into three parts. First, the optimiza-
tion problem; second, the used neural network and finally, the adjoint method
computed using an automatic differentiation framework.

We then present the results considering a toy problem involving a square
section beam and a more realistic one involving a liver.

2 Methods

2.1 Optimization problem

To model the registration problem, we use the optimal control formulation in-
troduced in Mestdagh and Cotin [9]. The deformable object is represented by a
tetrahedral mesh, endowed with a hyperelastic model. In its reference configura-
tion, the elastic object occupies the domain Ω0, whose boundary is ∂Ω0. When
a displacement field u is applied to Ω0, the deformed domain is denoted by Ωu,
and its boundary is denoted by ∂Ωu as shown in Figure 1. Applying a surface
force distribution g onto the object boundary results in the elastic displacement
ug, solution to the static equilibrium equation

F(ug) = g, (1)

where F is the residual from the hyperelastic model. Displacements are dis-
cretized using continuous piecewise linear finite element functions so that the
system state is fully known through the displacement of mesh nodes, stored in u.
Note that g contains the nodal forces that apply on the mesh vertices. As we
only consider surface loadings, nodal forces are zero for nodes inside the domain.
Finally, the observed data are represented by a point cloud Γ = {y1, . . . , ym}.
We compute a nodal force distribution that achieves the matching between ∂Ωug
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Fig. 1: Schematic of the problem which we are trying to optimize for.
and Γ by solving the optimization problem

min
g∈G

Φ(g) + α
2 ‖g‖

2 (2)

where Φ(g) = J(ug), (3)

where, α > 0 is a regularization parameter, G denotes the set of admissible nodal
forces distributions, and J is the least-square term

J(u) = 1
2m

m∑
j=1

d2(yj , ∂Ωu). (4)

Here, d(y, ∂Ωu) = minx∈∂Ωu ‖y − x‖ denotes the distance between y ∈ Γ
and ∂Ωu. The functional J measures the discrepancy between ∂Ωu and Γ , and
it evaluates to zero whenever every point y ∈ Γ is matched by ∂Ωu.

A wide range of displacement fields u are minimizers of problem (2), but
most of them have no physical meaning. Defining a set of admissible controls
G is critical to generate only displacements that are consistent with a certain
physical scenario. The set B decides, among others, on which vertices nodal
forces may apply, but also which magnitude they are allowed to take. Selecting
zones where surface forces apply is useful to obtain physically plausible solutions.

2.2 A neural network to manage the elastic problem

Nonlinear elasticity problems are generally solved using a Newton method, which
yields very accurate displacement fields at a high computational cost. In this
paper, we give a boost to the direct solution procedure by using a pre-trained
neural network to compute displacements from forces. This results in much faster
estimates, while the quality of solutions depends on the network training.

Artificial neural networks are composed of elements named artificial neurons
grouped into multiple layers. A layer applies a transformation on its input data
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and passes it to the associated activation layer. The result of this operation is
then passed to the next layer in the architecture. Activation functions play an
important role in the learning process of neural networks. Their role is to apply
a nonlinear transformation to the output of the associated layers thus greatly
improving the representation capacity of the network.

While a wide variety of architectures are possible we will use the one proposed
by Odot et al. [10]. It consists of a fully-connected feed-forward neural network
with 2 hidden layers (see Figure 2).

Fig. 2: The proposed architecture is composed of 4 fully connected layers of size
the number of degrees of freedom with a PReLU activation function. The input
is the nodal forces and the output is the respective nodal displacements.

The connection between two adjacent layers can be expressed as follows

zi = σi(Wizi−1 + bi) for 1 6 i 6 n+ 1, (5)

where n is the total number of layers, σ(.) denotes the element wise activation
function, z0 and zn+1 denotes the input and output tensors respectively, Wi

and bi are the trainable weight matrices and biases in the ith layer.
In our case the activation functions σ(.) are PReLU [4], which provides a

learnable parameter a, allowing us to adaptively consider both positive and
negative inputs. From now on, we denote the forward pass operation in the
network by

ug = N(g). (6)

2.3 An adjoint method involving the neural network

We now give a closer look at the procedure to evaluate Φ and its derivatives. We
use an adjoint method, where the only variable controlled by the optimization
solver is g. As J only operates on displacement fields, the physical model plays
the role of an intermediary between these two protagonists. The adjoint method
is well suited to the network-based configuration, as the network can be used as
a black box.
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In a standard adjoint procedure, a displacement is computed from a force
distribution by solving (1) using a Newton method, and it is then used to eval-
uate Φ(g). The Newton method is the algorithm of choice when dealing with
non-linear materials, it iteratively solves the hyper-elastic problem producing
accurate solutions. This method is also known for easily diverging when the load
is reaching a certain limit that depends on the problem. To compute the defor-
mation, one requires the application of multiple substeps of load which highly
increases the computation times. The backward chain requires solving an adjoint
problem to evaluate the objective gradient, namely

∇Φ(g) = pg where ∇F(ug)Tpg = ∇J(ug). (7)

In (7), the adjoint state pg is solution to a linear system involving the hyper-
elasticity Jacobian matrix ∇F(ug). When the network is used, however, the
whole pipeline is much more straightforward, as the network forward pass is
only composed of direct operations. The network-based forward and backward
chains read

Φ(g) = J ◦N(g) and ∇Φ(g) = pg = [∇N(g)]T∇J(ug), (8)

respectively. On a precautionnary basis, let us take a brief look at the (linear)
adjoint operator ∇N(g)T. When ∇N(g)T is applied, the information propagates
backward in the network, following the same wires as the forward pass. The
displacement gradient ∇J(ug) is fed to the output tensor sn+1 and the adjoint
state is read at the network entry s0. In between, the relation between two layers
is the adjoint operation to (5). It reads

si−1 = WT
i ∇σi(Wizi−1 + bi) si for 1 6 i 6 n+ 1, (9)

where ∇σi(Wizi−1 + bi) is a diagonal matrix saved during the forward pass.
The network-based adjoint procedure is summarized in Algorithm 1, keeping

in mind the backward chain is handled automatically. Given a nodal force vector
g, evaluating Φ(g) and ∇Φ(g) requires one forward pass and one backward pass
in the network. Then, (2) may be solved iteratively using a standard gradient-
based optimization algorithm. Because both network passes consist only of direct
operations, the optimization solver is less likely to fail for accuracy reasons,
compared to a Φ evaluation based on an iterative method.

Algorithm 1: Network-based adjoint method to evaluate Φ.
Data: Current iterate g
Perform the forward pass ug = N(g)
Evaluate J(ugv) and ∇J(ug)
Perform the backward pass pg = [∇N(g)]T∇J(ug)
Result: ∇Φ(g) = pg
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3 Results

Our method is implemented in Python. To be more specific, we use PyTorch to
handle the network and evaluate J on the GPU, while the optimization solver
is a limited memory BFGS algorithm [1] available in the Scipy package. Our
numerical tests run on a Titan RTX GPU and AMD Ryzen 9 3950x CPU, with
32 GiB of RAM.

3.1 Surface-matching tests on a beam mesh

To assess the validity of our method, we first consider a toy problem involving a
square section beam with 304 hexahedal elements. The network is trained using
20,000 pairs (g,ug), computed using a Neo-Hookean material law with a Young
modulus E = 4, 500 Pa and a Poisson ratio ν = 0.49.

We create 10,000 additional synthetic deformations of the beam, distinct
from the training dataset, using the SOFA finite element framework [2]. Fig-
ure 3 shows three examples of synthetic deformations, along with the sampled
point clouds. Generated deformations include bending (Figure 3a), torsion (Fig-
ure 3c) or a combination of them (Figure 3b). For each deformation, we sample
the deformed surface to create a point cloud. We then apply our algorithm
with a relative tolerance of 10−4 on the objective gradient norm. We computed
some statistics regarding the performance of our method over a series of 10,000
different scenarios and obtained the following results: mean registration error:
6×10−5±6.15×10−5, mean computation time: 48 ms ±19 ms and mean number
of iterations: 27 ± 11.

(a) Reg. error: 5.9 × 10−5,
time: 0.07 s, iterations: 13

(b) Reg. error: 6.6×10−5 m,
time: 0.09 s, iterations: 15

(c) Reg. error: 3.4 × 10−5,
time: 0.115 s, iterations: 19

Fig. 3: Deformations from the test dataset. The red dots represent the target
point clouds, and the color map represents the Von Mises stress error of the
neural network prediction.
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Using a FEM solver, each sample of the test dataset took between 1 and 2
seconds to compute. This is mostly due to the complexity of the deformations
as shown in Figure 3. Such displacement fields require numerous costly Newton-
Raphson iterations to reach equilibrium. The neural network provides physical
deformations in less than a millisecond regardless of the complexity of the force
or resulting deformation, which highly improves the computation time of the
method. From our analysis, the time repartition of the different tasks in the
algorithm is pretty consistent, even with denser meshes. Network predictions
and loss function evaluations represent 10% to 15% each, gradient computations
represent up to the last 80% of the whole optimization process. This allows us
to reach an average registration error of 5.37× 10−5 in less time than it takes to
compute a single simulation of the problem using a classic FEM solver.

Due to the beam shape symmetry, some point clouds may be compatible with
several deformed configurations, resulting in wrong displacement fields returned
by the procedure. However, our procedure achieved a satisfying surface matching
in each case. These results on a toy scenario prove that our algorithm provides
fast and accurate registrations.

In the next section, we apply our method in the field of augmented surgery
with the partial surface registration of a liver and show that with no additional
computation our approach produces with satisfying accuracy the forces that
generate such displacements.

3.2 An application in augmented surgery and robotics

We now turn to another test case involving a more complex domain. The set-
ting is similar to [9, Sect. 3.2]. In this context, a patient-specific liver mesh is
generated from tomographic images and the objective is to provide augmented
reality by registering, in real-time, the mesh to the deformed organ. During the
surgery, only a partial point cloud of the visible liver surface can be obtained.
The contact zones with the surgical instruments can also be estimated. In our

Fig. 4: Mesh of the liver used in this section. Composed of 3,046 vertices and
10,703 tetrahedral elements which represents a challenge compared to the one
used in Section 3.1
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case, the liver mesh contains 3,046 vertices and 10,703 tetrahedral elements. Ho-
mogeneous Dirichlet conditions are applied at zones where ligaments hold the
liver, and at the hepatic vein entry. Like previously, we use a Neo-Hookean con-
stitutive law with E = 4, 500 Pa and ν = 0.49, and the network is trained on
20,000 force/displacement pairs. We create 5 series of synthetic deformations by
applying a variable local force, distributed on a few nodes, on the liver mesh
boundary. For each series, 50 incremental displacements are generated, along
with the corresponding point clouds. The network-based registration algorithm
is used to update the displacement field and forces between two frames. We also
run a standard adjoint method involving the Newton algorithm, to compare with
our approach. As the same mesh is used for data generation and reconstruction,
the Newton-based reconstruction is expected to perform well.

3.3 Liver partial surface matching for augmented surgery

In this subsection, we present two relevant metrics: target registration error
and computation times. In augmented surgery, applications such as robot-aided
surgery or holographic lenses require accurate calibrations that rely on regis-
tration. One of the most common metrics in registration tasks is the target
registration error (TRE), which is the distance between corresponding markers
not used in the registration process. In our case we work on the synthetic de-
formation of a liver, thus, the markers will be the nodes of the deformed mesh.
The 5 scenarios present similar results with TRE between 3.5 mm and 0.5 mm.
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Fig. 5: Average target registration error and computation times of each sequence.

Such errors are entirely acceptable and preserve the physical properties of the
registered mesh. We point out that the average TRE for the classic method is
around 0.1 mm which shows the impact of the network approximations.
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Due to the non-linearity introduced by the Neo-Hookean material used to
simulate the liver we need multiple iterations to converge toward the target
point cloud. Considering the complexity of the mesh, computing a single itera-
tion of the algorithm using a classical solver takes multiple seconds which leads
to an average of 14 minutes per frame. Our proposed algorithm uses a neural
network to improve the computation speed of both the hyper-elastic and ad-
joint problems. The hyper-elastic problem takes around 4 to 5 milliseconds to
compute while the adjoint problem takes around 11 ms. This leads to great
improvement in convergence speed as seen in Figure 3.3 where on average we
reduce the computation time by a factor of 6000.

3.4 Force estimation for robotic surgery

In the context of liver computer-assisted surgery, the objective is to estimate
a force distribution supported by a small zone on the liver boundary. Such a
local force is for instance applied when a robotic instrument manipulates the
organ. In this case, it is critical to estimate the net force magnitude applied
by the instrument, to avoid damaging the liver. To represent the uncertainty

(a) Frame 26

(b) Frame 50

Fig. 6: Synthetic liver deformations and force distributions (left), reconstructed
deformations and forces using the Newton method (middle) and the network
(right) for test case 3.

about the position of the instruments the reconstructed forces are allowed to be
nonzero on a larger support than the original distribution. Figure 6 shows the
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reference and reconstructed deformations and nodal forces for three frames of
the same series. While the Newton-based reconstruction looks similar to the ref-
erence one, network-based nodal forces are much noisier. This is mostly due
to the network providing only an approximation of the hyperelastic model.
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Fig. 7: Force estimation error of the 5
sequences using our method, in red the
average force reconstruction error with
the classical method.

The great improvement in speed comes
at the cost of precision. As shown
in Figure 6 the neural network pro-
vides noisy force reconstructions. This
is mostly due to prediction errors since
the ANN only approximates solutions.
These errors also propagate through
the backward pass (adjoint problem),
thus, accumulate in the final solution.
Although the force estimation is noisy
for most cases it remains acceptable
as displayed in Figure 7. The red dot-
ted line corresponds to the average er-
ror obtained with the classical adjoint
method (10.04 %). While we are not
reaching such value, some sequences
such as 1 and 3 provide good recon-
structions. The difference in errors be-
tween scenarios is mostly due to train-
ing force distribution. This problem
can be corrected by simply adding
more data to the dataset thus provid-
ing better coverage of the force and deformation space.

These results show that this algorithm can produce fast and accurate regis-
tration at the expense of force reconstruction accuracy. This also shows that the
force estimation is not directly correlated to registration accuracy. For example
sequence 1 has the worst TRE but a good force reconstruction compared to
sequence 4.

4 Conclusion

We presented a physics-based solution for a partial surface-matching problem
that works with non-linear material using deep learning and optimal control
formalism. The results are obtained on two main scenarios that differ both in
scale and complexity. We showed that a fast and accurate registration can be
obtained in both cases and can, in addition, predict the set of external forces
that led to the deformation. Such results show that deep learning and optimal
control have a lot in common and can be easily coupled to solve optimization
problems very efficiently. Current limitations of our work are mostly due to the
limited accuracy of the network and the need to retrain the network when the
shape or material parameters of the model change.
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