
A Novel Decision Mining Method
Considering Multiple Model Paths

Pietro Portolani1,2(B), Diego Savoia1, Andrea Ballarino2,
and Matteo Matteucci1

1 Politecnico di Milano - DEIB, Milan, Italy
{pietro.portolani,diego.savoia,matteo.matteucci}@polimi.it

2 Consiglio Nazionale delle Ricerche - STIIMA, Milan, Italy
andrea.ballarino@stiima.cnr.it

Abstract. The automatic extraction of a process model from data is
one of the main focuses of a Process Mining pipeline. Decision Mining
aims at discovering conditions influencing the execution of a given pro-
cess instance to enhance the original extracted model. In particular, a
Petri Net with data is a Petri Net enhanced with guards controlling the
transitions firing in correspondence of places with two or more output
arcs, called decision points. To automatically extract guards, Decision
Mining algorithms fit a classifier for each decision point, indicating what
path the case will follow based on event attributes. Retrieving the path
followed by the case inside the model is crucial to create each decision
point’s training dataset. Indeed, due to the presence of invisible activ-
ities, having multiple paths coherent with the same trace in the event
log is possible. State-of-the-art method consider only the optimal path
discarding the other possible ones. Consequently, training sets of related
decision points will not contain information on the considered case. This
work proposes a depth-first-based method that considers multiple paths
possibly followed by a case inside the Petri Net to avoid information
loss. We applied the proposed method to a real-life dataset showing its
effectiveness and comparing it to the current state of the art.

Keywords: Decision Mining · Process Mining · Decision Trees ·
Machine Learning

1 Introduction

Process Discovery is one of the fundamental tasks of Process Mining. It aims at
extracting a process model automatically from logs recorded by an information
system. The discovered model focuses only on the activities’ control flow, rep-
resenting their order relations with frameworks such as Petri Nets or Business
Process Model and Notation1 models. The extracted models can have various
purposes, from simulation to conformance checking and process optimisation.
1 https://www.omg.org/spec/BPMN/2.0.2/About-BPMN/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. van der Aa et al. (Eds.): BPMDS 2023/EMMSAD 2023, LNBIP 479, pp. 79–87, 2023.
https://doi.org/10.1007/978-3-031-34241-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34241-7_6&domain=pdf
https://www.omg.org/spec/BPMN/2.0.2/About-BPMN/
https://doi.org/10.1007/978-3-031-34241-7_6


80 P. Portolani et al.

Decision Mining, another Process Mining subfield, takes a further step and
enhances the process model with information about the decisions influencing
its execution. In recent years, the focus on decisions has gained importance as
they are among an organisation’s most crucial assets [1]. The topic is so relevant
that the Object Management Group developed the Decision Model and Notation
standard2, an industrial standard to model decisions.

Decision Points Analysis is a particular type of Decision Mining based on
Petri Net models and it uses data to generate information and knowledge to
support decision-making processes in the form of annotated decisions [2]. Specif-
ically, it retrieves the decision rules solving a classification problem in every place
with two or more output arcs, i.e. a decision point.

Indeed, to create a valid training dataset, it is necessary to know the path the
process instance follows inside the process model to locate the crossed decision
points correctly. Retrieving such a path is not straightforward, mainly due to
invisible activities and loops. Previous approaches developed developed differ-
ent strategies to select the path, however, current techniques lead to a loss of
information considering only one route inside the process model.

In this work, we propose a novel method to consider multiple allowed model
paths the case could have taken to go from one activity to the following. The
idea is that considering multiple paths will help better characterise the invisible
branches of the decision points, resulting in less information loss and, thus, better
rules3.

2 Related Works

Authors in [3] and [4] made major contributions to the Decision Points Analysis
field. In [3] the authors propose for the first time to transform every decision
point into a classification problem and derive the decision rules from a decision
tree used to fit it.

To create the training dataset needed, the authors track the path followed
by the case from an activity in the sequence to the following one and assign the
related event attributes to the encountered decision points. In case the following
activity is an invisible one, the tracking continue until it founds the first next
visible activity. It can terminate its search prematurely in correspondence of an
ambiguous parts of the net, such as a joint, and consequently it is not able to
identify the encountered decision points for that specific trace.

In [4], the authors solve the issue by considering a complete realisation of
the net, exploiting the optimal alignment between the Petri Net and the event
log introduced in [5]. A downside of this approach, thus, is that the algorithm
discards all the suboptimal sequences.

Authors in [6] propose a different but very interesting approach to discover
an holistic decision model linking decision to changes in variable.

2 https://www.omg.org/spec/DMN.
3 code available at https://github.com/piepor/multiple-paths-decision-mining.

https://www.omg.org/spec/DMN
https://github.com/piepor/multiple-paths-decision-mining


A Novel Decision Mining Method Considering Multiple Model Paths 81

In this work, based on [3] and [4], we propose to use multiple possible paths
in the model connecting two successive activities in a variant to identify as many
decision points affected by the case as possible. Since multiple paths are mainly
a consequence of invisible activities, considering more than one path helps to
add information about the invisible branches of decision points in their training
set. More information allows for better classification and more precise rules.

3 Preliminaries

We briefly describe the problem we want to solve and two entities useful to
understand it better.

A Petri Net [7] is a bipartite graph composed of a set of places and transi-
tions connected by a set of arcs. Tokens distributed inside the places of the net
represent the state of a Petri Net, called marking. They allow a transition to
fire if all its input places contain at least one token. When the transition fires,
it removes one token for each input place and gives one to every output place,
changing the state of the net.

A Petri Net with data [8] is a Petri Net in which transitions (modeling activ-
ities) can read and write variables [4]. Write operations let firing transitions
modify the value of a set of attributes, while read operations enable the use of
guards. The latter are additional conditions on the firing of transitions; to be
allowed to fire, the guard of a transition must evaluate to true.

The problem a decision mining technique aims to solve is to discover the
conditions controlling the behaviour of an examined process. Given a process
model in the form of a Petri Net and the related event log, the overall output
of the method should be the original model augmented with guards on places
with more than one output arc alongside relations between transitions and write
operations on attributes, i.e. a Petri Net with data. In particular, we focus on
the extraction of the guards’ rules.

4 Methods

As already mentioned, our work aims to create the training sets for the decision
points classification with the least amount of information loss. Given two sub-
sequent events in a trace, multiple paths in the Petri Net model of the process
could be eligible to go from the activity executed in the first event to the next
one.

Our method tries to incorporate information from all the allowed paths as
much as possible. We use a backward depth-first search to extract the encoun-
tered decision points and related targets between two subsequent activities in
the trace to achieve this result.

The complete method has two main phases: the decision points extraction
and the dataset creation. The first step searches and stores the places with more
than one outgoing arc crossed by the allowed paths for every pair of subsequent
activities in a variant. When a place is stored, the method also adds the related



82 P. Portolani et al.

output transition, i.e. the choice made. Then, for every trace belonging to the
variant, the algorithm creates the dataset using the previously extracted decision
points.

We used Decision Trees classifiers as in [3] and trained them with the C4.5
algorithm [9] which also describes methods to extract the decision rules.

Algorithm 1. Algorithm to extract the decision points between two activities.
Starting from one activity running the backward search on the previous in the
trace until a reachable one is found.

function extractDPs(prevSequence, currTrans)
mapDPs ← ∅
prevSequenceReversed ← reverseSequence(prevSequence)
for prevAct ∈ prevSequenceReversed do

mapDPs, found ← bwdDFS(prevAct, currTrans, ∅)
if found == True then

break
end if

end for
return mapDPs

end function

4.1 Decision Points Extraction

As already introduced, our method relies on a backward depth-first search to
identify the decision points crossed going from the activity contained in an event
to the following one in a trace. Considering a sequence of two activities, 〈A,B〉,
the method starts from the transition B in the Petri Net and searches backwards
for the previous activity, A.

In the context of a Petri Net, backwards indicates that the depth-first search
follows only the input arcs of every place or transition. In order to consider valid
paths, the search is allowed to continue only if the transition encountered is
invisible. If the transition considered is visible, whether it is the desired one or
not, the search shall stop following that particular path and return the result of
the search. If the visible transition is the desired one, the algorithm will add the
saved decision points to the ones found on the allowed paths.

Two main issues arise designing the algorithm, namely loops and non-
reachable activities. Loops are a problem when considering all the possible paths
between two activities: if a loop is composed of only invisible transitions, an infi-
nite number of allowed paths exist. To address this problem, every time an
invisible transition is visited, it is added to a list of visited transitions. If the
algorithm finds an already visited transition, it will stop the search along that
path.

The other issue is related to non-reachable activities. An activity can be
non-reachable from another for two main reasons: concurrent activities and not
perfectly fitting models. If two transitions, A and B, are on two parallel branches



A Novel Decision Mining Method Considering Multiple Model Paths 83

Algorithm 2. Recursive algorithm to extract decision points and related targets
by performing a backward depth-first search of the Petri Net through invisible
transitions starting from currAct up to prevAct.

function bwdDFS(prevAct, currAct, passedActs)
prevActFound = False
for inputArc ∈ getInputArcs(currAct) do

inP lace ← getSource(inputArc)
backTrans ← ∅
for innInputArc ∈ getInputArcs(inP lace) do

transition ← getSource(innInputArc)
backTrans ← addTrans(transition, backTrans)

end for
if prevAct ∈ backTrans then

prevActFound = True
if isDP (inP lace) then

mapDPs ← updateDPs(inP lace, currAct,mapDPs)
end if
continue

end if
invActs ← getInvisibleTransitionsFromInputs(backTrans)
for invAct ∈ invActs do

if invAct /∈ passedActs then
passedArcs ← addArc(invAct, passedArcs)
mapDPs, found ← bwdDFS(prevAct, invAct, passedActs)
passedArcs ← removeArc(invAct, passedActs)
if found == True ∧ isDP (inP lace) then

mapDPs ← updateDPs(inP lace, invAct,mapDPs)
end if
prevActFound = prevActFound ∨ found

end if
end for

end for
return mapDPs, prevActFound

end function

of the model, it will be impossible for the backward search to find A starting
from B. In the same way, if the model does not perfectly represent a variant, two
activities may be non-reachable from one another. To solve the non-reachability
issue, if the method cannot find the previous activity, it will search for the next
previous activity in the sequence. The search will stop when it finds a reachable
activity or all the previous activities are non-reachable.

Algorithm 1 reports the overall search algorithm. The search is done for every
activity in the sequence, starting from the last and going backwards. The cycle
breaks if the backward depth-first search finds the previous activity. Algorithm 2
reports the backward depth-first search algorithm, which has a recursive struc-
ture. We remind the reader that every transition in a Petri Net has only input
places, and conversely, places have only input transitions.



84 P. Portolani et al.

start Request p_1

Register

skip_1

p_2

tauSplit_1

p_3

p_4

Check

skip_2

PrepDoc

skip_3

p_5

p_6 tauJoin_1 p_7 FinalCheck p_8

OK

NOK

skip_4

sink

Fig. 1. Petri Net of the running model. The highlighted transitions are the activities
used in Sect. 4 to explain the decision points selection. The black arrow indicates the
direction and initial transition of the depth-first search. Blue arcs represent valid paths
where the recursion will go on. Red ones, instead, track the recursive function until it
stops.

Example. To clarify how the algorithm works, consider the variant 〈Request,
FinalCheck, OK 〉 and the running model reported in Fig. 1. We want to find deci-
sion points crossed by the variant going from activity “Request” to “FinalCheck”.
Blue arcs are the valid paths that lead the algorithm to the desired transition
while red ones represent paths finding other visible transitions than the target
one and, consequently, stopping the search.

The algorithm finds the two valid paths using two recursion lines, one pass-
ing through “p 5” and the other through“p 6”. When the first recursion finds
“Request”, the function returns a boolean variable indicating the output to the
upper levels until “tauJoint 1”, where the other recursion line will start. Every
recursion level has to remove the visited arcs; otherwise, the second recursion
line will encounter the input arc of “tauSplit 1”, marked as already visited, and
will stop without reaching the desired transition.

4.2 Training Dataset Creation

The overall algorithm to create the training datasets for the decision trees has
two parts. Firstly, for every variant, the method retrieves the data structure
relating decision point and targets to every activity contained in the variant, as
already explained.

Then, it considers the traces belonging to the variant. For every event in
the trace, the algorithm creates a row containing the attributes seen until the
previous event and adds it to the decision points mapped in the data structure.
If an attribute is repeated multiple times in the sequence of events, the method
considers only the most recent one. If an attribute in the row is not present in
the dataset, the algorithm adds a column with missing values in previous entries
and then adds a new row.

To study the influence of attributes locality on the quality of the classification,
we also consider a variation of the method with datasets created considering only
the last event in the sequence.

Since every search finds at maximum one visible transition and possibly many
invisible ones, the resulting datasets may be unbalanced towards invisible tar-
gets. To overcome the problem and balance the data, we use an under-sampling
technique, training multiple classifiers with different datasets, each discarding
part of the over-represented targets.



A Novel Decision Mining Method Considering Multiple Model Paths 85

5 Results

In this Section we report the results of our method. We use the Road Traffic
Fine Management Process [10] to compare our algorithm to the implementation
of [4] in the ProM software [11]. We use the F1 score to evaluate and compare
the method, which considers the classification’s accuracy and precision. Since
the classifier predicts the output based on the same splits composing the final
rules, better predictions, i.e. higher F1 scores, lead to more precise rules.

We know that more precise rules do not imply better or more meaningful
ones, and we use this score for a straightforward comparison with the ProM
implementation of the state-of-the-art method that reports this metric.

It is crucial to note that our method does not aim to outperform the state-
of-the-art on the classification task but to avoid its information loss. We use the
classification performance as a first assessment of our work’s validity and leave
the analysis of the meaningfulness of the rules and the quality of the resulting
model to future studies.

Moreover, since the method aims at discovering decisions inside a process
assumed to be static, we are not interested in the classifier’s generalisation power
and compute the F1 score on the training set without cross-validation.

Table 1. F1 score for the Road Traffic Fine Management Process dataset.

Decision Point Optimal Alignment Multiple Paths - Last Event Multiple Paths

p1 0.755 0.428 0.788

p2 0.458 0.909 0.909

p3 0.567 0.588 0.818

p5 - 0.259 0.83

p7 - 0.572 0.893

p12 0.808 0.727 0.898

p13 - 0.11 0.895

p14 - 0.766 0.948

p15 - 0.649 0.686

p19 - 0.872 0.957

p26 0.933 0.756 0.952

Table 1 reports the F1 score for two different versions of our method compared
to the state-of-the-art method based on optimal alignment. To extract the model
we used the Inductive Miner [12] with the noise threshold set to 0. As mentioned
in Sec. 4.2, we also report the results of our method considering only attributes
from the last event in the sequence. The results of our methods are the average
across ten different classifiers due to the under-sampling explained in Sec. 4.2.

As expected, the results considering only attributes from the last event in the
trace are noticeably worst, with few exceptions like “p 2” and “p 19”, meaning
that decisions depend on variables written in different parts of the model.



86 P. Portolani et al.

The state-of-the-art method based on optimal alignment cannot discover
some of the decision points in the model, while our complete method can find all
of them. Considering the decision points discovered by both methods, our has
consistently higher F1 scores.

6 Conclusions and Future Works

In this work, we presented a novel method for decision mining on Petri Net that
considers multiple possible paths taken by the variant. It can find all the decision
points with higher classification quality than the state-of-the-art method.

In future works, we plan to study the quality of the extracted rules and the
related model as well as differences with the rules and model retrieved by the
state-of-the-art method. We will also test the approach on different datasets,
hence different Petri Net sizes, and focus on the influence of the initial Petri Net
fitness and complexity on the method’s output.

Lastly, we plan to change the method implementation to guarantee that the
model’s arcs and nodes are visited at maximum once for search.

References

1. Blenko, M.W., Mankins, M.C., Rogers, P.: The decision-driven organization. Harv.
Bus. Rev. 88(6), 54–62 (2010)

2. Leewis, S., Smit, K., Zoet, M.: Putting decision mining into context: a literature
study. In: Agrifoglio, R., Lamboglia, R., Mancini, D., Ricciardi, F. (eds.) Digi-
tal Business Transformation. LNISO, vol. 38, pp. 31–46. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47355-6 3

3. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425.
Springer, Heidelberg (2006). https://doi.org/10.1007/11841760 33

4. de Leoni, M., van der Aalst, W.: Data-Aware Process Mining: Discovering Decisions
in Processes Using Alignments, pp. 1454–1461 (2013)

5. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance check-
ing using cost-based fitness analysis. In: IEEE 15th International Enterprise Dis-
tributed Object Computing Conference (2011)

6. De Smedt, J., Hasić, F., vanden Broucke, S.K., Vanthienen, J.: Holistic discovery
of decision models from process execution data. Knowl. Based Syst. 183, 104866
(2019)

7. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall.
(1981)

8. Sidorova, N., Stahl, C., Trčka, N.: Soundness verification for conceptual workflow
nets with data: early detection of errors with the most precision possible. Inf. Syst.
36, 1026–1043 (2010)

9. Salzberg, S.L.: C4.5: Programs for Machine Learning” by J. Ross Quinlan. Morgan
Kaufmann Publishers Inc (1993). (Mach Learn 16, 235–240 (1994))

10. Mannhardt, F., de Leoni, M., Reijers, H.A., et al.: Balanced multi-perspective
checking of process conformance. Computing 98, 407–437 (2016)

https://doi.org/10.1007/978-3-030-47355-6_3
https://doi.org/10.1007/11841760_33


A Novel Decision Mining Method Considering Multiple Model Paths 87

11. Eric Verbeek, J.B., van der Aalst, W.M.P.: ProM 6: The Process Mining Toolkit.
Eur. J. Oper. Res. (2010)

12. Bogaŕın, A., Cerezo, R., Romero, C.: Discovering learning processes using inductive
miner: a case study with learning management systems (LMSs). Psicothema 30,
322–329 (2018)


	A Novel Decision Mining Method Considering Multiple Model Paths
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Methods
	4.1 Decision Points Extraction
	4.2 Training Dataset Creation

	5 Results
	6 Conclusions and Future Works
	References




