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Abstract. The goal of diffusion-weighted magnetic resonance imaging
(DWI) is to infer the structural connectivity of an individual subject’s
brain in vivo. To statistically study the variability and differences be-
tween normal and abnormal brain connectomes, a mathematical model
of the neural connections is required. In this paper, we represent the
brain connectome as a Riemannian manifold, which allows us to model
neural connections as geodesics. This leads to the challenging problem of
estimating a Riemannian metric that is compatible with the DWI data,
i.e., a metric such that the geodesic curves represent individual fiber tracts
of the connectomics. We reduce this problem to that of solving a highly
nonlinear set of partial differential equations (PDEs) and study the appli-
cability of convolutional encoder-decoder neural networks (CEDNNs) for
solving this geometrically motivated PDE. Our method achieves excellent
performance in the alignment of geodesics with white matter pathways
and tackles a long-standing issue in previous geodesic tractography meth-
ods: the inability to recover crossing fibers with high fidelity. Code is
available at https://github.com/aarentai/Metric-Cnn-3D-IPMI.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) enables the non-invasive
study of neural connections within the living human brain. DWI measures the
local diffusion of water within axonal bundles, allowing for local directional
estimation of neural connections. Long distance structural connectivity of the
brain is then inferred by the process of tractography, which estimates white
matter tracts via various streamlining algorithms. Deterministic tractography [1]
computes the integral curves of the vector field associating the most likely direction
of fiber tracts with each voxel. However, the simplest deterministic streamline
tractography is sensitive to imaging noise and also easily confounded in crossing-
fiber regions. Various approaches, such as Kalman filtering [6], probabilistic
tractography [2], and front propagation [10], have been proposed. The collection
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of tracts in an individual brain estimated by one or the other methods is referred
to as the connectome.
Mathematical models for the shape of the connectome: To study the
variability in normal populations and to find differences between neural connec-
tions in normal and abnormal brains, we need a precise mathematical model
of the connectome. Traditionally, individual fiber tracts have been modeled as
smooth curves without any intimate link to the underlying geometry of the
brain. In geodesic tractography, as proposed by [17,12,11,15,3,4,10], the brain
is modelled as a compact 3D Riemannian manifold, where length-minimizing
curves, or geodesics, represent individual fiber tracts. Recall that a Riemannian
manifold is a real, differentiable manifold M , equipped with a positive-definite
inner product on the tangent space at each point. The shape of the Riemannian
manifold (and thus the shape of the geodesics) is determined by the local metric.
Smooth Riemannian manifolds with the same topology can have very different
shapes because of the differing local metric structure.
Related work on geodesic DWI tractography: DWI is the foundation to
model an individual brain as a Riemannian manifold. With the Riemannian-
metric-equipped manifold, we can infer the white matter pathways and also the
shape of an individual’s connectome. O’Donnell et al. [17] first proposed the
geodesic tractography algorithm that uses the inverse of the diffusion tensor as the
Riemannian metric and treats geodesic curves under the metric as white matter
pathways. However, there is a tendency in the inverted-tensor metric for geodesics
to easily deviate from the principal eigenvector directions in high-curvature areas.
To address this issue, Fletcher et al. [10] enhanced the metric by “sharpening”
the inverted-tensor metric, i.e., taking the eigenvalues of the metric tensor to
some power so as to increase the anisotropy. But this strategy does not take
into account the spatially varying curvature of the vector field, and it increases
the sensitivity to noise. Fuster et al. [11] demonstrated that using the adjugate
of the diffusion tensor field as the Riemannian metric gave improved geodesic
tractography over the inverted sharpened metric while being more robust to
imaging noise. In order to strengthen the adherence of geodesics to the white
matter pathways, Hao et al. [12] developed an adaptive Riemannian metric by
applying a conformal scalar field to the inverse of the diffusion tensor, which
necessitates solving a Poisson equation on the Riemannian manifold. Campbell et
al. [5] further advanced the Riemannian formulation of structural connectomes by
introducing methods for diffeomorphic image registration and atlas building using
the Ebin metric on the space of Riemannian metrics. The significant advantage of
the Riemannian geometric framework is that it enables the formulation of atlas
building as a statistical Fréchet mean estimation problem. Furthermore, the entire
toolbox of geometrical statistics can now be applied to the statistical analysis of
populations of connectomes, which addresses a current challenge in neuroscience
— how to statistically quantify the variability of human brain connectivity and
differences in the connectome across populations.
Contributions: The principal aim of this work is to innovate the main building
block of the Riemannian formulation for structural connectome atlas building:
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the estimation of a Riemannian metric, such that the corresponding geodesic
tractography provides a faithful description of the tractogram, i.e., that the
geodesics of the Riemannian metric follow the integral curves of a set of given
vector fields (representing fiber orientations). The existing Riemannian metric
estimation techniques for DWI data exhibit two major limitations: the accuracy
of the Riemannian metric estimation, i.e., alignment of the geodesics with the
fiber tracts, and the fact that they are all based on a single DTI model and are
thus not able to consider multiple vector fields simultaneously, which limit their
ability to model crossing fibers appropriately. More modern modeling techniques,
such as HARDI [24], Q-Ball [23] and DSI [25], are able to infer multiple fiber
directions at each point in the brain.

In this paper, we show for the first time how one can leverage deep neural
networks (DNNs) to estimate a metric structure of the brain that can accommo-
date fiber crossings, i.e., multiple fiber directions, which is a natural modeling
tool to infer the shape of the brain from DWI. We reduce the problem of esti-
mating a Riemannian metric given tractography estimated from DWI, to that of
solving a highly nonlinear set of partial differential equations (PDEs) of the form
Lg(x) = f(x), x ∈ Ω ⊂ Rn, where f(x) is the given data, and L is a non-linear
differential operator. This allows us to leverage deep learning frameworks that
have been proposed for solving such PDEs precisely, where we use convolution
encoder-decoder neural networks (CEDNNs) [29] for representing the solution
space. CEDNNs use the universal approximation property of fully-connected
convolutional networks to approximate the solution function g(x). The weights
of the network are estimated to minimize a cost function which incorporates
the PDE in a self-supervised manner and is usually of the form ‖Lg(x)− f(x)‖.
CEDNNs are particularly suited when the input data domain is a structured grid
such as in the DWI application.

Using this network architecture and spatially discretized vector fields from any
of the plethora of models for local fiber directions, our method achieves excellent
performance in terms of geodesic-white-matter-pathway alignment. In particular,
we show that the proposed method outperforms any of the previously proposed
methods in Riemannian metric estimation for geodesic tractography. In addition
to simple deployment and boundary insensitivity, our approach also tackles the
long-standing issue in previous methods: the inability to recover crossing fibers
with high fidelity. Towards this aim, we exhibit that the metric estimation is
able to faithfully represent multiple vector fields as geodesic vector fields of the
estimated metric. We inherit the validity of the tracts from the choice of the
preferred local directional estimation algorithm, which is explicitly not the focus
of this work. The algorithms presented herein are a part of the overall program
to study the human brain and its variability in populations.

2 Estimating Riemannian Metrics from Geodesics

In this section, we will introduce a new inverse problem that will be at the center
of our approach: the estimation of a Riemannian metric based on the observation
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of (possibly) multiple fiber directions as the tangents to geodesic curves. We
will first recall some definitions and concepts from Riemannian geometry. For
further details, we refer to classic textbooks such as [8]. In all of this work, our
modeling space is a finite-dimensional manifold M (possibly with boundary). In
our application, the topology of the manifold M will be rather trivial and thus
we assume in the following that M is a bounded subset of Rn with n ∈ {2, 3}.

Next we introduce the concept of an integral curve: given a vector field
v ∈ X(M), i.e., a map from M to TM , we call a curve γ : R → M an integral
curve of v if ∂tγ(t) = v(γ(t)), i.e., the curve follows the flow lines of the vector
field. A Riemannian metric g on M is a family of inner products on each tangent
space TxM that depend smoothly on the base point, x ∈ M . Note that in
local coordinates we can identify the Riemannian metric with a field of positive-
definite, symmetric matrices g(x), and the inner product between two tangent
vectors v, w ∈ TxM is simply given by 〈v, w〉g = vT g(x)w. We call a curve
between p and q a (minimizing) geodesic if it minimizes the length functional
L(γ) = 1

2

∫ 1

0

√
〈∂tγ, ∂tγ〉gγdt, where gγ denotes the Riemannian metric at γ(t).

For every Riemannian metric there exists a unique connection ∇g, called the
Levi-Civita covariant derivative, which encodes this notion of geodesic curves, i.e.,
a curve γ is a geodesic if and only if it satisfies the equation ∇gvv = σv, where
v = ∂tγ, and σ = 〈v,∇gvv〉g/||v||2g. We call a vector field a unit geodesic vector
field if all its integral curves are geodesics with constant speed, i.e., ∇gvv = 0.
Integral curves of both geodesic as well as unit geodesic vector fields are length
minimizing — they only differ in their parameterization along the curve. Given a
vector field v we aim to find a Riemannian metric g such that v is a geodesic
vector field. The question under what conditions such a Riemannian metric exists
has been intensively investigated, see e.g. [19]. Note that if v is a non-vanishing
geodesic vector field of a metric g, then v/‖v‖g is a unit geodesic vector field. We
found, however, that our model is significantly harder to optimize, when insisting
on unit geodesic vector fields.

We are now able to formulate the inverse problem studied in this paper as:

Regularized, inexact metric estimation: Given vector fields vi ∈ X(M),
i ∈ {1, . . . ,m}, find the Riemannian metric g onM that minimizes the energy
functional

E(g) =
m∑
i=1

‖∇gvivi − σivi‖2 + αReg(g), (1)

where α > 0 is a weight parameter.

Here the first term enforces the condition that the vector fields vi are (close
to being) geodesic vector fields, while the second term is a regularization param-
eter that is responsible for the solution selection. We have investigated several
regularization terms, such as the Frobenius norm of the difference to the Eu-
clidean metric. In our experience, adding this explicit regularization terms did
not improve the performance of the algorithm, which suggests that the implicitly
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regularization properties via the solution parameterization as a neural network
are sufficient for the proposed application.

To get a better understanding of the above loss function, we can write a
coordinate expression of ∇g for a vector field v as:

∇gvv =
∑
k

∑
i

vi
∂vk

∂xi
+
∑
i,j

Γ kijv
ivj

 ek, (2)

where v = viei with ei =
∂
∂xi being the i-th basis vector. Furthermore, Γ kij are the

Christoffel symbols, which are defined as Γ kij =
1
2

∑n
l=1 g

kl
(
∂gjl
∂xi + ∂gil

∂xj −
∂gij
∂xl

)
,

where gij denotes the entries of the Riemannian metric g, and gij represents the
entries of the inverse of metric g−1.

3 Algorithms and Implementation

Metric Estimation via Neural Networks: We will now present a novel deep
learning framework [29] for solving the inverse problem formulated above, which
employs a convolutional encoder-decoder neural network (CEDNN) approach
to construct the multi-scale features from high-dimensional input. By wrapping
the input vector fields and the output Riemannian metric into the loss function,
the network is trained to capture the heterogeneous mapping between the given
vector fields and the resulting solution (metric). CEDNN takes the whole spatially
discretized vector fields as the input and outputs the entire metric field which
minimizes Eq. (1).

The CEDNN architecture adopts the dense block [14] paradigm, which furthers
the ideas of residual learning in ResNet [13] and bypassing paths in highway
networks [21] by concatenating every previous layer’s output as the input of
the current layer in a feed-forward fashion. The dense connectivity in the dense
block improves the information flow in the network, without introducing any
optimization difficulty. The encoder contracts the higher-level context and feature
of the input, while the decoder commits to recovering the location information
to the same scale as the original input fields.

Our CEDNN implementation takes an m× n-channel input, where n is the
dimension of the vector fields and m is the number of distinct geodesic vector
fields vi used for the metric estimation. By sending the concatenated vector fields
into the network, CEDNN yields an output of ((n+ 1)× n/2 + 1)-channel tensor.
We form the final estimated metric, the n× n symmetric positive-definite (SPD)
matrix g, through eigencomposition: g = RΛRT , where the rotation matrix
R follows Rodrigues’ rotation formula: R = I + (sin θ)K + (1− cos θ)K2, Λ is
a diagonal matrix with positive diagonal entries, I is an identity matrix, and
K is a skew-symmetric matrix. R,Λ,K, I ∈ Rn×n, θ ∈ R and we enforce the
diagonal entries in Λ to be positive through exponential function. Λ,K, θ are
respectively parameterized by n, n× (n− 1)/2 and 1 real numbers, the sum of
which is equivalent to the channel number of the output tensor. This formulation



6 H. Dai et al.

expedites the training speed by 5 folds, compared to forming a SPD matrix via
built-in torch.matrix_exp. To compute spatial gradients, we adopt a central
finite-difference scheme to approximate the derivatives in the loss function as
given in Eq. (1). For more details on the architecture and workflow, see Fig. 1.

Fig. 1: The architecture of the proposed convolutional encoder-decoder neural
networks for 3D solution. Here, h,w, d denote the shape of the input vector fields,
and m represents the number of total vector fields. The numbers in a Conv box
stand for the kernel size, stride, and padding of the convolution, respectively.
The number in a Nearest Upsampling box indicates the scaling factor.

Geodesic Tractography: Once we have estimated a neural network represen-
tation of the metric g, we are able to calculate the Christoffel symbols and
then integrate the geodesic equation (Eq. (2)), which directly leads to the cor-
responding geodesic tractography. Recall that in three-dimension situation, the
geodesic equation (2) can be written as the following system of second-order
ODEs: ∂2t γ(k)(t) +

∑3
i,j=1 ∂tγ

(i)(t) · Γ ki,j(γ(t)) · ∂tγ(j)(t) = σv(k)(γ(t)), where
∂2t γ

(k), ∂tγ
(k) are the k-th components of the acceleration and velocity vec-

tors and where Γ kij(γ(t)) are the Christoffel symbols evaluated at position γ(t).
Geodesic shooting solves this second-order ODE with a set of initial conditions:
the starting position of the geodesic γ(0) and its starting velocity ∂tγ(0).

4 Experiments

In all of the experiments presented below, the Adadelta optimizer was employed
to minimize the loss function. We also experimented with various other optimiz-
ers, including AdaGrad, Adadelta, and Adam. In our experience, the Adadelta
optimizer was consistently superior. All computations were carried out on an
Nvidia Titan RTX GPU. Under this setting, a 2D example took less than 3
minutes (3,000 iterations) to achieve convergence, and a 3D example took less
than 30 minutes (10,000 iterations) for convergence.
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Fig. 2: Left: axial view of a projected vector field derived from HCP 100610 DWI.
Central: detailed view of left panel, the geodesics and integral curve start from
the star. Right: Box plot of mean min errors between the integral curve and
geodesics generated by different methods over 38 HCP brain subjects. Green
triangles stand for the mean of the mean min errors, and orange bars represent
the median of the mean min errors.

4.1 Validation and Comparison: 2D Brain Slices

In our first experiment, we compared the geodesic-white-matter-pathway align-
ment of the proposed method to state-of-the-art geodesic tractography methods:
the inverted diffusion tensor metric [17], the adjugate of the diffusion ten-
sor [11], and the conformal metric [12]. We want to emphasize that all these
baseline methods are approximating the metric based on a single diffusion ten-
sor image, which yields only one corresponding vector field. Consequently, the
crossing fiber estimating ability will not be tested in this section. For easy visual-
ization and interpretability, we performed the comparison on projected 2D brain
slices from the Human Connectome Project (HCP) [26], cf. Fig. 2. The left and
central panels in Fig. 2 demonstrate an example of geodesics shooting from a
seed point in the genu of the corpus callosum. The geodesics derived by the other
three methods deviate from the integral curve eventually, while ours provides a
significantly better alignment to the ground truth.

To quantitatively measure the geodesic-white-matter-pathway alignment over
these methods, we tested these algorithms on brain slices from 38 HCP brain
subjects. On each brain slice, we uniformly cast 400 seed points in the genu
of corpus callosum region, where all the seed points are chosen to be non-grid
points with the corresponding vectors being obtained by bi-linear interpolation,
i.e., these vectors have never been seen by the network. We then integrated
the geodesic and integral curve from each seed point and calculate the error
of the geodesic to the corresponding integral curve. To calculate the error of
curve Q to curve P , we view P,Q as finite point sets and consider the mean min
error between these two sets as Error(P,Q) = 1

|P |
∑
p∈P minq∈Q ‖p− q‖2, where

P denotes an integral curve and Q a geodesic tractography curve starting at
the same seed point. The boxplot in Fig. 2 visualizes the distribution of 15,200
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integral-curve-geodesic error sample points across 38 HCP subjects. The boxplot
demonstrates our method outperforms the other three methods in terms of both
mean and median of mean min errors by a large margin.

4.2 2D Synthetic “Braid”

In this section, we aim to compare the metric estimation ability of CEDNNs
with a baseline physics-informed neural networks (PINNs) [18] implementation,
where we pay particular attention to the ability of representing crossing fibers.
The baseline PINNs use multilayer perceptrons (MLPs) to represent the solution
space. The loss function in the baseline PINNs is formulated the same way as in
the CEDNN implementation, where the derivative of metric w.r.t. the spatial
coordinates was computed by taking advantage of the automatic differentiation
engine autograd in PyTorch.

(a) vector field v1 (b) vector field v2 (c) metric gP (d) metric gC

Fig. 3: (a) input vector field v1; (b) input vector field v2; (c) integral curves
(black) running on input vector fields and geodesics (indigo) running on PINN-
estimated Riemannian metric field gP at iteration 1000 (background ellipses
represent metric tensors), shooting from seed points (star) with the same initial
velocity vector as the corresponding integral curve; (d) integral curves (black) and
geodesics (indigo) on CEDNN-estimated Riemannian metric field gC at iteration
1000 (background ellipses represent metric tensors), shooting from seed points
(star) with the same initial velocity vector as the corresponding integral curve.

For the experimental data, we synthesized two vector fields in a “braid” pattern
of two intertwining pathways (see (a) and (b) in Fig. 3). The central integral curves
of the vector bundle are two trigonometric functions: x2 = 20 cos( 1

4π (x1−60))+50
and x2 = 20 sin( 1

4πx1) + 50, where x1, x2 are spatial coordinates. We then
constructed the curve bundle by translating the central integral curve across nine
pixels horizontally. The vector field is generated by calculating the tangent vector
of the curves at each point, making the curves integral to the vector field. The
aim is to estimate a Riemannian metric field such that these curves are geodesic
curves.
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Fig. 4: Log-scaled (base 10) loss conver-
gence comparison between PINN with
LeakyReLU activation, with Siren ac-
tivation, with Fourier embedding and
CEDNN with leakyReLU on 2D syn-
thetic “Braid”.

The CEDNN in our experiment is
configured with the following hyper-
parameters: the number of dense lay-
ers in the three dense blocks are 6, 8,
6, with a growth rate of 16, thereby
leading to a total of 747,147 parame-
ters. We used an initial learning rate
of 1×10−4 for the optimization. Fig. 4
presents the loss

∑m
i=1 ‖∇gvivi−σivi‖2

on a log-scale at each iteration. The
baseline PINN uses an approximately
equivalent amount of parameters as
the CEDNN. PINNs with different
sizes were extensively explored, how-
ever, we did not observe any salient
difference in final loss brought by these
configurations. In addition, we config-
ured the PINN with Fourier embed-
ding [22] and Siren activation func-
tions [20], which boosted the performance of the PINN in a considerable magni-
tude, yet still underperforming CEDNN by orders of magnitudes: in Fig. 4, it is
noticeable that the CEDNN converges much faster to a significantly lower residual
loss despite the fact that PINN enjoys about the same amount of parameters as
the CEDNN. This enforces the conclusions of [16] that the limitation exhibited
by PINNs is due to optimization difficulties — irrespective of expressibility of
the solution. See also [7], which reports several pitfalls in using PINNs for fluid
dynamic simulations.

Fig. 3 shows the metric fields gP (Fig. 3(c)) and gC (Fig. 3(d)) estimated by
PINN and CEDNN respectively and the alignment of ground truth integral curves
(black) and geodesics (indigo) associated with the estimated metric: the geodesics
on the metric gC align notably closer to the ground truth integral curves than
the one on gP . In addition to the excellent integral-curve-geodesic alignment, the
CEDNN-estimated metric behaves as expected even at the crossing region — the
geodesics are not confounded at the crossing.

4.3 3D Brains and Crossing Fibers

In this experiment, we validated our method’s ability to estimate 3D crossing-
fiber regions in brain DWI from several HCP subjects. We first reconstructed
the vector fields through the GQI method [27] in DSI Studio with a diffusion
sampling length ratio of 1.25. A whole-brain Riemannian metric was estimated by
a CEDNN featuring 40, 30, and 40 dense layers in each dense block. The model
was trained with an initial learning rate of 3×10−4 for a total of 1×104 iterations.
The top row in Fig. 5 shows the resulting whole-brain connectome visualized using
3D Slicer via the SlicerDMRI plug-in [28]. There were 138,732 seed points cast in
the white matter region for the generation of the geodesics. The color indicates
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the orientation of the fiber tracts: red (left/right), green (anterior/posterior),
blue (superior/inferior). In the bottom row of Fig. 5, we showcase the ability of
geodesic tractography with our estimated metric to successfully distinguish two
crossing fibers: the forceps minor and frontal projection tracts. We stress that
the previous approaches to geodesic tractography do not handle multiple fiber
directions in a voxel, and thus cannot correctly handle crossing-fiber regions such
as these.

Fig. 5: Top row, left to right: coronal, sagittal, and transversal view of the whole-
brain connectome generated by the proposed method. Bottom left: axial view of
the same subject. Bottom central: zoom-in of a 4× 4× 4 crossing-fiber region.
Bottom right: geodesic tractography by proposed method within the same window,
the orientation of which matches the vector field in the bottom central panel.

5 Conclusion, Limitations and Future Work

In this paper, we have shown for the first time how to leverage the flexibility
of deep learning to model the shape of the human connectome by estimating
a Riemannian metric of the brain manifold that faithfully represents the white
matter connectivity. We show that our proposed method outperforms any of
the previously proposed methods in geodesic tractography by a large margin. In
addition our approach solves the long-standing issue of these previous methods:
the inability to recover crossing fibers with high fidelity. One limitation of the
proposed method is that the generalization ability of the trained model to the
unseen data is relatively weak. Nevertheless, we would point out that currently the
largest human connectome datasets are in the order of only 1000s of subjects and
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thus we do not believe that the adaptivity of the models limits the applicability
of our method, as the total training time for a single 3D brain is less than 30
minutes in our setup. With the ability to robustly and efficiently model the white
matter of the brain as a Riemannian manifold, one can directly apply geometrical
statistical techniques such as statistical atlas construction [5], principal geodesic
analysis [9], and longitudinal regression to precisely study the variability and
differences in white matter architecture.
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