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Abstract. Human-in-the-loop interfaces for machine learning provide a
promising way to reduce the annotation effort required to obtain an ac-
curate machine learning model, particularly when it is used with transfer
learning to exploit existing knowledge gleaned from another domain. This
paper explores the use of a human-in-the-loop strategy that is designed
to build a deep-learning image classification model iteratively using suc-
cessive batches of images that the user labels. Specifically, we examine
whether class-agnostic object detection can improve performance by pro-
viding a focus area for image classification in the form of a bounding box.
The goal is to reduce the amount of effort required to label a batch of im-
ages by presenting the user with the current predictions of the model on a
new batch of data and only requiring correction of those predictions. User
effort is measured in terms of the number of corrections made. Results
show that the use of bounding boxes always leads to fewer corrections.
The benefit of a bounding box is that it also provides feedback to the
user because it indicates whether or not the classification of the deep
learning model is based on the appropriate part of the image. This has
implications for the design of user interfaces in this application scenario.

Keywords: Human-in-the-loop Machine Learning, Convolutional Neu-
ral Networks, Image Classification, Object Detection

1 Introduction

Image classification using deep convolutional networks is one of the most promi-
nent practical applications of machine learning. The learning algorithms for these
networks require labelled images as training data. Often, obtaining these labels
requires access to sophisticated domain expertise (e.g., in the medical domain),
which can be costly. Thus, it is important to provide mechanisms to obtain
correct labels for images in the most efficient manner possible.

It is important to note that this applies even when the total amount of la-
belled data required can be reduced by applying transfer learning so that the

* This work is part of a user-friendly deep learning project funded by the New Zealand
Ministry for Business, Innovation and Employment.
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learning of a neural network does not have to start with random parameter set-
tings. For example, a standard strategy for transfer learning in convolutional
neural networks is to take a network that has been pre-trained on a large col-
lection of images, such as the well-known ImageNet database consisting of more
than a million images, each furnished with one of 1,000 class labels, and fine-tune
the parameters of this network on the labelled target domain data that is avail-
able once the classification “head” of the network has been replaced to feature
as many classes as are present in the target domain. Even though this standard
form of transfer learning can dramatically decrease the amount of labelled data
required to achieve a satisfactory level of accuracy, there generally remains a
substantial amount of labelling effort that must be applied to obtain a sufficient
amount of labelled data for the target domain. Hence, even if transfer learning is
applied—and we do apply it in this paper—a procedure for efficiently generating
correct labels for this data is very useful.

A central idea in this context is to apply a form of human-in-the-loop ma-
chine learning, where the expert provides a small initial set of labelled examples
for training a classifier, which is subsequently applied to pre-label batches of
unlabeled data before they are passed for inspection to the expert, who then
simply needs to correct the provided labels rather than determining labels from
scratch for unlabeled images. Crucially, a proxy for the human effort required in
this process is the number of corrections that the expert must perform, not the
total number of examples to be labelled.

Earlier work [5] has investigated how best to order the batches of unlabeled
data to minimise the number of corrections that need to be performed to train
the image classifier to a satisfactory level. A key outcome of this work is that
so-called “active” learning strategies [10] (e.g., uncertainty sampling) are inappro-
priate when the desired outcome is to minimise this measure of required effort:
random example ordering generally yields a lower number of required corrections
regardless of the image classification dataset and neural network architecture ap-
plied. Another strategy that performed well in [5] is to select a representative
sample of unlabeled data a priori (i.e., before labelling/learning starts) using
an algorithm called kernel herding [2], which attempts to improve on random
sampling by ensuring good coverage of the full population. Intuitively, the poor
performance of active learning can be understood by considering that it is based
on selecting those examples for labelling that “surprise” the classifier the most
(e.g., by considering its predictive uncertainty). These are clearly often exam-
ples where the predicted label is incorrect and must therefore be corrected by
the human involved.

In this paper, building on these findings, we investigate whether the labelling
effort can be further reduced by enabling the expert to provide additional in-
formation to speed up machine learning in the human-in-the-loop system. More
specifically, we consider whether the use of a bounding box that the expert draws
around the part of the image that is deemed responsible for its class label can
help to reduce the number of corrections that this expert must perform during
the learning process—focusing again on the number of times that a predicted
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class label must be corrected in the human-in-the-loop process, not the total
number of class labels required. Two strategies of supplying bounding boxes are
applied in conjunction with the two a priori sampling methods from the previous
study—random sampling and kernel herding—to determine whether the use of
this additional information can assist in the overall goal of reducing the num-
ber of corrections a user has to make. With both strategies, a standard object
detection model is trained in a class-agnostic manner based on the bounding
boxes provided by the expert. The expert-provided or, when available, a pre-
dicted bounding box is used to extract the part of the image that is passed to
the image classification model to enable the association with a class label. This
is compared to the set-up from [5], where the entire image is associated with a
label.

2 Related Work

There is a vast amount of literature on human-in-the-loop object detection that
looks at how interactive machine learning can reduce the number of annotations
such as bounding boxes that the human must provide to enable learning of an
accurate object detection model. Some of this work is surveyed in [11]. It is
important to note that this is not the problem that is the focus of this paper.
Instead, we apply object detection as a tool to improve the efficiency of human-
in-the-loop learning for image classification.

Our use of an object detection method can be viewed as a form of class-
agnostic object detection, a concept that has been introduced fairly recently in
the literature in [7]. According to [7], in class-agnostic object detection, “the goal
is to predict bounding boxes for all objects in an image but not their object-
classes”. We focus on the special case where a single object is present in the image
and the detector provides a single bounding box for this object. This bounding
box is subsequently used to crop the image before it is passed to the learning
algorithm for the image classification model.

Related to our work are approaches that attempt to use auxiliary infor-
mation to improve the accuracy of image classification. [8] consider the use of
bounding boxes as auxiliary information and provide a learning algorithm and
neural network architecture that can exploit this information, looking primarily
at whether this improves the quality of the explanations of predictions given
in the form of saliency maps because accurate explanations are important for
establishing trust.

Interestingly, [6] finds that enabling users to provide feedback to a simulated
object detection system by providing the ability to correct bounding boxes based
on the human-in-the-loop process lowers their trust in the machine learning
system, regardless of whether the accuracy of object detection improves or not.
Considering the potential use of object detection in safety-critical applications,
this quite plausibly more realistic assessment of the algorithms’ ability may be
appropriate.
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Fig.1. Ground truth bounding boxes

We are unaware of any work in the literature that investigates the use of
class-agnostic object detection to improve the efficiency of human-in-the-loop
machine learning for image classification.

3 Set-up for the experiments

For each of the image classification datasets considered in our experiments, we
start with a pre-trained image classification model that has been trained on
ImageNet. Subsequently, data is provided to the learning algorithms in batches.
Assuming the base case considered in [5], where no object detection is performed,
only labels need to be provided for the images in a batch. For the first batch, the
human in the loop is required to label all the images in this batch. Subsequently,
the pre-trained image classification model is fine-tuned on this batch (details are
given below) and applied to pre-label the images in the next batch, which the
user must then (potentially) correct. Once the labels have been finalized, the
pre-trained model is fine-tuned on the extended dataset, comprising both the
first and the second batch of data, before the third batch of data is processed in
the same manner. This is repeated until a sufficient level of accuracy is achieved
or the data is exhausted. We examine two approaches to ordering training images
into batches: random selection and kernel herding (both are described in [5]).
Both approaches can be applied before the loop starts because they do not
require knowledge of any class labels.

This base case approach to human-in-the-loop learning for image classifica-
tion does not apply object detection and does not use bounding boxes. We in-
troduce bounding boxes into the process and investigate whether this improves
efficiency.

Figure 1 shows some ground-truth bounding boxes for the datasets used in
the experiments. These bounding boxes must also be generated by using the
human in the loop. However, once at least some of the training data has been
furnished with bounding boxes, one can train a standard object detection model
on these boxes. In this paper, we build a model of the bounding boxes from the
training data for each dataset using Faster RCNN [9] by applying a ResNet101
base network. This was chosen simply because it is popular and effective. The
model is trained in a class-agnostic manner: it is simply configured to detect
“the object” in the image, regardless of the class of the object. As the model can
output multiple bounding boxes for an image, we simply pick the one for which
the model exhibits the greatest confidence.
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Fig. 2. Model misunderstandings

Once trained, the model can be used to predict bounding boxes for new
images. It is important to note that this can happen as soon as the first batch of
data has been annotated with boxes (and class labels) in the human-in-the-loop
process, and the object detection model has been trained on this batch. Thus,
in the second and subsequent batches, we can use the object detection model to
predict bounding boxes, which the user may or may not correct—we investigate
both approaches in the experiments.

In many cases, bounding boxes can explain why classification fails. For illus-
tration, Figure 2 shows predicted bounding boxes, in blue, for images where the
ground truth is also shown in yellow. It should be noted that each of these images
involves the correct classification of the class label by the corresponding image
classification model. However, given the blue bounding boxes, the reason for the
classification is erroneous. The object detection model predicts, for the leftmost
image, a dark area of a small chest of drawers instead of the hand. The next
image to the right is easier to understand, as the bird does share a lot with the
fruit in the predicted bounding box. The confusion in the dog image, between
the carpet and the dog, may well be due to the similarity of the white part of
the dog and the carpet. For the final image, there is some overlap between the
flower and the predicted area, which does at least contain the stem and some of
the petals of the flower.

The last image illustrates why a measure of overlap between predicted and
ground-truth bounding boxes is used to evaluate object detectors. The intersec-
tion over union (IoU) provides such a measure, and Figure 3 shows the relation-
ship between two boxes based on this measure as the degree of overlap moves
from 0.0 (no overlap in the top left image) to 1.0 (fully overlapped in the bottom
right). Object detection methods are commonly evaluated using this measure by
considering IoU values above a certain threshold (e.g., 0.5) as a match. Faster-
RCNN with a ResNet101 backbone is known to yield high performance according
to this metric (see, e.g., [1]) and this is why it is used in our experiments.

The predicted bounding boxes for the second and subsequent batches of data
can be used to crop the images so that they can be fed to the image classifier.
In line with the above discussion, our experiments in this paper involve two
update strategies for the object detection model. One method simulates the user
correcting the bounding boxes every iteration (referred to as BB) and the other
simulates the user only providing correct bounding boxes for the first batch of
data (referred to as BB-1). The latter strategy aims to determine the effectiveness
of a minimalist approach, where the user only needs to correct the bounding
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Fig. 3. Intersection over Union in increments 0.0, 0.2, 0.4 on the top row
from left to right, and 0.6, 0.8, 1.0 on the bottom row from left to right
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boxes available for the very first batch of data, and the object detection model
remains fixed afterwards throughout the human-in-the-loop process.

Whether corrected or uncorrected bounding boxes are used, the bounding
box generated for an image is used to crop the image before it is passed to the
image classifier to obtain a label. The image classification model—we evaluate
pre-trained MobileNet, ResNet50, and ResNet152 models—is fine-tuned on the
cropped training dataset, and evaluated against the cropped test and validation
datasets. For the test and validation datasets, the cropping is based on the
predicted bounding boxes produced by the current state of the bounding box
prediction model: corrected boxes are obviously not available when the trained
image classification system—incorporating both the object detection model and
the image classifier—is deployed in practice, and thus measures of predictive
performance must be based on predicted bounding boxes only.

3.1 Dataset Descriptions

We conducted experiments using the four publicly available datasets listed in
Table 1. These datasets exhibit various collection sizes (ranging from 1300 to
20,000), class counts (17 to 200), and modeling complexity (easy to difficult).
All datasets contain bounding box annotations, which are rectangles around the
object of interest that identify the image’s label. Whenever a “corrected” bound-
ing box is required in our experiments, we use the corresponding ground-truth
box provided by the annotations: we assume that the user makes perfect cor-
rections in the simulated human-in-the-loop process we use in our experiments.
This applies to both bounding boxes and labels. Ground-truth bounding boxes
are shown in yellow for examples from each dataset in Figure 1.

The 17Flowers dataset! contains 80 images per class with varying back-
grounds, but each image displays a centrally placed flower.

The American Sign Language dataset? comprises 50 to 90 images per label.
Each image depicts a hand forming the sign of a single letter of the English al-

! https://www.robots.ox.ac.uk/ vgg/data/fowers/17/
2 https://public.roboflow.com/object-detection /american-sign-language-letters
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Table 1. Datasets

Name Number of Examples Number of Classes
17Flowers 1360 17
American Sign Language 1728 26
Stanford Dog Breeds 20,580 120
Birds 11,788 200

phabet, and the hand appears in the same location in each image under relatively
consistent lighting conditions, rendering this dataset relatively uniform.

The Dog Breeds dataset® contains 120 classes with between 100 to 200 images
per class, classified by breed. The position of the dog and the background differ
substantially in this dataset.

The Birds dataset? contains 200 categories, most of which include 59 or 60
images, with some categories having fewer, and the smallest class containing
41 images. Fach image shows a single bird, classified by species, with the bird
typically positioned centrally, but with varying backgrounds.

3.2 Methodology

Our experimental methodology aims to simulate the human-in-the-loop training
process. We implement our experiments in Python, utilizing the Keras deep-
learning library, which provides pre-trained models [3]. We chose three pre-
trained models: Mobilenet, Residual Networks [4] (ResNets) with 50 layers, and
ResNets with 152 layers. Mobilenet is preferred for lightweight applications, par-
ticularly for mobile applications, while ResNets are typically used in medium to
heavyweight applications. We use Docker images to control the GPU environ-
ment (Nvidia GeForce GTX 1080Ti).

The experimental process consists of generating a stratified holdout dataset
comprising 15% of the images from each class at random. This dataset is used
to evaluate the model at each iteration of the training loop. The remaining
85% is considered the training dataset and is ordered according to the ordering
approach (kernel herding or random order). We then fine-tune the chosen pre-
trained model iteratively with successively larger portions of the training dataset,
increasing by 50 examples per iteration.

Within each iteration of this experimental process, the images are cropped
according to the current object detector model. For the BB strategy, we train an
object detector each iteration on all current training images, whereas for BB-1
we train the object detector only once on the first iteration of 50 images.

The networks are optimized using gradient descent employing a validation set
for early stopping. Once the training dataset for the next iteration has been as-
sembled, we remove a randomly-selected 15% for internal validation. The remain-

3 http://vision.stanford.edu/aditya86 /ImageNetDogs/main.html
4 http://www.vision.caltech.edu /visipedia/CUB-200-2011.html
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ing training items are randomly shuffled and used to fine-tune the pre-trained
model using gradient descent.

The initial weights for the pre-trained models are obtained by training on
ImageNet, with fine-tuning using the sparse categorical cross-entropy loss func-
tion, the ADAM optimizer with an initial learning rate of 0.0001 and a decay
of 0.000001, and accuracy as the only metric for early stopping. Fine-tuning is
applied for a maximum of 100 epochs of mini-batch stochastic gradient descent
with 5 images at a time in each mini-batch used for computing gradients.

After fine-tuning, we evaluate the model against the holdout dataset to esti-
mate the predictive accuracy of the model at that point in the simulated human-
in-the-loop training process. Additionally, we evaluate the current model against
the 50 selected examples for the next iteration as a measure of how well it per-
forms when pre-labelling those items. This allows us to estimate the number of
examples that would need to be corrected if an actual human were involved in
the experiments. We can compare the ground-truth labels and the predicted la-
bels in our simulated human-in-the-loop set-up because all the benchmark data
used in our experiments is fully labelled.

4 Results of the experiments

As the random and kernel herding methods were generally superior in the pre-
vious experiments [5], which evaluated human-in-the-loop training for image
classification without bounding boxes, we use them as baselines. Figure 4 shows
the overall accuracy of each model on each dataset as the number of iterations
progresses, as judged by the holdout test set. All curves tend to the same level
of accuracy. Where there are differences, these are typically due to better perfor-
mance by the BB strategy. Random ordering and kernel herding without object
detection, as used in [5], are worse. However, the differences are generally small.

Considering the number of corrections required in each iteration, as in Fig-
ure 5, the graphs are generally again quite similar, but the kernel herding set
of results shows significant instability. Cumulative corrections, as shown in Fig-
ure 6, show more separation in the graphs. This shows that the previous high-
performing ordering methods from [5] are improved significantly by the addition
of bounding boxes. The best methods are random BB and random BB-1. This
pattern is repeated in Figure 7, where the top-left results, indicating high accu-
racy over the fewest iterations, are generally those same methods. Encouragingly,
the two BB-1 methods often perform quite well.

An overview of the total user effort required to fix the labels is shown in
Table 2. The table shows that regardless of ordering method, it is always better
to use a bounding box strategy than not. The best bounding box strategies are
random BB and kernel herding BB. Random BB-1 and kernel herding BB-1 are
generally worse than their BB counterparts but perform similarly. These results
are promising in the sense that the differences between fully corrected bounding
boxes (BB) and single-iteration corrected bounding boxes (BB-1) is not that
great. This also suggests that a user interface designed to encourage the user
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Table 2. Total corrections per method and model with and without bounding boxes

Model Random Random BB Random BB-1 KH KH BB KH BB-1
17F-mnet 57 51 54 71 58 69
17F-resnet50 73 55 59 56 51 49
17F-resnet152 72 58 60 98 64 67
ASL-mnet 321 248 305 349 248 266
ASL-resnet50 397 295 308 415 302 305
ASL-resnet152 392 311 312 406 314 402
Dogs-mnet 1517 1348 1358 1664 1528 1604
Dogs-resnet50 1390 1219 1178 1133 1048 1054
Dogs-resnet152 1241 1038 1078 963 857 903
Birds-mnet 2603 2419 2554 2972 2768 2832
Birds-resnet50 2453 2147 2269 2415 2090 2148
Birds-resnet152 2255 1974 2003 2201 1926 2055

to only correct the worst cases of bounding box error is likely to lead to good
results.

5 Conclusion

A combination of using passive sampling methods alongside class-agnostic ob-
ject detection for image classification shows that bounding boxes help to reduce
the number of class labels a user has to correct in a human-in-the-loop training
scenario. Two strategies were adopted representing the maximal and minimal
bounding box correction effort that could be made in the loop. While the max-
imal approach outperformed the minimal approach, the difference in terms of
numbers of corrections needed was not significant. This is important because
correcting bounding boxes obviously also requires user effort; thus, constructing
a human-in-the-loop system for image classification that only requires minimal
correction of bounding boxes, namely in the first batch of data, can be recom-
mended as a practical approach.

There are a number of avenues for future work. Our results suggest that
effective and simple user interfaces can be constructed using a passive sam-
pling method coupled with a click-on-the-object-of-interest strategy for worst-
case bounding box errors. The proposed system also offers the possibility of
monitoring and potentially correcting model bias. Investigating different object
detection methods in the setting considered in this paper could also be a fruitful
undertaking.
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