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Abstract. Biomechanical modelling of soft tissue provides a non-data-
driven method for constraining medical image registration, such that
the estimated spatial transformation is considered biophysically plau-
sible. This has not only been adopted in real-world clinical applica-
tions, such as the MR-to-ultrasound registration for prostate interven-
tion of interest in this work, but also provides an explainable means
of understanding the organ motion and spatial correspondence estab-
lishment. This work instantiates the recently-proposed physics-informed
neural networks (PINNs) to a 3D linear elastic model for modelling
prostate motion commonly encountered during transrectal ultrasound
guided procedures. To overcome a widely-recognised challenge in gen-
eralising PINNs to different subjects, we propose to use PointNet as
the nodal-permutation-invariant feature extractor, together with a reg-
istration algorithm that aligns point sets and simultaneously takes into
account the PINN-imposed biomechanics. Using 77 pairs of MR and ul-
trasound images from real clinical prostate cancer biopsy, we first demon-
strate the efficacy of the proposed registration algorithms in an “unsuper-
vised” subject-specific manner for reducing the target registration error
(TRE) compared to that without PINNs especially for patients with large
deformations. The improvements stem from the intended biomechanical
characteristics being regularised, e.g., the resulting deformation magni-
tude in rigid transition zones was effectively modulated to be smaller
than that in softer peripheral zones. This is further validated to achieve
low registration error values of 1.90 ± 0.52 mm and 1.94 ± 0.59 mm
for all and surface nodes, respectively, based on ground-truth computed
using finite element methods. We then extend and validate the PINN-
constrained registration network that can generalise to new subjects. The
trained network reduced the rigid-to-soft-region ratio of rigid-excluded
deformation magnitude from 1.35± 0.15, without PINNs, to 0.89± 0.11
(p < 0.001) on unseen holdout subjects, which also witnessed decreased
TREs from 6.96±1.90 mm to 6.12±1.95 mm (p = 0.018). The codes are
available at https://github.com/ZheMin-1992/Registration_PINNs.
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1 Introduction

Multi-modal image registration enables access to clinically important informa-
tion from different imaging modalities by spatially aligning them [6], in tasks such
as surgical and interventional guidance [7,2]. Perhaps due to the complementary
nature between cross-modality images, designing a robust objective function
or an unsupervised loss function is in general highly challenging, for classical
or learning-based algorithms, respectively. This work investigates an example
of such cross-modality registration, for establishing spatial correspondence be-
tween preoperative MR and 3D intraoperative transrectal ultrasound (TRUS)
images from the same patients. Indeed, most previously proposed approaches
utilised correspondent features from both images, for either iterative optimisa-
tion algorithms [17] or neural network training [9,20]. The inevitable sparsity
of these available anatomical features, such as the boundaries of prostate gland
and other zonal structures, necessitates the addition of transformation smooth-
ness constraints. Hu et al [9] illustrated examples showing that, without imposing
smoothness constraints on the registration-estimated transformation, highly dis-
torted local deformation occurred which led to poorer target registration errors
(TREs) in these areas. In addition to heuristically designed deformation regular-
isation, such as L2 norm of local displacement and bending energy, displacement
constraints originated from solid mechanics [17,18], have also demonstrated bene-
fits in this application, with an arguably flexible and purposive approach through
its soft tissue modelling physics.

Different from voxelised volumetric images with rectangular grids, point sets
are in general unstructured and unordered [13] for efficiently yet sparsely repre-
senting geometries or shapes. PointNet was proposed to represent such point sets
[13]. Originally designed for classification and segmentation tasks, PointNet was
also adopted for learning-based rigid registration that either 1) first establishes
point correspondences in the feature spaces, with which then estimates the rigid
transformation using closed-form solutions such as singular value decomposition
[19], or 2) directly aligns with learned feature representations to regress the
rigid transformation parameters [10]. Among non-rigid registration approaches,
Free Point Transformer [1,2] is an example that utilises the PointNet to extract
features to predict source-point-wise displacement vectors, trained with compo-
sition of Chamfer loss [4] and/or negative log-likelihood function of Gaussian
Mixture Models [2].

In [16], an adapted PointNet [13] was proposed using finite element mod-
elling (FEM)-simulated training data to predict nodal displacement vectors for
prostate meshes with unseen patients. In [5], FEM was first proposed to generate
displacements for source point sets with boundary conditions established from
an independent non-rigid iterative closest point (ICP) [3] procedure between
prostate surfaces, before a network trained using the FEM-generated transfor-
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mations [5]. Biomechanical constraints have also been investigated in motion
modelling and deformable registration, for other organs, such as liver [12], brain
[11] and heart [14].

This work investigates an alternative approach to encode biomechanical con-
straints represented by a system of partial differential equations (PDEs), which
is solved simultaneously with minimising a registration loss. For registering MR
and TRUS prostate images, we propose an approach that 1) represents prostate
point displacements using PointNet, previously adopted in this application [2];
2) develops physics-informed neural network (PINNs) for imposing elastic con-
straints on the estimated displacements; and 3) formulates an end-to-end regis-
tration network training algorithm, by minimising surface distance as estimated
boundary conditions in the PDEs. First, we show that the proposed PINNs effec-
tively constrained the registration-estimated deformation with predefined elastic
material properties, for registering individual point pairs. Second, with training
data from as few as 75 subjects, the learned constrained registration generalised
to new subjects, from which different point sets are independently sampled to
represent varying sizes and geometries. We argue in this paper the significance
in both results. The subject-specific algorithm incorporates elasticity or poten-
tially other complex constraints in registration in a single network training, re-
placing alternative biomechnically-constrained methods requiring construction
of statistical motion models [8] or finite element simulations [7,5]; whilst the sec-
ond learning approach registers unseen point set pairs during efficient inference,
demonstrating the generalisability over different geometries and nodal configu-
rations - a well-recognised challenge associated with PINNs.

The contributions are summarised as follows. 1) We developed a patient-
specific registration algorithm combining PointNet and PINNs, which aligns
prostate glands segmented from MR and TRUS images, subject to biomechani-
cal constraints exerted from soft-tissue-modelling PDEs (Fig. 1). 2) We demon-
strated that both the biomechanically-regularised deformation and the TRE-
reducing correspondence can be generalised to unseen new patients, with the
PINN-based registration network trained on a small number of training exam-
ples. 3) We presented a set of experimental results for evaluating the theoretical
and clinical efficacy in soft tissue modelling within registration algorithms, with
statistical significance, using finite element (FE)-based ground-truth and inde-
pendent landmark-based target registration errors (TREs), respectively.

2 Methods

Let PS ∈ RNs×3 and PT ∈ RNt×3 be a pair of source and target point sets
with individual points being ps ∈ R3 and pt ∈ R3, where Ns ∈ N+ and Nt ∈ N+

are number of points, s ∈ {1, ..., Ns} and t ∈ {1, ..., Nt} are indexes of points.
The non-rigid point set registration problem is to find point-wise displacement
vectors DS ∈ RNs×3 with ds ∈ R3, such that the warped source point set
T(PS) = PS + DS aligns with PT . We additionally adopt notations Pinternal

S
and Psurface

S to distinguish internal and surface points in PS .
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2.1 Physics-informed Neural Network (PINNs) for Non-rigid
Registration with Biomechanical Constraints

With the capability of universal function approximation, physics-informed neu-
ral networks (PINNs) can be utilised to model physical laws represented by
nonlinear partial differential equations (PDEs) [15]. A non-rigid medical image
registration problem estimating displacement vectors DS is considered as the
problem of seeking data-driven solutions to PDEs. The entire network eθ(Dk)
where k ∈ N+ is the patient index, with trainable parameters θ, consists of two
sub-networks gθg (Dk) and hθh(Dk), with completing parameter sets θg and θh,
predicting displacement vectors DS and stress tensors σ ∈ RNs×6, respectively.
Let a function f(ps,ds,σs) be a PINN defining biomechanical constraints par-
tially characterised by known material properties bs:

f := f1(
∂σs

∂x
,
∂σs

∂y
,
∂σs

∂z
) + f2(

∂ds
∂x

,
∂ds
∂y

,
∂ds
∂z

,σs, bs) + f3(
∂ds
∂x

,
∂ds
∂y

,
∂ds
∂z

,σs),

(1)
where x, y and z are spatial coordinates of ps, the determination of bs is de-
tailedly described in Sect. 3, f1(·), f2(·) and f3(·) represent norms of residuals
deviating from static equilibrium, constitutive equality and null elastic energy,
respectively, as defined in the remainder Sect. 2.2 and Sect. 2.3. The network
parameters are optimised by minimising Lk(θ;Dk) = LkR(θg;Dk) + LkF (θ;Dk),
where LkF (θ;Dk) =

∑Ns

s=1 f(ps,ds,σ
s) is the term concerning biomechanical

constraints over all sampled source points, while LkR(θg;Dk) can be either (1)∑Ns

s=1

(
||ds − dgt

s ||22
)
with dgt

s ∈ R3 denoting ground-truth displacement vec-
tors of ps under supervised learning (e.g., simulated data with known ground-
truth deformations); or (2) φ(T(PS),PT ) being the unsupervised loss (e.g., the
Chamfer loss for the purpose of aligning point sets) which measures goodness-
of-prediction, resulting in a complete registration algorithm as described in Sect.
2.3 and used throughout this paper.

2.2 Governing Equations for Deforming Linear Elastic Organs
adapted for Medical Image Registration

In this section, linear elasticity is used as a specific example of prostate gland
deformation between PS and PT , primarily due to contact with a moving ultra-
sound probe [8,7]. Adopting linear elasticity aims to demonstrate the feasibility
of modelling soft tissue with the PDE-representing physics as the first step to-
wards more complex and potentially more realistic models, such as nonlinear
strain, alternative stress, time-dependent viscoelasticity and plasticity.
Strain-displacement Equations The strain-displacement equation (i.e., kine-
matic equation) at a source point ps is

εs =
1

2
(∇ds +∇dT

s ), (2)

where εs is the infinitesimal second-order Cauchy strain tensor at ps, ∇ds is
the displacement gradient w.r.t. spatial coordinates x, y, z of ps. Eq. (2) can
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be rewritten explicitly as εsxx =
∂dxs
∂x , εsxy = 1

2 (
∂dxs
∂y +

∂dys
∂x ), εsyy =

∂dys
∂y , εsyz =

1
2 (
∂dys
∂z +

∂dzs
∂y ), ε

s
zz =

∂dzs
∂z , ε

s
xz =

1
2 (
∂dxs
∂z +

∂dzs
∂x ). Eq. (2) is used to compute strain

tensors E ∈ RNs×6 from displacement vectors DS predicted by gθg (Dk).
Static Equilibrium Equations The spatial components of the Cauchy stress
tensor σs at ps, predicted by hθh(Dk), satisfy the following equilibrium equation
(i.e., equation of motion)

σsji,j + Fi = 0, (3)

where (·)s,j is a shorthand for ∂(·)
∂(ps)j

, Fi ∈ R is the body force that is ap-
proximated to be zero at the static equilibrium, i and j denote three spatial
directions. Eq. (3) can be rewritten explicitly as ∂σs

xx

∂x +
∂σs

yx

∂y +
∂σs

zx

∂z = 0,
∂σs

xy

∂x +
∂σs

yy

∂y +
∂σs

zy

∂z = 0, ∂σ
s
xz

∂x +
∂σs

yz

∂y +
∂σs

zz

∂z = 0.
Constitutive Equations The stress and strain tensors at ps are related by the
constitutive equation (i.e., the generalised Hooke’s law) as

σs = C : εs, (4)

where C is the fourth-order elasticity tensor. Eq. (4) can be expanded as
σsxx
σsyy
σszz
σsxy
σsxz
σsyz

 =


(λ+ 2µ) λ λ 0 0 0

λ (λ+ 2µ) λ 0 0 0
λ λ (λ+ 2µ) 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




εsxx
εsyy
εszz
2εsxy
2εsxz
2εsyz

, (5)

where λ ∈ R and µ ∈ R are Lame parameters, which are computed using λ =
Eν

(1−2ν)(1+ν) and µ = E
2(1+ν) with the Young’s Modulus E and Possion’s ratio v.

As will be introduced in Sect. 2.3, Eq. (3) and Eq. (5) are utilised to construct
PDEs that regularise DS predicted by gθg (Dk), σ predicted by hθh(Dk), and E
computed with Eq. (2).

2.3 A Non-Rigid Point Set Registration Algorithm using PINNs

Fig. 1 shows the schematic of the proposed non-rigid point set registration net-
work, with the displacement-predicting gθg (Dk) and stress-predicting hθh(Dk).
Loss Functions for Single-Pair Patient-specific Registration The loss
function includes four terms. First, the Chamfer loss φ(T(PS),PT ) [4] is min-
imised to spatially align the two point sets, and is given by

LkR(θg;Dk) =
1

|Ñt|

( ∑
t∈Ñt

min
s∈Ñs

||T(ps)− pt||22
)
+

1

|Ñs|
( ∑
s∈Ñs

min
t∈Ñt

||T(ps)− pt||22
)

(6)
where Ñs ⊆ {1, ..., Ns} and Ñt ⊆ {1, ..., Nt} denote sets of points being either
the entire organ PS and PT or a subset region, e.g., surface points Psurface

S and



6 F. Author et al.

GFE

MLP(3)MLP
(1024,512,256,128,64)

PT MLP(1)

PT MLP(1)

PT MLP(1)

PT MLP(1)

PT MLP(1)

PT MLP(1)

Strain-displacement 
Equation

PointNet

PointNet

Global Feature Extraction (GFE)

add

Registration Loss

Point Transformation (PT)

TRUS

푵
�
×
3

푁 �
×
3

10
24

10
24

20
48

푁� × 2051

푵풔 × ퟔ

MRI

푵
풔
×
ퟏ

푵
풔
×
ퟏ

푵
풔
×
ퟏ

푵
풔
×
ퟏ

푵
풔
×
ퟏ

푵
풔
×
ퟏ

푵
풔
×
ퟔ

흈

ℒ��

Fig. 1. The proposed non-rigid medical image registration framework using physics-
informed neural networks (PINNs), whose inputs are a pair of source and target point
sets PS and PT extracted from MRI and TRUS volumes of the same patient, respec-
tively. PINNs consist of gθg (Dk) predicting displacement vectors DS from which the
point-wise strain tensors E are further computed with the strain-displacement equation
in Eq. (2), and hθh(Dk) predicting stress tensors σ. The source point set PS added by
DS results in the warped source point set T(PS), between which and PT the Chamfer
loss LkR is computed using Eq. (6). LkS in Eq. (7) and LkC in Eq. (8) penalise deviations
from the equality of the static equilibrium equation in Eq. (3) about σ, and that of
the constitutive equation in Eq. (4) about σ and E , respectively. LkE in Eq. (9) is the
elastic energy cost that shall also be minimised.

Psurface
T , |Ñs| and |Ñt| are numbers of points. Second, deviation from the static

equilibrium equation in Eq. (3) w.r.t. the stress σ is penalised by minimising
LkS(θh;Dk) as

LkS(θh;Dk) =
Ns∑
s=1

f1(
∂σs

∂x
,
∂σs

∂y
,
∂σs

∂z
), (7)

where f1(∂σ
s

∂x ,
∂σs

∂y ,
∂σs

∂z ) = |∂σ
s
xx

∂x +
∂σs

yx

∂y +
∂σs

zx

∂z |+ |
∂σs

xy

∂x +
∂σs

yy

∂y +
∂σs

zy

∂z |+ |
∂σs

xz

∂x +
∂σs

yz

∂y +
∂σs

zz

∂z |. Third, L
k
C(θ;Dk) regularises σ and strain E to satisfy constitutive

equations in Eq. (5), and is defined as

LkC(θ;Dk) =
Ns∑
s=1

f2(
∂ds
∂x

,
∂ds
∂y

,
∂ds
∂z

,σs, bs), (8)

where f2(∂ds

∂x ,
∂ds

∂y ,
∂ds

∂z ,σ
s, bs) = (|(λ+2µ)εsxx+λ(ε

s
yy+ε

s
zz)−σsxx|+|λ(εsxx+εszz)+

(λ+2µ)εsyy−σsyy|+|λεsxx+λεsyy+(λ+2µ)εszz−σszz|+|σsxy−2µεsxy|+|σsxz−2µεsxz|+
|σsyz−2µεsyz|), the strain tensor εsij at ps is computed from network-predicted ds
with the automatic differentiation, according to the kinematic equation in Eq.
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(2). Fourth, LkE(θ;Dk) =
∑Ns

s=1
1
2ε
s
ijσ

s
ij is the elastic energy cost to be minimised

LkE(θ;Dk) =
Ns∑
s

f3(
∂ds
∂x

,
∂ds
∂y

,
∂ds
∂z

,σs), (9)

where f3(∂ds

∂x ,
∂ds

∂y ,
∂ds

∂z ,σ
s) = 1

2 (ε
s
xxσ

s
xx+ε

s
yyσ

s
yy+ε

s
zzσ

s
zz+2εsxyσ

s
xy+2εsxzσ

s
xz+

2εsyzσ
s
yz).

The overall training loss Lk(θ;Dk) in the single-pair image registration for
the given subject k is given by a (w ∈ R+)-weighted sum of these terms,

Lk(θ;Dk) = wLkR(θg;Dk) + LkS(θh,Dk) + LkC(θ;Dk) + LkE(θ;Dk). (10)

Optimisation for a Multi-Patient Learning Algorithm The above-described
network can be adapted with minimal change in implementation, for a population-
trained registration algorithm, by optimising network parameters θ with respect
to an amortization loss:

θ? = argmin
θ
L(θ;D) = argmin

θ
Ek(Lk(θ;Dk)), (11)

where D is all the training data from multiple subjects and Ek denotes the
expected value over all training examples.

2.4 Evaluation Metrics

For the experimental results described in Sec. 3, four evaluation metrics are
reported. First, TREs were computed as the average distance between the ge-
ometric centroids of pairs of registered source and target landmarks, which in-
clude apex and base of the prostate, water-filled cysts, and calcifications. Fur-
ther details in defining these independent landmarks followed published meth-
ods in previous studies [2,9]. Second, deformation magnitudes (DMs) were com-
puted to measure the “pure” non-rigid part of predicted displacements of PS ,

4.0 4.5 5.0 5.5
Deformation Magnitudes

4

6

8

10

12
(a) TRE in mm

Without PINNs
PINNs, w=103

PINNs, w=104

4.0 4.5 5.0 5.5
Deformation Magnitudes

-2

0

2

4
(b) TRE Improment in mm

PINNs, w=103

PINNs, w=104

Fig. 2. (Left) TRE (mm) of MRI-TRUS fusion using patient-specific registration mod-
els with and without PINNs, w.r.t. deformation magnitudes of prostate gland. (Right)
TRE improvements by incorporating PINNs compared to those without PINNs. The
shaded areas are 95% confidence intervals (i.e., ±2 standard deviations).
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Table 1. Quantitative results (mean ± std in mm) of patient-specific models in the
first experiment. ?: significantly different from results without PINNs (p < 0.05). ◦:
the two with ◦ had no significant difference with each other but were both significantly
different from the remaining result in one column (p < 0.001). The best results are
marked in bold for CD and TRE.

Models
DM

(Internal Points
Rigid Region)

DM
(Internal Points

Soft Region)
CD

CD
(Surface Points

Only)
TRE

Without PINNs 4.78± 1.06 4.72± 0.95 1.51◦ ± 0.23◦ 0.49◦ ± 0.10◦ 7.52± 2.46

PINNs (w = 104) 4.56? ± 1.14? 4.69± 0.99 1.52◦ ± 0.26◦ 0.53◦ ± 0.19◦ 7.32± 2.60

PINNs (w = 103) 4.42? ± 1.31? 4.58± 1.06 1.66± 0.30 0.83± 0.42 7.23±2.60

excluding the “largest” rigid transformation (R, t). DM was defined as resid-
uals after solving the orthogonal Procrustes problem between PS and T(PS)

[3]: as DM = 1

|Ñ |

∑
s∈Ñ ||Rps + t − T(ps)||2, where Ñ can be either PS or

Pinternal
S , |Ñ | is the number of points. Third, Chamfer Distance (CD) was defined

as CD = 1
2

(
1

|Ñt|

∑
t∈Ñt

mins∈Ñs
||T(ps) − pt||2 + 1

|Ñs|

∑
s∈Ñs

mint∈Ñt
||T(ps) −

pt||2
)
, where Ñt and Ñs are the same as those in Eq. (6). Fourth, the root-

mean-square error (rmse) was defined between predicted displacement DS and
ground-truth Dgt

S ∈ R|Ñs|×3 as rmse =
√

1

|Ñs|

∑
s∈Ñs

||ds − dgt
s ||22.

3 Experiments and Results

Datasets The first dataset contained 77 pairs of MRI and TRUS volumetric im-
ages (both were resampled to 0.8 × 0.8 × 0.8 mm3) from prostate cancer biopsy,
where the exemplar clinical application is to register pre-operative MRI images
with TRUS images where prostate gland has been deformed due to surgical probe
contact [8]. Each pair of point sets was extracted from the segmentations of the
prostate gland in one patient’s MRI and TRUS images respectively (Fig. 1).
The second dataset containing 8 cases was generated over MRI-derived prostate
meshes by producing ground-truth deformations in [5.58, 8.66] mm using the fi-
nite element modelling (FEM) process, proposed in previous studies [8,16], with
different material properties assigned to peripheral zones (PZ) and transition
zone (TZ): the ratios of Youngs’ Modulus with PZ and TZ EPZ

ETZ
were in the

range of [0.12, 0.20]. More details about zonal segmentations in this dataset can
be found in [7,8]. The third dataset included 75 MRI and TRUS point-set pairs
for training and 33 pairs from different patients for testing, in order to validate
the generalisability of the developed population-trained model.

Implementation Details PointNet [13] is adapted with a TNet 4-by-4 out-
putting 4 × 4 rigid transformation matrix instead of the original 3-by-3 TNet,
suggested in [2]. The final global feature from a PointNet φ(·) is of size 1024.
In the global feature extraction (Fig. 1) module, the global features φ(PS) and
φ(PT ) learnt from PS and PT are concatenated. In the point transformation
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Table 2. TRE statistics (mean ± std in mm) of patients whose ratios of DM between
rigid and soft sub-regions were correctly modulated from > 1 without PINNs to < 1
with PINNs. (1) The 1st and 3rd rows are such cases; and (2) the 2nd and 4th rows are
patients in (1) whose TRE were also improved. The column # records the number of
patients per row. ?: improvements of PINNs were statistically significant (p < 0.001).

PINNs Models #
TRE

Without PINNs
TRE

With PINNs
TRE Improved
With PINNs

w = 104 22 7.39± 2.08 6.55± 1.86 0.84± 2.18

w = 104 (TRE Improved) 15 8.04± 2.05 6.04? ± 1.70? 2.00± 1.49

w = 103 20 7.95± 2.15 6.68? ± 2.23? 1.27± 1.90

w = 103 (TRE Improved) 16 8.09± 2.31 6.21? ± 2.15? 1.88± 1.62

module (Fig. 1), the concatenated global feature is repeated for Ns times and
further concatenated with PS . The resulting feature map of size Ns × 2051 will
go through shared MLP(1024, 512, 256, 128, 64) and another shared MLP(256)
without the ReLU layer. At the end, MLP(3) and 6 individual MLP(1) are used
in branches gθg (Dk) predicting DS and hθh(Dk) predicting σ, respectively.

For the first and third experiments, Young’s modulus E in Eq. (8) was chosen
as 500 kPa and 5 kPa for points in rigid and soft compartments while Possion’
ratio v was 0.49, leading to (λ = 8221.48, µ = 167.78) and (λ = 82.21, µ = 1.68),
respectively. For the second experiment, E and v were set according to the
ratio of their ground-truth values in two sub-regions. The two compartments’
points were determined either by approximately taking upper 2

3 and lower 1
3

sub-regions in the axial view as rigid and soft compartments (as in the first and
third experiments with clinical data), or taking the TZ and PZ respectively if
zonal segmentations were available (as in the second experiment) [8]. All three
experiments were run on an Intel(R) Xeon(R) Gold 5215 CPU with an NVIDIA
Quadro GV100 32GB GPU.
Results Table 1 and Fig. 2 include the numerical results of the first experiment.
Two observations can be made from Table 1: 1) TRE values decreased with
PINNs; and more importantly 2) DM values in the rigid sub-regions were smaller
than those in the soft sub-regions with PINNs, which demonstrated biome-
chanical constraints are effectively preserved in the registration algorithm, i.e.,
DMrigid
DMsoft

< 1, significantly different from DMrigid
DMsoft

> 1 without PINNs (p = 0.019 for
w = 103 and p = 0.029 for w = 104, paired t-tests at significance level α=0.05).
Fig. 2 shows TRE values w.r.t. varying DM thresholds. It is found from Fig. 2
that 1) TRE values increased with larger deformation magnitudes for all meth-
ods; and 2) PINNs reduced the TREs and demonstrated greater improvements
for patients that undergo larger deformations. For example, PINNs (w = 103)
significantly decreased TRE from 7.87± 2.03 mm without PINNs to 7.12± 2.21
(p = 0.049), among top 40% (31/77) patients with larger deformations.

Fig. 3 shows qualitative results from two patients, with large and moderate-
to-large non-rigid deformations being 6.30 mm and 5.56 mm. Take case 1 as an
example, the registration method with PINNs reached desired smaller DM value
in the rigid compartment than that in the soft one, being 3.23 mm versus 3.82
mm for PINNs (w = 104) and 3.25 mm versus 4.04 mm for PINNs (w = 103),
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Case 1

PINNs, w=103 PINNs, w=104Without PINNsBefore Registration

TRE=9.06 TRE=3.80 TRE=3.67

Case 2

TRE=3.67 TRE=3.41 TRE=2.22

TRE=15.82

TRE=23.47

Fig. 3. Qualitative results showing meshes and TREs (mm) before and after registra-
tion, of two patient cases with large deformations. The original and warped source (i.e.,
MRI) meshes are depicted in blue while target (i.e., TRUS) meshes are in red. The
anatomical landmarks in MRI and TRUS are denoted by blue circles and red stars.

whereas without PINNs DM was larger (i.e., 5.26 mm) in the rigid compart-
ment than that (i.e., 4.54 mm) in the soft one. While surface points are visually
well aligned for both methods (Fig. 3) with Chamfer distances 0.83 mm, 0.45
mm and 0.48 mm for PINNs (w = 104), PINNs (w = 103) and without PINNs,
PINNs greatly reduced the TRE value from that without PINNs (i.e., from 9.06
mm to 3.80 mm (w = 103) and 3.67 mm (w = 104)), which demonstrates the
effectiveness of PINNs in producing more clinically meaningful deformations.

As shown in Table 2, 22 (w = 104) and 20 (w = 103) out of 77 patients
achieved desired smaller DMs in the rigid sub-regions than those in the soft
sub-regions with PINNs, while without PINNs for those cases DMs were larger
in the rigid sub-regions than those in the soft sub-regions. The majority, 68%
(15/22) and 80% (16/20) cases, obtained lower TREs than those without PINNs,
for w = 104 and w = 103, respectively, where TRE improvements were statisti-
cally significant (p < 0.001) with mean differences being 2.00 mm and 1.88 mm,
respectively. This is consistent with conclusions from previous studies, showing
efficacy of imposing distinct material properties within the registration is posi-
tively correlated with more accurate registration.

Fig. 4 shows results of the second experiment. The rmse values were 1.90±0.52
mm and 2.11±0.63 mm (p = 0.400) for all points, 1.94±0.59 mm and 2.19±0.75
mm (p = 0.350) for surface points, with PINNs (w = 105) and without PINNs re-
spectively. The enhancements of the PINNs 1) demonstrate its capability of suc-
cessfully registering two point sets with lower error values; and 2) further validate
its effectiveness of producing displacement vectors that are more biomechanical
compliant, considering that the ground-truth deformations are generated with
FEM and thus are implicitly biomechanical encoded.

For the third experiment, compared to that without PINNs, the incorpora-
tion of PINNs (w = 103) significantly reduced the average TREs on the test
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subjects from 6.96 ± 1.90 mm to 6.12 ± 1.95 mm (p = 0.018), while Chamfer
distances with and without PINNs were 2.48 ± 0.33 mm and 2.54 ± 0.37 mm
(p = 0.165) on all points (2.96 ± 0.55 mm and 2.60 ± 0.41 mm (p < 0.001)
on surface points), respectively. The successful imposition of biomechanical con-
straints on the test data was further demonstrated by 1) The ratios of DM
between internal points in rigid and soft compartments DMrigid

DMsoft
were 0.89± 0.11

and 1.35±0.15 (p < 0.001) using registration methods with and without PINNs,
respectively; and 2) The loss computed on the test patients using Eq. (10) was
reduced from 20 to 10−14 after registration, which demonstrated the network’s
ability of inferring constraints on unseen subjects.
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Fig. 4. Root mean squared error computed with displacement vectors DS predicted
by registration methods and ground-truth Dgt

S generated with finite element modelling.

4 Discussions and Conclusions

Despite the proposed model’s power of regularising biomechanical constraints
with predicted transformations and success of reducing registration error and
generalising to unseen patients, as we showed in Sect. 3, this paper needs to
be read with several limitations. First, the use of PINNs does not circumvent
all limitations of biomechanical modelling shared with other approaches, such
as assumptions of potentially subject-specific material properties. However, this
opens up new opportunities for solutions to the material property estimation
challenge, by considering an inverse data-driven discovery problem of PDEs po-
tentially approachable with PINNs [15]. The second limitation is that our val-
idation is focused on the MRI-TRUS prostate registration, while it is of broad
interest to explore the model’s effectiveness for wider clinical applications such
as accurate and reliable myocardial motion tracking from cardiac cine MRI se-
quence [14]. The third limitation is that the linear elasticity is assumed, which
is useful to demonstrate the efficacy of the methodology but both biomechni-
cal modelling and registration performance may be further improved with more
complex modelling with nonlinear materials and geometries in future studies.

To conclude, in this paper, we have presented a novel biomechanical con-
straining method using PINNs for non-rigid point set registration. Experimental
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results on FEM-produced data and clinical MRI-TRUS paired image data, using
both patient-specific and multi-patient learning models, demonstrated that the
proposed framework is capable of lowering registration errors with presubscribed
biomechanical characteristics and generalizability, promising for clinical use and
wider research in PINN-based modelling.
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