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Abstract. In this paper, we study the application of Machine Learn-
ing (ML) in detecting and predicting Ahead-of-Time (AoT) production
disruptions in a Portuguese Wood-Based Panels Industry. Assuming an
Industry 4.0 concept, the analyzed ML classification task presents several
challenges, such as a high number of Internet of Things (IoT) sensors,
high-velocity data generation and extremely imbalanced data. To solve
these issues, we adapt and compare five state-of-the-art ML algorithms
for anomaly detection. Moreover, we pre-process the big data and employ
a Selective Sampling (SS) technique to train and test computationally
efficient ML models. Overall, high-quality results were obtained by an
eXtreme Gradient Boosting (XGBoost) model, both in terms of detec-
tion and AoT prediction of production stoppages. Finally, we applied
an eXplainable AI (XAI) technique based on sensitivity analysis to the
XGBoost model, enabling the understanding of the impact of the sensor
inputs on the disruption condition.

Keywords: Anomaly Detection · Industry 4.0 · Machine Learning ·
Ahead-of-Time Prediction.

1 Introduction

The Industry 4.0 paradigm is causing a transformation in diverse industries. Ad-
vanced Information Technologies (IT), such as the Internet of Things (IoT), Big
Data, Artificial Intelligence (AI) and Machine Learning (ML), can enable more
efficient and intelligent manufacturing [7, 15]. In particular, ML has emerged
as a powerful tool in several Industry 4.0 applications, such as Product Qual-
ity Assessment, Predictive Maintenance (PdM) and Detection of Production
Anomalies [14].
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In this paper, we demonstrate the usefulness of an ML approach to detect
and even predict Ahead-of-Time (AoT) Production Disruptions related to a
Portuguese Wood-Based Panels Industry. The final goal is to create a digital twin
to simulate the stoppages conditions and ultimately prevent their occurrence
by employing a prior intelligent control of some relevant production variables
(e.g., top and bottom plate temperatures of the press operation). The analyzed
AoT binary classification task (“normal production”, “stoppage”) corresponds
to an instance of the Machine Learning based Early Decision Making (ML-
EDM) general problem, which is considered challenging [1]. Indeed, the Wood-
Based Panels AoT production disruption task is nontrivial due to three main
reasons. Firstly, it involves a large number of IoT sensors, resulting in hundreds
of potential inputs. Second, the sensors generate data at a high velocity, creating
big data that requires a prohibitive ML computational effort. For instance, the
analyzed period of nine months corresponds to around 360 Gb of raw production
data. Thirdly, the data is extremely imbalanced, with only a small fraction of
the data records corresponding to stoppages (around 2%).

To handle the AoT stoppage detection task, we adapt and compare five state-
of-the-art anomaly detection ML algorithms: unsupervised – Isolation Forest
(IF) and deep Autoencoder (AE); and supervised – Random Forest (RF), eX-
treme Gradient Boosting (XGBoost), and a Deep FeedForward Neural network
(DFFN). The five algorithms are compared in terms of their computational ef-
fort and AoT predictive performance. For the ML experimentation, we create
two production stoppage datasets: Full2d – corresponding to two days of full
data and used in preliminary ML experiments; and SS9m – which assumes a
novel Selective Sampling (SS) that is executed over the full nine-month big data,
resulting in a much smaller dataset that allows to adequately train and test the
ML algorithms while making a reasonable usage of computational resources.
Within our knowledge, our approach is novel when compared with state-of-the-
art works. For instance, some of the explored ML algorithms have been applied
to predict production machine failures in the wood industry, such as executed
in [3] (XGBoost and RF) and [16] (IF and AE). However, none of these works
studied AoT stoppage prediction or employed a SS to handle big data. Moreover,
we employ an eXplainable AI (XAI) technique, based on a sensitivity analysis
[6], to the best AoT predictive model, which allows for demonstrating the impact
of the adopted sensor inputs in the stoppage condition.

2 Materials and Methods

2.1 Industrial Data

The collected raw data assumed 221 IoT sensors installed on distinct machines
of the wood-based panels’ production line, recorded from May 2021 to February
2022. These sensors provide a continuous data stream on diverse aspects of the
production line, including machine conditions, the goods being produced and the
materials being used. To facilitate the analysis of the sensor data, we categorized
them into 7 distinct groups based on their similarities, as shown in Table 1.
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Table 1: Groups of IoT sensors with similar characteristics
Group Description # sensors # records
Infeed Board and paper infeed area (e.g.,

active station)
46 4,514,999

Press Press area (e.g., temperature) 53 65,392,678

Cut Cut area (e.g., intensity) 13 7,653,753

Edge
Cleaner

Edge cleaner area (e.g., trimmer
speed)

25 22,739,428

Stacking Stacking area (e.g., elevation speed) 36 2,777,763

General General information of the produc-
tion order (e.g., shift)

48 15,510,539

Materials Raw materials used (e.g., melamine
code)

42 28,322,721

To differentiate between sensor readings captured during regular production
and those captured during disruptions, we relied on the start and end timestamps
of previous disruptions in the production line. The database accessed contained
also a distinctive identifier for the specific area of the production line where the
reading took place. It should be noted that distinct sensors have different data
generation frequencies. For instance, some sensors produce multiple readings per
minute while others only produce one value every 10 minutes. Thus, the raw data
records are not produced at regular time intervals but only when there is at least
one sensor reading. When such a reading occurs with a timestamp t, all previous
unchanged sensor values are repeated, thus each data record contains all received
sensor values at time t. On average, 3 records are produced for each second.

For ML experimentation purposes, we created two datasets: Full2d and SS9m.
The first Full2d was aimed at a preliminary ML proof-of-concept, to test if the
ML stoppage detection was possible and a computationally feasible task. Given
the sheer volume of data, it only includes the first two days of raw production
data, which corresponds to 448,058 records related to 5 production stoppages. In
the preprocessing stage, all empty, constant, or categorical input variables that
directly signaled a stoppage condition were removed, resulting in a total of 95
variables. Then, the remaining categorical inputs were transformed into numeric
values by assuming a simple label encoding.

As for the second dataset (SS9m), it assumes a Selective Sampling (SS) that
covers with more detail all stoppages and normal conditions rear these stoppages
while retaining a realistic imbalanced disruption ratio of examples (Fig. 1). The
rationale is to allow an AoT analysis closer to and during stoppage events rather
than prolonged normal production stages. The SS method is applied for all
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Fig. 1: Schematic of the proposed Selective Sampling (SS) approach.

production segments, where each segment is made of a normal working cycle that
is ended by a disruption. Let N = 5 denote the number of consecutive records
that occur at the beginning of a stoppage. Since the ratio of non-disruption
to disruption records is R=49:1, we sample a total of 49 × N = 245 normal
production examples that occur before a stoppage. Around 45 × N = 225 of
these examples occur sequentially before the disruption event, thus resulting in
a denser sampling that allows an AoT prediction analysis (shown as a gray area
in Fig. 1). The other 4×N = 20 normal instances (area with vertical gray lines)
are sampled at larger and equally spaced intervals within the previous normal
working zone of the production segment, with exception of the initial segment
records (stripped area) that are ignored (total of 45×N instances). The excluded
area (stripped zone in Fig. 1) includes a stoppage staled status (uninteresting
data), a manual production reboot (which is not predictable), and its subsequent
initial machine rebooting readings.

After consulting the wood-based panel production experts, the SS9m dataset
was filtered to only include disruptions up to the press stage, since these cor-
respond to the stoppages that have more impact on the well-functioning of the
production process and some disruptions after the press stage are not even pre-
dictable. Thus, all data features related to sensors after the press area were ex-
cluded, which includes those in the "edge cleaner", "cut", and "stacking" groups.
Also, all data records that occur after the press area were removed. Furthermore,
a more in-depth data quality feature selection preprocessing was conducted by
employing an exploratory data analysis. As the result of this analysis, features
that met at least one of the following criteria were removed: contain reading
interruptions over time (missing data); represent a theoretical or a predefined
value, not a real measured one; describe another feature; remain nearly constant
throughout the entire period; has no relevance to the study; have timestamps
that do not accurately reflect the actual time of the readings; Or are highly
correlated with another feature (correlation coefficient higher than 0.95). The
final set of input variables included a total of 68 distinct sensor readings. Then,
the known One-Hot (OH) encoding technique was applied to the categorical at-
tributes, transforming each categorical level into a numeric input that represents
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a boolean value (0 or 1) by using the Python package CANE4 [12]. After prepro-
cessing the data, the SS9m dataset includes a total of 984 numeric inputs and
649,161 records that are related to 68 IoT sensors and 1,107 production segments
(sequences of sampled normal and stoppage conditions).

2.2 Machine Learning Methods

All ML algorithms were implemented by using the Python language and the
following modules: scikit-learn5 – for IF and RF; TensorFlow6 – for AE and
DFFN; and Xgboost7 – for XGBoost classifier model. Unless stated otherwise, we
adopt the default Python implementation values for the ML hyperparameters.

RF is a supervised ML algorithm that utilizes an ensemble of individual
decision trees to form a prediction. Each decision tree is built using a random
selection of input variables and a subset of training samples, known as bagging
[2]. The RF algorithm is used to predict anomaly class probabilities, where the
resulting values (di ∈ [0.0, 1.0]) represent the degree of anomaly present in the
input data instance.

XGBoost is another ML tree ensemble that employs gradient boosting, as-
suming a loss function to evaluate the accuracy of the predictions made by each
tree base learner. XGBoost has been demonstrated to outperform several other
ML algorithms in diverse predictive modeling tasks [4].

The DFFN model is a deep learning architecture that includes several hyper-
parameters that are often set using heuristics and trial-and-error experiments
[10]. In this paper, we adopt the dense network structure presented [13], which
assumes a triangular-shaped multilayer perceptron, in which each subsequent
layer size is smaller. The DFFN hyperparameters were tunned using preliminary
experiments that were conducted using only the training data, from which 30%
of the most recent values were used as the validation set. For both datasets, the
DFFN includes a fixed structure with 8 hidden layers, with the following number
of nodes: (I, 1024, 512, 256, 128, 64, 32, 16, 8, 1), where I denotes the number
of inputs. The hidden nodes use the linear (Full2d) and Leaky ReLu (SS9m) ac-
tivation functions, while the output node of both DFFNs computes the logistic
function, to output the abnormal class probability. The popular Adam optimizer,
with a batch size of 1024 and a binary cross-entropy loss function, was used to
train the DFFNs. The training algorithm was stopped when the validation error
does not improve or after a maximum of 100 epochs.

The Isolation Forest (IF) is a one-class ML algorithm, that utilizes the con-
cept of isolation, where an anomaly is expected to be more isolated compared
to normal data points [11]. The algorithm constructs a forest of decision trees.
Each tree is grown by recursively partitioning the dataset into two random parts
until the anomalies are isolated in their tree branches. The anomalies are iso-
lated due to their inherent rarity and a high degree of difference from standard
4 https://pypi.org/project/cane/
5 https://scikit-learn.org/stable/
6 https://www.tensorflow.org/
7 https://xgboost.readthedocs.io/
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data points. The scikit-learn IF implementation provides a decision score that
ranges from ŷi =-1 (highest abnormal score) to ŷi =1 (highest normal score).
This score was normalized such that the final disruption probability is set within
the [0,1] range.

Autoencoders (AEs) use an unsupervised learning method that can efficiently
compress data into a lower-dimensional representation [10]. In this paper, we
assume the AE proposed in [9], which uses a deep dense multilayer perceptron
with a bottleneck layer of Lb hidden nodes and that includes two components.
The first component is a triangular-shaped encoder that starts with I inputs.
Then, the number of hidden layer units decreases by half in each subsequent
hidden layer, until three hidden layers are defined. For instance, for the SS9m
dataset, the encoder includes the following number of layer nodes: (I =984,
492, 246, Lb =123). The second decoder component shape is symmetric to the
encoder, ending up with I output nodes. When adapted for anomaly detection,
the AE training algorithm is only fed with normal instances and the goal is to
generate output values identical to the inputs. The same Adam optimizer used to
train the supervised DFFN model is adopted to train the AE, with the exception
that the Mean Absolute Error (MAE) is used as the loss function. The same
MAE value is used as the reconstruction error. The higher the reconstruction
score, the higher the anomaly class probability, thus the predictive MAE error
for a new instance was normalized (using training data) within the [0,1] range. In
preliminary experiments (using only training data), we compared two AE hidden
function activations (ReLU and linear). The best results were obtained by the
linear activation AEs, which were used in the ML comparison experiments.

To extract XAI knowledge from a trained ML model we adopt the computa-
tionally efficient one-Dimensional Sensitivity Analysis (1D-SA) method proposed
in [6]. The method involves fixing all ML inputs at their average values, except
for a target input that is ranged with L=7 distinct levels. The ML responses are
stored and then the overall input relevance is computed based on the Average
Absolute Deviation (AAD) measure applied to the sensitivity responses. The
Variable Effect Characteristic (VEC) curves can also be produced, plotting the
overall sensitivity analysis effect of an input response on the target output. This
XAI method was implemented by using the rminer package of the R tool8[5].

2.3 Evaluation

The predictive anomaly detection performance is based on the Receiver Oper-
ating Characteristic curve [8]. When a classifier outputs a decision score dt at
time t, the class can be interpreted as positive if dt > K, where K is a fixed de-
cision threshold, otherwise it is considered negative. With the class predictions,
there will be True Positives (TP), True Negatives (TP), False Positives (FP)
and False Negatives (FN). The ROC curve shows the performance of a two-class
classifier across all K ∈ [0, 1] values, plotting one minus the specificity (x-axis),
or False Positive Rate (FPR), versus the sensitivity (y-axis), or True Positive

8 https://CRAN.R-project.org/package=rminer
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Rate (TPR). The discrimination performance is given by the Area Under the
Curve (AUC): AUC =

∫ 1

0
ROCdK. It is common to interpret the quality of the

AUC values as: 0.5 – equal to a random classifier; 0.6 – reasonable; 0.7 – good;
0.8 – very good; 0.9 – excellent; and 1 – perfect. We also record the computa-
tional effort, in terms of the total training time (in s) and prediction response
time for all test instances (in s) when using a 2.4 GHz i9 Intel processor. Given
that both datasets (Full2d and SS9m) are quite large, in all ML experiments
we assume one execution of a time-ordered holdout split, where the oldest 70%
records were used as the training set and the more recent 30% of the examples
were used as the test set.

For the 9th month data (SS9m), we also perform an AoT analysis, where a
distinct ROC curve is computed for different AoT prediction time values (A ∈
{0, 1, ..., Amax}). Let yt denote the target output values at time t, where t is a
time-ordered example from the analyzed data (e.g., test set). The AoT analysis is
performed for each production segment, by considering the target output values
from the first normal event (ytn=0 at time tn) of the segment until the last
stoppage event (yts=1 at time ts). The goal is to only analyze sensor-based
predictable normal or stoppage events since a production reboot (the return of a
normal condition) is executed manually. When A = 0, a strict stoppage detection
is performed, by comparing all predicted anomaly scores dt from the production
segment with the target output values (yt). An AoT prediction occurs when
A > 0, where the ROC curve is built by matching the dt−A predictions with the
same target output values (yt). In this work, the AoT analysis is achieved by
computing a proposed AoT Stoppage Prediction Graph (ASG). The ASG plot
shows the evolution of the AUC values (y-axis) for the ROC curves associated
with an increasing A value (x-axis). As mentioned in Section 2.1, on average there
are around 3 data records per second. For the AoT analysis, we set Amax=15,
which corresponds to an average maximum AoT prediction of 5 s.

3 Results

Table 2 summarizes the results obtained by five ML algorithms on the two ana-
lyzed datasets, namely Full2d and SS9m. The stoppage detection (thus A = 0)
metric is the AUC of the ROC curve, while the full training and test computa-
tional effort times are shown in seconds.

In terms of the Full2d data, the best detection was obtained by the supervised
deep learning model (DFFN, with an AUC of 99%), followed by the unsuper-
vised IF (94%) and then RF and AE (91%). However, these preliminary results
should be analyzed with some caution, since the Full2d dataset only covers two
days of data, with the training set containing only 3 stoppages and the test set
2 production disruption events. Thus, rather than ranking the ML algorithm re-
sults for this dataset, the obtained AUC values do show that there is a potential
to detect wood-based panel production disruptions since they were substantially
higher than a random classifier (AUC of 50%). As for the computational effort,
the lighter training algorithm was the RF (2 s), while the faster prediction time
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was obtained by XGBoost (0.1 s). And as expected, the deep learning algorithms
(DFFN and AE) required substantially higher training times.

After obtaining the promising but initial Full2d results, we designed the SS
and created the more representative SS9m, which covers all 1,107 stoppages that
occur during nine months. When using this dataset, the AUC results favor the
supervised learning methods, with the best result achieved by XGBoost (97%),
followed by DFFN (94%) and RF (92%). In contrast, the unsupervised methods
produce much worse results, closer to the random classifier performance (AE
– 59%; IF – 48%). Regarding the computational effort, the ML training times
are very reasonable. For instance, XGBoost requires only five minutes to fit a
model when using around 454 thousand training samples that cover around 6
months of production time. As for the test time, it is much faster, only requiring
around 2.5 s to produce around 195,000 predictions. This clearly attests to the
usefulness of the proposed SS, which allows training some lightweight ML models
that achieve a high-quality detection performance, with the test set including a
realistic sample with around 330 stoppages.

Table 2: Stoppage detection results (best values in bold).

Dataset Method Model
Train
Time
(s)

Test
Time
(s)

AUC

Full2d

Supervised
Learning

XGBoost 18.19 0.10 0.72
RF 2.02 0.35 0.91
DFFN 406.57 16.02 0.99

Unsupervised
Learning

AE 43.65 4.46 0.91
IF 5.04 6.22 0.94

SS9m

Supervised
Learning

XGBoost 315.55 2.58 0.97
RF 61.56 3.28 0.92
DFFN 266.55 26.71 0.94

Unsupervised
Learning

AE 238.78 45.29 0.59
IF 355.63 55.31 0.48

Given the SS9m AUC results, an AoT analysis was further executed using
only the supervised ML algorithms, which is shown by the ASG plotted in Ta-
ble 2. For the full AoT time (around 5 s on average), all three ML algorithms are
capable of producing interesting AoT AUC values. In particular, the XGBoost
results are highlighted (blue curve), since it always produces the highest AUC
values when compared with DFFN (second best model) and RF. Moreover, the
XGBoost AUC values are of excellent quality, higher than 90% for most of the
A range of values (e.g., up to A=10).
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Fig. 2: AoT Stoppage Prediction Graph (ASG) for the supervised ML models.

For demonstration purposes, Fig. 3 shows the individual ROC curves for the
selected XGBoost model that were computed for pure detection (A = 0) and a
large AoT prediction (A = 15).
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(a) A = 0.
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(b) A = 15.

Fig. 3: ROC curves for the XGBoost model and the two ASG extreme A values.

To further demonstrate the application domain value of the XGBoost AoT
prediction model, we applied the SA XAI approach described in Section 2.2.
Fig. 4(a) plots the obtained input importance for the five most relevant input
features. For instance, the most influential input is related to the number of
press cycles (total relevance of 19%). As for Fig. 4(b), it shows the Variable
Effect Characteristic (VEC) curves for the same five top relevant inputs (the x-
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Fig. 4: Extracted XAI knowledge from the XGBoost model.

axis denotes the full range of input domain values, while the y-axis denotes the
overall obtained prediction output). The plot reveals that the most influential
input (Number of Press Cycles) produces the largest XGBoost output response
change (thus impacting more on the model). It also confirms that some types
of materials (melamine code) are more prone to produce stoppages. In general,
an increase in the numeric input also produces an increase in the production
line stoppage probability. The obtained XAI knowledge was also provided to the
production experts, which confirmed that both input influence and input effects
were interesting.
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4 Conclusions

In this paper, we demonstrate the usefulness of using a Machine Learning (ML)
approach to detect and predict Ahead-of-Time (AoT) production disruptions
related to a Portuguese Wood-Based Panels Industry. We adapt and compare
five state-of-the-art anomaly detection ML algorithms: unsupervised – Isolation
Forest and deep Autoencoder; and supervised – Random Forest, XGBoost, and
a Deep FeedForward Neural network. From the collected raw big data, we create
and preprocess two production stoppage datasets: a shorter dataset including
two days of full data (Full2d) and a Selective Sampling (SS) dataset comprising
all interesting events during a nine months (SS9m).

First, preliminary experiments were executed using the Full2d data, showing
that the proposed ML algorithms could provide interesting stoppage detection
results. Then, more robust experimentation was performed by considering the
SS9m dataset, which includes 1,107 production stoppages. The best results were
obtained by the XGBoost, which produces a high-quality AoT stoppage predic-
tion performance (ranging from 97% for a pure detection to 72% for an AoT
of 5 s) under a reasonable computational effort usage. Finally, an eXplainable
AI (XAI) approach based on a sensitivity analysis was applied to the XGBoost
model, presenting the influence of the inputs in the disruption condition. The
obtained results were shown to the Wood-Based Panels production managers,
which provided positive feedback. Indeed, in future work, we plan to deploy
the proposed ML model as a digital twin, to better monitor and even prevent
production stoppages.
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