Skip to main content

VAE-Based Generic Decoding via Subspace Partition and Priori Utilization

  • Conference paper
  • First Online:
  • 701 Accesses

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 676))

Abstract

Generic decoding is a challenging problem in visual neural decoding. The existing methods based on generative models ignore the application of prior knowledge, which leads to poor interpretability, and few pay attention to fMRI (functional Magnetic Resonance Imaging) processing. To tackle these problems, a novel framework for generic decoding has been proposed named GD-VAE. GD-VAE is based on Variational Auto-Encoder (VAE) which is capable of meaningful latent space, and contains four modules: feature extractor, feature VAE, Prior Knowledge Network (PKN) and Latent Space Disentangling Network (LSDN). The feature extractors extract features of raw visual and cognitive data, and feature VAE implements decoding with a shared latent space for both modalities. The PKN and LSDN constrain the latent space of VAE with delicate structure, in order to apparently reveal the information in the subspace. Benefiting from these modules, the alignment between visual and cognitive modality can be achieved, and greater interpretability can be acquired. Experiments on Generic Decoding Dataset validate the effectiveness and interpretability of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akamatsu, Y., Harakawa, R., Ogawa, T., Haseyama, M.: Estimating viewed image categories from fMRI activity via multi-view Bayesian generative model. In: 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), pp. 127–128. IEEE (2019)

    Google Scholar 

  2. Akamatsu, Y., Harakawa, R., Ogawa, T., Haseyama, M.: Brain decoding of viewed image categories via semi-supervised multi-view Bayesian generative model. IEEE Trans. Sig. Process. 68, 5769–5781 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akamatsu, Y., Harakawa, R., Ogawa, T., Haseyama, M.: Multi-view Bayesian generative model for multi-subject fMRI data on brain decoding of viewed image categories. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1215–1219. IEEE (2020)

    Google Scholar 

  4. Dieng, A.B., Kim, Y., Rush, A.M., Blei, D.M.: Avoiding latent variable collapse with generative skip models. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2397–2405. PMLR (2019)

    Google Scholar 

  5. Du, C., Du, C., Huang, L., He, H.: Reconstructing perceived images from human brain activities with Bayesian deep multiview learning. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2310–2323 (2018)

    Article  MathSciNet  Google Scholar 

  6. Frome, A., Corrado, G., Shlens, J., et al.: A deep visual-semantic embedding model. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2121–2129 (2013)

    Google Scholar 

  7. Higashi, T., Maeda, K., Ogawa, T., Haseyama, M.: Estimation of visual features of viewed image from individual and shared brain information based on fMRI data using probabilistic generative model. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1335–1339. IEEE (2021)

    Google Scholar 

  8. Higgins, I., et al.: \(\beta \)-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  9. Horikawa, T., Kamitani, Y.: Generic decoding of seen and imagined objects using hierarchical visual features. Nat. Commun. 8(1), 15037 (2017)

    Article  Google Scholar 

  10. Huang, S., Shao, W., Wang, M.L., Zhang, D.Q.: fMRI-based decoding of visual information from human brain activity: a brief review. Int. J. Autom. Comput. 18(2), 170–184 (2021). https://doi.org/10.1007/s11633-020-1263-y

    Article  Google Scholar 

  11. Huang, W., et al.: Long short-term memory-based neural decoding of object categories evoked by natural images. Hum. Brain Mapp. 41(15), 4442–4453 (2020)

    Article  Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  13. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  14. Papadimitriou, A., Passalis, N., Tefas, A.: Visual representation decoding from human brain activity using machine learning: a baseline study. Pattern Recogn. Lett. 128, 38–44 (2019)

    Article  Google Scholar 

  15. Qiao, K., et al.: Category decoding of visual stimuli from human brain activity using a bidirectional recurrent neural network to simulate bidirectional information flows in human visual cortices. Front. Neurosci. 13, 692 (2019)

    Article  MathSciNet  Google Scholar 

  16. Rodriguez, E.G.: On disentanglement and mutual information in semi-supervised variational auto-encoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1257–1262 (2021)

    Google Scholar 

  17. Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., Akata, Z.: Generalized zero-and few-shot learning via aligned variational autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8247–8255 (2019)

    Google Scholar 

  18. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558 (2017)

  19. Tomczak, J., Welling, M.: VAE with a VampPrior. In: International Conference on Artificial Intelligence and Statistics, pp. 1214–1223. PMLR (2018)

    Google Scholar 

  20. Wang, X., Peng, D., Hu, P., Sang, Y.: Adversarial correlated autoencoder for unsupervised multi-view representation learning. Knowl.-Based Syst. 168, 109–120 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (No. 62088102), China National Postdoctoral Program for Innovative Talents from China Postdoctoral Science Foundation (No. BX2021239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanning Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheng, M., Ma, Y., Chen, K., Zheng, N. (2023). VAE-Based Generic Decoding via Subspace Partition and Priori Utilization. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 676. Springer, Cham. https://doi.org/10.1007/978-3-031-34107-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34107-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34106-9

  • Online ISBN: 978-3-031-34107-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics