Skip to main content

Solving the Nurse Scheduling Problem Using the Whale Optimization Algorithm

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2023)

Abstract

Managing human resources is crucial in organizations, and this can be best done through optimal workforce scheduling. Workforce scheduling is conducted regularly in transportation, manufacturing, retail stores, academic institutions, and health care units. For the latter, healthcare personnel must be assigned required shifts to satisfy hospital requirements, while optimizing costs and quality of service. In this context, we propose a nature-inspired technique based on the Whale Optimization Algorithm (WOA) for solving the Nurse Scheduling Problem (NSP). More precisely, we have redefined the WOA to deal with this combinatorial problem efficiently. To assess the performance of different variants of our discrete WOA, we conducted several experiments on randomly generated NSP instances. In the experiments, our WOA has been compared with variants of the Branch & Bound (B &B) and the Stochastic Local Search (SLS) algorithms. B &B uses constraint propagation at different levels while SLS starts with an initial configuration obtained with a backtrack search technique. Overall, the results of the comparative experiments demonstrate the superiority of the proposed WOA in terms of quality of the solution returned and the related running time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baskaran, G., Bargiela, A., Qu, R.: Integer programming: using branch and bound to solve the nurse scheduling problem. In: 2014 International Conference on Artificial Intelligence and Manufacturing Engineering (IIE ICAIME2014) (2014)

    Google Scholar 

  2. Ben Said, A., Mouhoub, M.: A constraint satisfaction problem (CSP) approach for the nurse scheduling problem. In: Symposium Series on Computational Intelligence (2022)

    Google Scholar 

  3. Bidar, M., Mouhoub, M.: Nature-inspired techniques for dynamic constraint satisfaction problems. Oper. Res. Forum 3(2), 1–33 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burke, E., Cowling, P., De Causmaecker, P., Berghe, G.V.: A memetic approach to the nurse rostering problem. Appl. Intell. 15(3), 199–214 (2001)

    Article  MATH  Google Scholar 

  5. Camacho-Villalón, C.L., Dorigo, M., Stützle, T.: Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial metaphors. Int. Trans. Oper. Res. (2022)

    Google Scholar 

  6. Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dechter, R., Cohen, D.: Constraint Processing. Morgan Kaufmann, Burlington (2003)

    Google Scholar 

  8. Gutjahr, W.J., Rauner, M.S.: An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Comput. Oper. Res. 34(3), 642–666 (2007)

    Article  MATH  Google Scholar 

  9. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  10. Jafari, H., Salmasi, N.: Maximizing the nurses’ preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm. J. Ind. Eng. Int. 11(3), 439–458 (2015)

    Article  Google Scholar 

  11. Jan, A., Yamamoto, M., Ohuchi, A.: Evolutionary algorithms for nurse scheduling problem. In: Proceedings of the 2000 Congress on Evolutionary Computation, CEC00 (Cat. No. 00TH8512), vol. 1, pp. 196–203. IEEE (2000)

    Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  13. Larrosa, J.: Node and arc consistency in weighted CSP. In: AAAI/IAAI, pp. 48–53 (2002)

    Google Scholar 

  14. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer, Heidelberg (2006). https://doi.org/10.1007/11889205_22

    Chapter  Google Scholar 

  15. Li, J., Aickelin, U.: A Bayesian optimization algorithm for the nurse scheduling problem. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 2149–2156. IEEE (2003)

    Google Scholar 

  16. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  17. Mouhoub, M.: Dynamic path consistency for interval-based temporal reasoning. In: Hamza, M.H. (ed.) The 21st IASTED International Multi-conference on Applied Informatics (AI 2003), Innsbruck, Austria, 10–13 February 2003, pp. 393–398. IASTED/ACTA Press (2003)

    Google Scholar 

  18. Mouhoub, M., Sukpan, A.: Conditional and composite temporal CSPs. Appl. Intell. 36(1), 90–107 (2012). https://doi.org/10.1007/s10489-010-0246-z

    Article  Google Scholar 

  19. Rajeswari, M., Amudhavel, J., Pothula, S., Dhavachelvan, P.: Directed bee colony optimization algorithm to solve the nurse rostering problem. Comput. Intell. Neurosci. 2017 (2017)

    Google Scholar 

  20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Hoboken (2002)

    MATH  Google Scholar 

  21. Topaloglu, S.: A multi-objective programming model for scheduling emergency medicine residents. Comput. Ind. Eng. 51(3), 375–388 (2006)

    Article  Google Scholar 

  22. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization—Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36478-1_17

    Chapter  Google Scholar 

  23. Wu, J., Lin, Y., Zhan, Z., Chen, W., Lin, Y., Chen, J.: An ant colony optimization approach for nurse rostering problem. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1672–1676. IEEE (2013)

    Google Scholar 

  24. Zhang, Z., Hao, Z., Huang, H.: Hybrid swarm-based optimization algorithm of GA & VNS for nurse scheduling problem. In: Liu, B., Chai, C. (eds.) ICICA 2011. LNCS, vol. 7030, pp. 375–382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25255-6_48

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Mouhoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadeghilalimi, M., Mouhoub, M., Said, A.B. (2023). Solving the Nurse Scheduling Problem Using the Whale Optimization Algorithm. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34020-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34019-2

  • Online ISBN: 978-3-031-34020-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics