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Abstract. Patient motion during PET is inevitable. Its long acquisition
time not only increases the motion and the associated artifacts but also
the patient’s discomfort, thus PET acceleration is desirable. However, ac-
celerating PET acquisition will result in reconstructed images with low
SNR, and the image quality will still be degraded by motion-induced ar-
tifacts. Most of the previous PET motion correction methods are motion
type specific that require motion modeling, thus may fail when multiple
types of motion present together. Also, those methods are customized
for standard long acquisition and could not be directly applied to ac-
celerated PET. To this end, modeling-free universal motion correction
reconstruction for accelerated PET is still highly under-explored. In this
work, we propose a novel deep learning-aided motion correction and re-
construction framework for accelerated PET, called Fast-MC-PET. Our
framework consists of a universal motion correction (UMC) and a short-
to-long acquisition reconstruction (SL-Reon) module. The UMC enables
modeling-free motion correction by estimating quasi-continuous motion
from ultra-short frame reconstructions and using this information for
motion-compensated reconstruction. Then, the SL-Recon converts the
accelerated UMC image with low counts to a high-quality image with
high counts for our final reconstruction output. Our experimental re-
sults on human studies show that our Fast-MC-PET can enable 7-fold
acceleration and use only 2 minutes acquisition to generate high-quality
reconstruction images that outperform/match previous motion correc-
tion reconstruction methods using standard 15 minutes long acquisition
data.

Keywords: Accelerated PET · Universal Motion Correction · Deep Re-
construction.

1 Introduction
Positron Emission Tomography (PET) is a commonly used functional imaging
modality with wide applications in oncology, cardiology, neurology, and biomed-
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ical research. However, patient motion during the PET scan, including both
involuntary motions (i.e. respiratory, cardiac, and bowel motions) and voluntary
motions (i.e. body and head motions), can lead to significant motion artifacts,
degrading the downstream clinical tasks. Moreover, the long acquisition time
that easily exceeds 15 minutes, will lead to increased patient motion, patient
discomfort, and low patient throughput.

In previous works of PET motion correction (MC), a variety of external
device-aided and data-driven MC methods have been developed for correcting
specific motion types. For example, in respiratory MC, Chan et al. [4] developed
a non-rigid event-by-event continuous MC list-mode reconstruction method. Lu
et al. [12] further improved their method by generating matched attenuation-
corrected gate PET for respiratory motion estimation. In body MC, Andersson
et al. [1] proposed to divide the PET list-mode data into predefined temporal
frames for reconstructions, where the reconstructions of each frame are regis-
tered to a reference frame for body MC. Later, Lu et al. [13] further developed a
reconstruction-free center-of-distribution-based body motion detection and cor-
rection method. In cardiac MC, cardiac cycle tracking/gating using electrocar-
diography (ECG) is still the gold-standard [14]. While providing efficient MC
solutions to reduce motion artifacts for different motion types, these methods
usually require prior knowledge of the motion type and need motion-type-specific
modeling. Thus, these previous MC methods may lead to sub-optimal image
quality or fail when multiple motion types are present simultaneously. There are
also recent attempts in using ultra-fast list-mode reconstruction of short PET
frames to estimate motion during the PET scan [20,23]. However, these methods
may not adapt well to many motion types with non-rigid motion [20], and ex-
tending to non-rigid motion is computationally infeasible, i.e. requiring non-rigid
registration of thousands of frames for a single scan using traditional registra-
tion algorithms [23]. In addition, it still requires the standard long acquisition
to collect sufficient events to achieve a reasonable signal-to-noise ratio (SNR) in
the final reconstruction. On the other hand, previous works have also investi-
gated the feasibility of reducing the PET acquisition time. Lindemann et al. [11]
and Lasnon et al. [10] found that one can reasonably maintain the PET image
quality and lesion detectability with two-fold acquisition time reduction using
traditional reconstructions. Weyts et al. [21] show that a deep learning-based de-
noising model can enable two-fold PET acquisition time reduction and provide
image quality that matches with the full acquisition. However, these works only
show the feasibility of a 2-fold time reduction and did not consider the residual
motions during the accelerated acquisition.

In this work, we aim to address these challenges by developing a PET re-
construction framework that can 1) reduce the acquisition time, i.e. 7-fold ac-
celeration, and 2) correct the residual motion, regardless of the motion type, in
the accelerated acquisition. Specifically, we propose a novel deep learning-aided
data-driven motion reduction and accelerated PET reconstruction framework,
called Fast-MC-PET. In the Fast-MC-PET, we first design a universal motion
correction method aided by deep learning to reconstruct a motion-reduced im-
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age from the short acquisition. While reducing the motion artifacts given the
accelerated acquisition and our motion correction, the reconstructed image still
suffers from high noise levels due to low event counts. Thus, in the second step
of Fast-MC-PET, we also deploy a deep generative network to convert the low-
counts images to high-counts images. Our experimental results on real human
data demonstrate the Fast-MC-PET can generate high-quality images with re-
duced motion-induced errors while enabling 7-fold accelerated PET acquisition.

2 Methods

Our Fast-MC-PET consists of two key components, including a universal motion
correction (UMC) module and a short-to-long acquisition reconstruction (SL-
Recon) module. In UMC, we first partition the list-mode data into ultra-short
list-mode data, i.e. every 500ms, and estimate a quasi-continuous motion over the
short acquisition. Given the motion and the original list-mode data, a motion-
corrected short-acquisition image is then reconstructed by a motion-compensated
OSEM list-mode reconstruction. Finally, a deep generative model is devised to
transform the motion-corrected short-acquisition image into a high-count long-
acquisition image, thus providing a motion-corrected high-count image using
only accelerated short-acquisition. In the following sections, we will describe
these steps in detail.

2.1 Universal Motion Correction

With the short acquisition data, the UMC aims to generate a motion reduced
low-count reconstruction. The UMC consists of three steps, including point cloud
image (PCI) & paired gated image generation, quasi-continuous motion estima-
tion, and motion-compensated OSEM list-mode reconstruction.

Point Cloud & Paired Gated Image Generation. To estimate a continuous
motion, the list-mode data is first partitioned into a series of ultra-short list-
mode data, i.e. every 500ms. For every 500ms list-mode data, we back-project
the Line-of-Response (LOR) of each event within the time-of-flight (TOF) bin,
and all the back-projected LORs form a PCI for this short time frame. The PCI
reconstruction can be formulated as

Pj,t =
∑
i

ci,j,tLi,t
Qj

, (1)

where ci,j,t is the system matrix that represents the contribution of an annihila-
tion originating from pixel j being detected on LOR i at time t, accounting for
geometry, resolution, and solid angle effects. Li,t is the decay correction factor.
Qj is the sensitivity of voxel j that is pre-computed via Qj =

∑
i ci,j , and Pj,t

is the back-projected value of voxel j at time t with sensitivity correction.
Due to the ultra-low-counts level, the signal-to-noise ratio (SNR) of PCI is

low and is unsuitable for motion estimation tasks, as demonstrated in Figure 2’s
1st row. Thus, we deploy a deep learning-based denoising network, i.e. UNet [18],
that aims to convert PCIs to gated OSEM images with high SNR. To train the
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Fig. 1. The overall pipeline of Fast-MC-PET. The Universal Motion Correction (UMC)
module (grey box) reconstructs motion-reduced image from the short acquisition data.
The Short-to-Long Acquisition Reconstruction (SL-Recon) module (pink box) converts
the UMC image from short acquisition to long acquisition.

denoising network, we first reconstruct the amplitude-based respiratory gated
OSEM images [17] using the body motion free list-mode data, extracted by
the Centroid-Of-Distribution (COD)-based body motion detection method [13].
Then, within each gate, we randomly extract 10% PCIs to construct the training
pairs of PCI and the corresponding gated image. L2 loss is used for the network
training, and can be formulated as

Ldn = ||γg − fdn(Pg)||22 (2)

where γg is the gated OSEM image and Pg is the randomly extracted PCI that
lies in the same gate. With a trained denoising model fdn(·), the series of PCIs
can then be converted to a series of high-quality denoised PCI (dPCI) via:

γt = fdn(Pt) (3)

where γt is the denoised images with t = (0 ∼ ∆t,∆t ∼ 2∆t, ..., T − ∆t ∼ T ).
Here, we set ∆t = 0.5s and T = 120s here, thus generating 240 3D images.
Examples of dPCIs are illustrated in Figure 2’s 2nd row.

Quasi-continuous Motion Estimation. A quasi-continuous motion can be
estimated using the series of dPCIs from the previous step. Within the first 5
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seconds, the dPCI in the expiration phase, i.e. with the highest COD coordinates
in the z-direction, is chosen as the reference frame γref for all the other frames
γt, resulted in 239 dPCI pairs requiring registration. Conventional registration
methods [22,16] are time-consuming, and it is prohibitively long to register hun-
dreds of 3D pairs here. Thus, we propose to use a deep learning-based registra-
tion method for fast motion estimation [3] in our framework. Given the reference
dPCI image γref and the source dPCI image γt, we use a motion estimation net-
work, i.e. UNet [18], to predict the motion deformation Mt = fm(γref , γt). The
network is trained by optimizing the following loss function:

Lm = ||γref −Mt ◦ γt||22 + β||∇Mt||22 (4)

where the first term measures the image similarity after applying the motion
prediction Mt, and the second term is a deformation regularization that adopts
a L2-norm of the gradient of the deformation. The regularization’s weight is set
as β = 0.001. During training, γref and γt are randomly selected from the gated
images. With a trained motion estimation network fm(·), we can then estimate
the quasi-continuous motion using Mt = fm(γref , γt) with t = (0 ∼ ∆t,∆t ∼
2∆t, ..., T −∆t ∼ T ).

Motion-compensated OSEM List-mode Reconstruction. To reconstruct
a single image λ at the reference location γref using all the coincidence events, we
can deform the system matrix at each time t to the reference location, generating
new deformed system matrixs ct→refi,j usingMt from the previous step. Deforming
the system matrix can be seen as "bending" the LORs into curves of response
(CORs), where both forward and back-projections are traced along the CORs.
In list-mode notation, for event k occurring on LOR i(k) at time t(k), we replace
indexes i by k, and substitute ck,j in the previous TOF-MOLAR [8] by ct→refk,j,τk

.
The OSEM updating equation can thus be formulated as:

λn+1
j =

λnj
Qj

K∑
k=1

ct→refk,j,τk
LkAkNk

T (
∑
j′ c

t→ref
k,j′,τk

LkAkNkλnj′ +Rk,τk + Sk,τk)
(5)

Qj =
1

nT

nT∑
t′=1

I∑
i=1

nτ∑
τ=1

ct→refi,j,t′,τLi,t′Ai,t′Ni (6)

where n is the number of iteration, k is the index of each detected event, ct→refk,j,τk
is

the deformed system matrix element with τk denoting the TOF bin for event k.
Lk is the decay factor and Ak is the attenuation factor derived from CT.Nk is the
sensitivity term, Rk,τk is the randoms rate estimate, and Sk,τk is the scatter rate
estimate in counts per second in TOF bin τk. The random events are estimated
from the product of the singles rates of the two detectors for each LOR, and then
uniformly distributed across all TOF bins. Here, Q is the sensitivity image that
is pre-computed by back-projecting randomly sampled events along the CORs to
account for the motion on voxel sensitivity. When calculating Q, each time frame
of duration T is divided into nT short time bins, i.e. t′. Moreover, nτ denotes the



6 B. Zhou, et al.

total number of TOF bins (nτ = 13 for the Siemens mCT PET scanner used in
this study). Here, we set the number of iteration to 2 and the number of subsets
to 21 for our UMC reconstructions.

Fig. 2. Examples of the Point Cloud Images (PCIs), the denoised PCIs (dPCIs), and
the deformed dPCIs using estimated motion fields.

2.2 Short-to-Long Acquisition Reconstruction
Even though the UMC reduces the motion effects in the reconstruction, the
UMC image still suffers from low SNR due to the limited counts from the short
acquisition, as compared to the long acquisition. Thus, we propose to use a
short-to-long acquisition reconstruction (SL-Recon) to convert the UMC image
from a short-acquisition to a long-acquisition one. Here, we use a conditional
generative adversarial network for this reconstruction. Given a UMC image λs
from the short acquisition, we can use a generative network, i.e. UNet [18], that
directly predicts the UMC image λl from a long acquisition from it. The SL-
Recon network is trained using both a pixel-wise L2 loss and an adversarial loss
defined as:

L2 = ||G(λs)− λl||22 (7)

Ladv = −log(Dgan(λl|λs))− log(1−Dgan(G(λs)|λs)) (8)

where G is the SL-Recon generative network and D is the discriminator network.
Here, we simply use OSEM reconstructions from long acquisitions (15 minutes),
paired with OSEM reconstructions from short acquisitions (2 minutes in the
center period), for the network’s training.

2.3 Evaluation on Human Data
We included 26 pancreatic 18F-FPDTBZ [15] PET/CT patient studies. All PET
data were obtained in list mode using the 4-ring Siemens Biograph mCT scanners
equipped with the AZ-733V respiratory gating system (Anzai Medical, Tokyo,
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Japan). The Anzai respiratory trace was recorded at 40 Hz for all subjects. The
average dose administered to the patients is 9.13±1.37 mCi. 15 minutes of the
list-mode acquisition were used for each patient study. We used 23 patients to
generate the training data for the PCI denoising model, the motion estimation
model, and the SL-Recon model. Extensive evaluations were performed on the
remaining 3 patients with different motion types. For training the PCI denoising
model and the motion estimation model, we generated 5 gated images for each
patient using OSEM (21 subsets and 2 iterations). For training the SL-Recon
model, the training pairs of long/short acquisition images were reconstructed
using the same OSEM protocol without gating. All the images were reconstructed
into 200× 200× 109 3D volumes with a voxel size of 2.032× 2.032× 2.027 mm3.

2.4 Implementation Details

We implemented our deep learning modules using Pytorch. We used the ADAM
optimizer [9] with a learning rate of 10−4 for training the PCI denoising network,
motion estimation network, and the SL-Recon network. We set the batch size to
3 for all networks’ training. All of our models were trained on an NVIDIA Quadro
RTX 8000 GPU. The PCI denoising network was trained for 200 epochs, and then
fine-tuned for 10 epochs on the patient-specific gated images of the test patient
during the test time. The motion estimation network was trained for 250 epochs,
and the SL-Recon network was trained for 200 epochs. To prevent overfitting, we
also implemented ’on-the-fly’ data augmentation for the PCI denoising and SL-
Recon networks. During training, we performed 64× 64× 64 random cropping,
and then randomly flip the cropped volumes along the x, y, and z-axis.

3 Results
The qualitative comparison of Fast-MC-PET reconstructions is shown in Figure
3. As we can observe, the 2 minutes reconstruction with no motion correction
(NMC) suffers from both motion blurring and high-noise levels due to low counts.
The first patient has both body/torso motion and respiratory motion during the
2 minutes PET scan, thus introducing heavy blurring for major organ bound-
aries, i.e. liver and kidneys. The 2 minutes UMC image recovers the sharp organ
boundaries by correcting those motions during the short acquisition. Based on
the UMC image from 2 minutes acquisition, the final Fast-MC-PET image fur-
ther reduces the noise thus providing a near motion-free and high-count image,
matching the 15 minutes UMC image quality. The second patient with respi-
ratory and bowel motion introduces significant image blurring for the pancreas
(view 1) and intestines (view 2). The 2 min UMC image can recover the dimin-
ished details inside these organ regions. The final Fast-MC-PET image further
reduces the noise, thus generating a high-quality image with motion correction
and high counts. On the other hand, by reducing the acquisition time from 15
minutes to 2 minutes, we can see that the diminished organ structures, espe-
cially the intestine structure (view 2) in 15 minutes NMC, can be preliminarily
restored in 2 minutes NMC. Complex motion, e.g. bowel motion, in a 15 min-
utes long acquisition is extremely challenging to correct even with UMC. Thus,
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Fig. 3. Visualization of Fast-MC-PET reconstructions. The 2min UMC images (2nd
column) contain less motion blurring, as compared to the no motion correction (NMC)
images (1st column). The virtual 15 minutes UMC images (3rd column) predicted from
2 minutes UMC images (2nd column) provide image-quality that match the true 15
minutes images (last column).

based on 2 minutes acquisition, the Fast-MC-PET here shows better reconstruc-
tion quality with better structural recovery. Similar observations can be found
for the third patient with respiratory and bowel motion, where the 2 minutes-
based Fast-MC-PET provides reconstruction quality matched the 15 minutes
UMC reconstruction.

We compared our 2 minutes-based Fast-MC-PET reconstructions to previ-
ous correction methods that are long acquisition based, i.e. 15 minutes. The
visual comparison is shown in Figure 4. First, we compared with the classic
respiratory motion correction method [2] that reduces the motion and noise by
averaging the aligned amplitude-gated images, where non-rigid registration [16]
is used for alignments. Then, we compared our method with the NR-INTEX [4]
that compensates for the respiratory motion by estimating the continuous defor-
mation field using internal-external motion correlation which is considered the
current state-of-the-art method. Both previous methods require specific motion-
type modeling, and thus fail when additional motion types are present, e.g. body
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Fig. 4. Comparisons to previous motion correction methods. Our Fast-MC-PET with
2 minutes acquisition show improved structural details recovery (orange arrows), as
compared to previous methods with 15 minutes acquisition.

motion (Patient 1) and bowel motion (Patient 3). The UMC module in the Fast-
MC-PET is not specific to any motion type and thus can correct different types
of motion together. Therefore, our Fast-MC-PET can provide consistently better
results when multiple types of motion co-exist (Patients 1 and 3), and generate
comparable reconstruction quality when respiratory motion is dominating (Pa-
tient 2).

Fig. 5. Comparison of the gradient of reconstructions. Left: quantitative evaluation
using the mean gradient value. Right: visual comparison of the reconstruction and the
gradient.

For quantitative evaluation, we computed the mean normalized gradient of
the reconstructions, where better reconstruction with sharper structure will have
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higher gradient values. The results are summarized in Figure 5. The normalized
gradient values of Fast-MC-PET are 0.159, 0.154, and 0.132 for Patients 1, 2,
and 3, respectively, which are consistently higher than all previous methods. A
comparison example from Patient 2 is shown on the right. The gradient image of
the Fast-MC-PET using only 2 minutes acquisition shows higher gradient values
and more continuous structure patterns when compared to previous methods
based on 15 minutes acquisition.

Fig. 6. The difference of COD trace between the reference frame and the current frame
(∆COD) over the 2 minutes acquisition. The ∆COD before (red) and after (blue) UMC
correction are plotted for all three patients. The mean∆CODs are reported in the plots.

Ablative evaluation of motion correction is shown in Figure 6. The difference
of COD between the reference frame and the current frame (∆COD) over the 2
minutes acquisition is visualized. For Patient 1 with body motion and irregular
breathing pattern, the ∆COD curve before correction contains irregular steep
changes leading to a mean ∆COD of 0.141± 0.086. With the UMC in our Fast-
MC-PET, the curve after correction is much more stable with a reduced mean
∆COD of 0.031± 0.041 with significance (p < 0.001). For Patients 2 and 3 with
more stable and regular motion patterns, the UMC can also reduce the mean
∆COD from 0.135±0.132 to 0.048±0.059 and from 0.065±0.048 to 0.028±0.030,
respectively. Both with significance (p < 0.001). A patient example of PCIs over
the 2 minutes acquisition before and after applying the UMC correction is shown
in Figure 2.

4 Discussion

In this work, we propose a novel deep learning-aided data-driven motion correc-
tion and reconstruction framework for accelerated PET (Fast-MC-PET). The
proposed method can accelerate the PET acquisition by nearly 7-fold and use
only 2 min acquisition while providing high-quality reconstruction with motion
correction. In this framework, we first devise a UMC module that estimates con-
tinuous motion based on PCIs and use this information to reconstruct motion-
compensated images. Instead of using 15 minutes long acquisition that 1) inherits
more motion due to long scanning time and 2) requires registrations of 1800 PCI
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pairs in UMC, we use 2 minutes accelerated acquisition with less motion and only
requires registrations of 240 PCI pairs. The averaged registration inference time
for one pair is 0.41s, thus needing about 98.5s for all registration in UMC which
is more manageable. The UMC reconstruction from accelerated acquisition can
then be inputted into the SL-Recon module to directly generate the 15 minutes
long acquisition motion corrected reconstruction. With this simple yet efficient
pipeline, we can generate high-quality motion corrected accelerated PET recon-
struction that potentially outperforms previous methods with the standard long
acquisition.

There are a few limitations and opportunities that are the subject of our on-
going work. First, our pilot study only test on 18F-FPDTBZ patients who were
all scanned using Siemens mCT. The trained model may not directly generalize
well to a different PET tracer/scanner. However, if the training data of different
tracers/scanners is available, the Fast-MC-PET can be fine-tuned and poten-
tially adapted to these distributions. Multi-institutional federated learning [24]
may also be used to improve the adaptation. In the future, we will further evalu-
ate the performance using patients scanned with different PET tracers/scanners.
Second, we used a temporal resolution of 500 ms for PCI in UMC with a focus
on abdominal region motion correction in this work. A higher temporal resolu-
tion, e.g. 100ms, may be needed for cardiac motion correction in the chest region,
which is an important direction in our future investigation. Third, the UMC cor-
rection performance is still not perfect, as shown in Figure 6 blue curves, where
the∆COD values are non-zero. The current implementation uses a simple 3-level
UNet for motion prediction. Deploying a more advanced registration network,
e.g. transformer-based network [5] and temporal registration networks [6,7,25],
may potentially further reduce the registration error and improve the final re-
construction quality. Lastly, the PCI denoising step requires supervised training
from paired gated images, which is time-consuming to prepare. In the future, we
will also investigate self-supervised denoising methods, e.g. Noise2Void [19], for
PCI denoising in our Fast-MC-PET.

5 Conclusion
This paper presents a deep learning-aided motion correction and reconstruction
framework for accelerated PET, called Fast-MC-PET. The Fast-MC-PET con-
sisting of UMC and SL-Recon, uses only 2 minutes accelerated PET acquisition
data for high-quality reconstruction. The UMC reconstructs motion-corrected
short acquisition image, regardless of the motion type in the abdominal region.
The SL-Recon then converts the 2 minutes UMC image into virtual 15 minutes
UMC image. The experimental results demonstrate that our proposed method
can accelerate acquisition by nearly 7-fold and generate high-quality motion-
corrected reconstruction for patients with different motions.
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