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Abstract. High-quality synthetic data can support the development of
effective predictive models for biomedical tasks, especially in rare dis-
eases or when subject to compelling privacy constraints. These limita-
tions, for instance, negatively impact open access to electrocardiography
datasets about arrhythmias. This work introduces a self-supervised ap-
proach to the generation of synthetic electrocardiography time series
which is shown to promote morphological plausibility. Our model (EC-
GAN) allows conditioning the generative process for specific rhythm
abnormalities, enhancing synchronization and diversity across samples
with respect to literature models. A dedicated sample quality assessment
framework is also defined, leveraging arrhythmia classifiers. The empir-
ical results highlight a substantial improvement against state-of-the-art
generative models for sequences and audio synthesis.
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1 Introduction

Nowadays, the usage of electronic health records and the digital health (e-health)
market have grown significantly due to technological advancements. Across the
field, there is an upward trend in collecting heterogeneous data via diagnostic
tests, clinical trials and wearable devices, supported by demographic insights.
The recording of heart’s electrical activity (ECG), represents the most common
non-invasive diagnostic tool for the early detection of life threatening conditions.
Machine learning can play a key role in assisting clinicians by efficiently moni-
toring and stratifying the risk of patients ([2]). Although fully supervised models
could seem a flawless end-to-end solution for clinical research, they come with
various drawbacks. For instance, such models are typically trained leveraging
clinical datasets often failing in adequately covering rare occurrences. Further-
more, data annotation burden highly skilled physicians requiring exceptional
time resources. Therefore, the quality of the predictions is strictly influenced
by these preliminary phases, emphasizing the demand for plentiful rigorously
labeled samples.

Deep generative models (DGMs), by approximating real conditional distri-
butions, are usually capable of guiding the generative process towards a specific
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class of samples. For this reason, they represent a relevant tool for reducing un-
balance from rare diseases via data augmentation or patient-specific synthesis
([6]). The employment of DGMs as model agnostic synthesizers could implicitly
solve another issue: patient’s privacy and data anonymization. Potential threats
arise from having a large amount of training data containing highly sensitive
medical records.

In this paper, we propose a novel architecture referred to as ECGAN, com-
bining two fields of research: self-supervised learning (SSL) and deep generative
models for time series. Our model has been devised specifically with electro-
cardiography data in mind. The role of self-supervised learning in this research
stands in exploiting the underlying time series dynamics via recurrent autoen-
coders. The features learned through a preliminary reconstruction task are trans-
ferred via weight sharing to the generator and a latent space projection. The
assessment of the proposed model is compared with state of the art generative
models for time series and audio synthesis ([3,12,19]). It yields competitive re-
sults concerning structural fidelity, sampling diversity and data applicability to
heart rhythm classification tasks.

The main contributions of this work are: (1) We introduce a deep generative
model, specifically designed for electrocardiography, intersecting between self-
supervised learning and the generative adversarial framework. (2) We propose
a parsimonious transfer learning framework requiring lesser resources than its
generative counterparts. (3) We evaluate different methods for quantitatively
assessing generated ECGs, inspired by the evaluation of image generative models,
we inspect the latent projection of an ECG arrhythmia classifier C.

2 Related work

The complexity of modeling electrical heart’s activity requires experts to cooper-
ate across several fields of research. A pioneering research from [18] theoretically
investigated the application of dynamical systems to electrocardiography. The
approach consisted in approximating heart’s rhythm via a complex network of
relaxation oscillators. This initiating idea spurred on upcoming methods built
upon: non-linear coupled oscillators ([15]); three-dimensional trajectories [11,14]
and function compositions [13]. Those early efforts in dynamical models were
able to produce highly realistic heartbeats, however they result oversimplified
for augmentation procedures.

Modern approaches often leverage generative deep learning, which sacrifices
model explainability in favor of the avoidance of complex differential equations.
One of the initial attempts from [12], consisted in applying long-short term mem-
ories to continuous sequential music generation. The input to each cell is treated
recurrently as a combination of noise and output from the previous time step.
A similar conditional recurrent approach (RCGAN, [4]) replaced the association
with previous time steps with conditional input embeddings. Notwithstanding
the merit of those approaches, they merely focus on the adversarial minimax,
without capitalizing on additional sources. On the other hand [19] recently pro-
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Fig. 1: Visual summary of the workflow of ECGAN. The main components
(trapezoids) are correlated with their objective functions (dashed arrows). The
sequential ECG input is either fed into the SSL block for preliminary reconstruc-
tion or to the discriminator D for adversarial training.

posed TimeGAN, consisting of four components simultaneously learning to en-
code, generate, and iterate across time in an autoregressive procedure.

Recently, deep generative applications to electrocardiography have shown to
be an emerging trend, mainly for improved heartbeat classification. Researchers
have favourably adapted the promising image-based GAN framework to ECG
settings ([16]). At the same time, the latter have been combined with former
ideas involving ordinary differential equations (ODEs) [7,5].

3 The ECGAN Model

ECGAN Architecture: The architecture encapsulates a latent space projec-
tion for the sequential domain within the adversarial framework typical of GANs.
The model is composed of: an encoding recurrent mapping Eφ : X −→ H, which

produces a latent representation H ∈ Rh×n′ through H and a decoding recur-
rent block, sharing its weights with the generator G(H; θg). We outlined each
component in addition to their paths and training losses by dashed arrows in
Figure 1. There are two distinctive possible workflows, both traversing the latent
space. The first path starts from the ECG input sequence and learns to produce
faithful reconstructions without involving adversarial components. Finally, the
generative process samples directly from the latent feature projection which is
processed by G and evaluated by D.

Sequence generation is conditioned at global level using embedding layers.
During training and sampling, the hidden state of the generator is initialized
with a non-linear embedding of the corresponding ECG label. Likewise, the dis-
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criminator’s output is perturbed by linearly combining its output and the asso-
ciated embedding. Hence, they retain an initial conditional representation about
the generated/classified sequence. This allows to both condition the generative
process and influence the prediction based on prior class information.

Training procedure: The ECGAN training procedure comprises two indepen-
dent phases. At an early stage, and differently from standard GANs, the gen-
erator and the discriminator are kept in an idle state. Throughout this phase,
unlabeled samples are used for a self-supervised reconstruction of the input. The
main purpose is guiding the generative process towards the synthesis of partly
recognizable ECGs instead of white noise. Finally, prior knowledge is transferred
to the generator, henceforth sampling directly from the latent space projection.
The full procedure summarising both phases is detailed in Algorithm 1.

for t = 0, 1, . . . epochsssl do
Sample {x(i)}mi=1 ∼ pdata ;

δg ← ∇θ[ 1
m

m∑
i=1

‖x(i) − x̃(i)‖1] ;

θg ← θg − αs ·Adam(θg, δg) ;

end
for e = 0, 1, . . . epochsadv do

for d = 0, 1, . . .steps do
Sample {x(i)}mi=1 ∼ pdata ;

Sample {z(i)}mi=1 ∼ p(z) ;

δd ← ∇θd [ 1
m

∑m
i=1 fθd(x(i))− 1

m

∑m
i=1(fθd ◦G ◦H)(z)(i)] ;

θd ← θd + αd· RMSProp (θd, δd) ;
θd ← clip(θd,−c, c) ;

end

Sample
{
z(i)
}m
i=1
∼ p(z) ;

δg ← −∇θ 1
m

∑m
i=1(fθd ◦G ◦H)(z)(i) ;

θg ← θ − αg · RMSProp(θg, δg) ;

end
Algorithm 1: Training procedure.

The preliminary self-supervised phase is kept entirely modular depending
on the downstream generative task. It requires an additional hyperparameter
regulating the number of epochs and it employs Adam optimizer for the objec-
tive. Lastly, the adversarial training is carried out by using RMSProp for both
the generator and the discriminator gradients. The discriminator is constantly
kept within a compact parameter space through gradient clipping (an uniform
window of [−0.001, 0.001] have been selected for all the experiments). Among
possible combinations, the best working training ratio between the generator
and the discriminator has been keeping it balanced (g : d = 1 : 1).

Self-supervised module: Training starts with a preliminary self-supervised
task avoiding the usage of labeled patterns. We are solely interested in cap-
turing high-level features through the manifold, exploiting them later for the
downstream conditional generative task. It should be noted that the flexibility
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of the approach allows the extension to further SSL tasks such as signal denois-
ing. The process can be summarized by the following three steps:

1. Sampling a batch of samples from the real data distribution {x(i)}mi=1 ∼ pdata
2. Encoding the signal x(i) in a latent feature space through the embedding E

and the projection map H, thus producing H ∈ Rh×n′ .
3. Recovering the original signal.

Alternatively, we also investigated the effect of perturbing the signal with
Additive White Gaussian Noise as an additional and more challenging SSL task.
The perturbed signal is treated as x′j = xj + zj where zj ∼ N(0, λ2

√
N) and we

will refer to the corresponding model as ECGANλ throughout the experiments.
Then, we proceed by defining the reconstruction objective:

LA = Ex∼pdata

[
‖x− (G ◦H ◦ E)(x)‖1

]
, (1)

while the gradient of the expectation is approximated through Montecarlo inte-

gration as ∇θ[ 1
m

m∑
i=1

‖x(i) − (G ◦H ◦ E)(x(i))‖1], allowing us to train G, H and

E through Adam optimizer [8]. Formally, the process requires an additional
hyperparameter s, i.e. the number of training steps. Anyway, further investiga-
tions employing it in an alternating fashion among G and D, are also suggested
(s : g : d = 0 : 1 : 1 in the original GAN research). According to our experiments,
the preliminary objective (1) as well as the self-supervised module introduced
two desirable training properties:

– The discriminator is inevitably forced to a rough start, being encouraged to
look for finer distinctive features between real and fake samples (Figure 4).

– Empirically, by inspecting pre-training checkpoints, the model grasps a prim-
itive knowledge of ECG peaks location and duration (Figure 3).

Adversarial Training: Ultimately, the focus switches to the synchronized
learning between the generator and the discriminator. Our preliminary experi-
ments shared the widely known issues of standard GANs in encountering mode
collapse scenarios (Appendix D). The adoption of combining WGAN principles
introduced by [1] and the proposed novelties heavily mitigated this phenomenon.
Thus, the model minimizes the Wasserstein distance via the Kantorovich-Rubinstein
duality:

W (pdata, p̃) =
1

K
sup

‖f‖L≤K
Ex∼pdata

[f(x)]− Ex∼p̃[f(x)]. (2)

Differently from the original research, we sample a noise vector z ∼ pz processing
it through the pre-trained projection map H, which is subsequently fed to the
generator. As a result, the objective for the generator is:

LG = −Ez∼pz
[
(fθd ◦G ◦H)(z)

]
. (3)
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Meanwhile, the discriminator is a real-valued mapping f(x; θd) : Rn → R using
a linear activation function. Its K-Lipschitz continuity constraints in (2) are
enforced by gradient clipping and the resulting objective is:

LD = Ex∼pdata

[
fθd(x)

]
− Ez∼pz

[
(fθd ◦G ◦H)(z)

]
. (4)

In other words, the discriminator should learn to estimate the distance between
real patterns and synthesized ECGs, overcoming the prior advantage of the gen-
erator. Differently, the latter focuses exclusively on minimizing the Wasserstein
distance between pdata and p̃ in (2).

4 Experimental Analysis

Despite the growing interest in generative models for health, their evaluation is
still predominantly qualitative. Other than being time-consuming and arduous to
reproduce, this is highly subjective. Common metrics adopted for images such as
the Inception Score (IS) based on the Inception Network ([17]) are inadequate for
biomedical time-series. Since they are mainly pre-trained on datasets comprising
objects from the real world, it discourages any fine-tuning on image-like signal
representations. Consequently, we pursued three core properties based on the
application domain:

– Diversity: Generated samples should be equally distributed among different
classes of arrhythmias resembling the real data distribution

– Fidelity: The morphological properties of generated signals should mirror
those from real samples (including segment lengths or complex duration).

– Functionality: New data should be adoptable and useful to enhance ar-
rhythmia predictive models.

We propose an approach specifically designed for this sequential domain
which includes an ECG arrhythmia classifier C. The Inception feature space
is replaced with an intermediate activation layer from the predictive model.
The latter allows us to define φ(pdata) and φ(p̃) as Gaussian random variables
with empirical means µr, µg and covariances Cr,Cg. From now on, we rely on
pC(y | x) as the label distribution of x predicted by C and pC(y) =

∫
x
pC(y | x)dp̃,

being the marginal of pC(y | x) over the generative probability distribution p̃. A
detailed description and formulation of the metrics used throughout the experi-
ments is covered in Appendix B.

To demonstrate the capability of the proposed model to synthesize realistic
ECGs, we employed two different open datasets: MIT-BIH Arrhythmia Database
and BIDMC Congestive Heart Failure Database. Each dataset is repeatedly split
five times through a randomized hold-out technique, which assigns an equally
partitioned 25% dedicated to hyperparameters tuning and model assessment of
the classifier C. The remaining portion is entirely dedicated for the generative
task (3998 and 11576 samples respectively).

The metrics collected throughout the experiments are compared with state
of the art generative models for signals, including WaveGAN and SpecGAN [3].
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Fig. 2: A T-distributed Stochastic Neighbor Embedding (t-SNE) visualization of
the activations φ (pdata) and φ (p̃) obtained by the classifier C. The distribution
of synthesized samples from ECGAN (third column) and the top performing IS
model (second column) is compared with the original datasets (first column).

Table 1: Summary of the metrics evaluated for each generative model on both
datasets. We report: the inception score (IS), the Frechèt Inception Distance
(FID), the linear maximum-mean-discrepancy (MMD) and the Wasserstein dis-
tance (W).

Model FID(pdata, p̃) ↓ IS(p̃) ↑ MMD(pdata, p̃) ↓W(pdata, p̃) ↓

BIDMC Dataset

ECGAN 233.86± 17.24 1.97± 0.09 31.71± 4.43 0.52± 0.01
ECGANλ 289.06± 10.94 1.96± 0.05 60.40± 3.50 0.79± 0.01
TimeGAN 328.03± 2.13 1.60± 0.01 144.90± 3.51 1.03± 0.00
WaveGAN 839.42± 7.26 1.32± 0.01 332.59± 8.93 0.81± 0.02
C-RnnGAN 917.22± 63.54 1.35± 0.03 788.67± 27.85 2.07± 0.03
SpecGAN 942.10± 8.25 1.26± 0.02 349.88± 6.56 0.79± 0.00

MITBIH Dataset

ECGAN 45.49± 1.82 1.41± 0.03 17.41± 1.62 0.40± 0.01
ECGANλ 78.87± 0.56 1.33± 0.01 37.66± 0.49 0.53± 0.01
C-RNNGAN 91.35± 3.00 1.40± 0.01 27.57± 1.15 0.52± 0.01
TimeGAN 113.81± 2.37 1.11± 0.01 60.51± 2.23 0.68± 0.01
WaveGAN 151.22± 0.94 1.03± 0.00 64.56± 0.84 0.32± 0.00
SpecGAN 151.21± 0.95 1.01± 0.00 64.97± 0.58 0.35± 0.01



8 L. Simone, D. Bacciu

Fig. 3: Sampling progression over training epochs from ECGAN. The process
starts with noise vectors and ends with a fully trained (SSL and adversarial)
model sampling from sinus rhythm and congestive heart failure instances on the
forth column.

These models were originally designed for audio synthesis, hence we performed
a Short-time Fourier transform (STFT) to obtain spectrograms. We report the
results over five different runs of the sampling procedure in Table 1. The pro-
posed model consistently outperforms models selected from literature in both
tasks considering the proposed metrics. Despite the increasing performance of
the discriminative measures for the last task, the Inception Score suggests how
spectrogram-based models are hardly producing well-distributed patterns. This
is attributable to: an higher diversity of samples and the difficulty in masking
zero padding from the original dataset.

In order to visually understand the capability of the classifier to distin-
guish synthesized patterns from original samples we computed a T-distributed
Stochastic Neighbor Embedding (t-SNE [9]) of the activations φ(pdata), φ(p̃). The
targeted real distribution in the first column exhibit two clearly distinguishable
clusters for both datasets. On one hand, the competing models, according to the
highest IS, follow the original separable arrangement (Figure 2). On the other
hand, ECGAN provides a unique spatial distribution of patterns. Hence, sample
diversity across instances is maximized while maintaining a positional reference
to the original classes.

A contextual estimate of the impact of the SSL module and the subsequent
adversarial phase over different training epochs is shown in Figure 3. We show,
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from left to right, the progression of a fixed random vector from the latent space
through the SSL process. The fourth column represents the synthesized ECG
pattern after the adversarial training. Lastly, the fifth column belongs to the
best match, according to the DTW distance, between the generated and real
pattern.

5 Discussion

We have introduced ECGAN, a generative model for ECG data leveraging self-
supervised learning principles. Throughout the experiments, ECGAN has been
shown to be able to produce morphologically plausible ECGs, including specific
pattern abnormalities, by global conditioning of the input. Our self-supervised
generative adversarial framework encourages the sampling process to synthe-
size patterns coherently to real samples’ dynamics. Anyway, a proper trade-off
between preliminary and adversarial phases by a rigorous hyperparameter se-
lection is needed. Ultimately, we obtained competitive results for the expected
properties over the monitored metrics.

The synthesized patterns are also suitable for data augmentation procedures
as suggested by the assessment of their functionality. We believe that our con-
tribution could pave the way to several other biomedical applications. As a first
further development, we advise the usage of the proposed approach for multi-lead
ECGs. This would potentially contribute with an heavier impact on improving
deep-learning arrhythmia classifiers. A 12-lead ECG synthesizer could involve
other recording systems such as vectorcardiography (VCG), which requires mul-
tiple leads. Encouraging trends emerge from investigating the explainability of
generative biomedical models, besides the scope of improving predictive models.
Furthermore, an additional promising application field for DGMs comes from
electroencephalography (EEG). Similarly to our domain, data availability is in-
evitably affected by complex experimental setups and prolonged wearing sessions
from the patients.
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A Dataset Preparation

We considered two ECG classification datasets, both publicly accessible from
PhysioNet. The first dataset have been used as a baseline, since it has a lower
diversity across patterns and it has been automatically annotated.
BIDMC Congestive Heart Failure Database (ECG5000):
The open-source dataset BIDMC-CHFDB is a collection of long-term ECG
recordings from 15 subjects suffering from severe congestive heart failure (NYHA
class 3-4). The initial recordings were twenty hours long, and comprised two-lead
ECG signals sampled at 250 Hz with a 12-bit resolution over a range of ±10mV .
They have been collected at Boston’s Beth Israel Hospital with an approximate
bandwidth of 0.1− 40Hz. The collection is composed of normal rhythm beats as
well as premature atrial and ventricular complexes (PVC) and R-on-T PVCs.
Preliminary procedures: The first dataset, being patient-specific, serves as a
baseline task for the generative models examined. Five thousand singular beats
have been extracted following the principles adopted for the dataset ”ECG5000”.
After having centered each fragment by its QRS complex, we obtained sequences
of equal length by linear interpolation.
MIT-BIH Arrhythmia Database:
The MIT-BIH Arrhythmia Database is composed of 48 half-hour two-lead am-
bulatory ECG recordings. It comprises 47 different subjects and it was collected
at the BIH Arrhythmia Laboratory. For the generative task, we have used the II
lead undersampling it from 360Hz to 125Hz. Differently from the first dataset,
it provides five annotated classes performed by two cardiologists ( in accordance
with the Association for the Advancement of Medical Instrumentation AAMI-
EC57.
Preliminary procedures: The initial distribution of samples across the five
classes is highly unbalanced. We proceeded by discarding the classes S and F,
the first being a collection of several atrial and supra-ventricular events and
the second being a mixture of the latter. This could unnecessarily complicate
the generative task. The resulting classes: N referring to normal rhythm and V
standing for premature ventricular complexes were highly unbalanced (N con-
tains 72470 samples, while V only 5788). In order to balance the two classes for
the generative task, we performed a standard undersampling procedure.

B Metrics definition

The discrepancy measures from the experimental results are detailed utilizing
the label distribution pC(y|x) and its marginal distribution pC(y) from C.

The Inception Score (IS) is computed as:

IS(p̃) = eEx∼p̃[KL(pC(y|x)‖pC(y))] (5)

The Fréchet Inception Distance (FID) is:

FID(pdata, p̃) = ‖µr − µg‖+ Tr(Cr + Cg − 2(CrCg)
1/2) (6)
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Kernel-based Maximum Mean Discrepancy (MMD) used as a dissimilarity
measure between pdata and p̃:

MMD2(pdata, p̃) = xg,x
′
g ∼ p̃

xr,x′r∼pdata,

[k(xr,x
′
r)− 2k(xr,xg) + k(xg,x

′
g)] (7)

,with a linear and radial basis function (RBF) kernel k:

k(xr,xg) = exp(−||xr,xg||
2

2σ2
) (8)

C Ablation study

The focus in this appendix section is devoted to the empirical estimation of
the contribution of the proposed novelties. We start by singularly detaching
each component analyzing the impact on the evaluated metrics, following with
qualitative improvements over adversarial training stability and finally present-
ing the latter over the generative process. We will refer, from now on, to a
fully adversarial version of ECGAN having the self-supervised component and
training removed as ECGANNO-SSL. The already mentioned set of metrics have
been reused for the experiments in Table 2. The main difficulties without self-
supervision have been: producing high quality ECGs, avoiding mode collapse
and a lack of improvement over predictive metrics for classification tasks.

Table 2: Summary of the metrics for the ablation study of the SSL module
evaluated on both datasets.

Configuration FID(pdata, p̃) ↓ IS(p̃) ↑ MMD(pdata, p̃) ↓W(pdata, p̃) ↓

BIDMC Dataset

ECGAN 233.86± 17.24 1.97± 0.09 31.71± 4.43 0.52± 0.01
ECGANNO-SSL 1156.0± 13.83 1.03± 0.02 728.91± 13.95 1.19± 0.01

MITBIH Dataset

ECGAN 45.49± 1.82 1.41± 0.03 17.41± 1.62 0.40± 0.01
ECGANNO-SSL 1189.46± 12.83 1.02± 0.10 752.1± 8.45 1.20± 0.01

Throughout the experiments we have monitored the loss of inner components
from ECGAN, namely the generator, the discriminator and the SSL module as
shown in Figure 4. In the first column, over five different runs, the discriminator
starts to improve significantly at an early stage. As a consequence, there is a clear
downward trend for the generator, which is incapable of improving nor synthesize
plausible samples. The pre-training SSL module contributes to mitigating this
phenomenon promoting a balance between G and D.
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Fig. 4: The loss over training epochs of the generator and the discriminator from
standard GAN (first column) is compared with its counterparts and the SSL
module from the proposed model (second column).

D Mode collapse

Standard generative adversarial networks have been proven their strengths, es-
pecially in image generative tasks, over the last years of research. Still, they
pose several difficulties in having a balanced learning process. We reported the
limitations encountered by training them from both qualitative and quantita-
tive perspectives. The latter have been measured computing the dynamic time
warping (DTW) distance over 30 generated patterns from ECGAN and standard
GAN (Figure 5).

The overall quality of the generative process is unsatisfactory other than
suffering from a noticeable mode collapse behaviour (Figure 6). Apart from being
capable of producing R peaks, there are not other distinctive features in the
produced signal (Figure 6b).
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(a) (b)

Fig. 5: DTW Correlation matrix over 30 samples from ECGAN (a) and standard
GAN (b), which is suffering from mode collapse.

Fig. 6: Synthesized sample from standard GAN (b) failing in learning a reliable
approximation of the real data distribution. There is a clear evidence of mode
collapse with a fair discrepancy from real patterns (a).

(a) (b)

E Segments analysis

As a further quantitative evidence of the overall adherence of the generated
signals to the corresponding ECG classes from the original datasets, we retrieved
the period of meaningful segments. The latter have been carried out via an
automatic feature extraction phase (Figure 7), with the objective of measuring:
QRS complexes, QT, ST and PR segments.

Distinctive traits and patterns of PVCs, differently from normal rhythms,
emerge also for the generated signals as can be observed in Table 3. These
properties are clearly desirable both for patterns fidelity and data augmentation
procedures involving classifiers relying on those features.

We proceed by showing the morphological distribution of a subset of synthe-
sized and baseline ECG patterns from the first dataset (Figure 8). The overall
adherence to segment lengths is respected without sacrificing sampling diversity.
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Fig. 7: Visual summary of the segmentation of P,Q,S and T peak onsets and
offsets for both normal and anomalous classes ([10]).

Table 3: Summary of the time duration of meaningful segments after feature ex-
tracting Q,R,S and T peaks. A comparison between the distribution of segments
duration in seconds between real BIDMC samples those produced by ECGAN.

Dataset class QT (s) QRS (s) PR(s) ST(s)

BIDMC (N) 0.55± 0.13 0.11± 0.03 0.60± 0.12 0.24± 0.05
BIDMC (V) 0.52± 0.11 0.06± 0.04 0.61± 0.03 0.13± 0.09

ECGAN (N) 0.53± 0.15 0.13± 0.05 0.59± 0.07 0.26± 0.08
ECGAN (V) 0.60± 0.05 0.12± 0.11 0.60± 0.05 0.12± 0.11

Fig. 8: Morphological distribution of a normal ECG (left) and anomalous (right).
The top row is sampled from BIDMC, while the bottom is generated by the
proposed model.
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F Functionality assessment

The architecture of inner feature learners is flexible allowing us to utilize stacked
LSTMs for an higher level of abstraction. Meanwhile, the discriminator is built
upon three stacked convolutional blocks: 1D convolutional layer followed by
global average pooling and instance normalization. The latter allowed signifi-
cant improvements over batch normalization. The choice of adopting LSTMs for
our generative task is based on the requirement of learning long-term sequential
rather than spatial features. Differently, convolutional blocks are better suited
for our discriminative duty by focusing on local patterns in parallel. The details
of these architectural choices are reported extensively in Table 4.

Table 4: Architectural details of the layers from the discriminator and the gen-
erator.

Generator

Component Shape

LSTM 128× h
LSTM (×4) 128× n

Discriminator

Component Shape

1D CNN (kernel size = 6) 128× n
Instance Normalization 128× n
ReLU Activation 128× n
1D CNN (kernel size = 6) 128× n
Instance Normalization 64× n
ReLU Activation 64× n
1D CNN (kernel size = 6) 32× n
Instance normalization 32× n
ReLU Activation 32× n
Global average pooling 32× 1
Linear activation 1× 1

The architecture of the CNN-based arrhythmia classifier C, have been em-
ployed also to evaluate generated signals from a functional perspective. The
objective of this phase is exploiting the inclusion of synthetic data to the train-
ing set to improve generalization capabilities on the initially retained internal
test set. In the long run, each of the baselines achieved improved performances
except for audio synthesis models (SpecGAN and WaveGAN).
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Table 5: Predictive results for the classification task. A fixed number of bal-
anced samples for each of the generative models is randomly inserted within the
training set, and later evaluated over the test set.

Dataset Accuracy Specificity Sensitivity Precision F1

Training

Original 0.990± 0.01 0.986± 0.02 0.996± 0.04 0.997± 0.03 0.991± 0.02
ECGAN 0.997± 0.01 0.999± 0.01 0.994± 0.03 0.996± 0.02 0.997± 0.01
TimeGAN 0.987± 0.02 0.980± 0.03 0.997± 0.03 0.997± 0.02 0.988± 0.01
C-RNNGAN 0.991± 0.01 0.985± 0.02 0.999± 0.01 0.999± 0.00 0.992± 0.01
SpecGAN 0.960± 0.03 0.931± 0.05 0.998± 0.01 0.998± 0.01 0.963± 0.03
WaveGAN 0.937± 0.04 0.925± 0.08 0.954± 0.07 0.969± 0.04 0.943± 0.03

Testing

Original 0.981± 0.02 0.988± 0.02 0.973± 0.09 0.979± 0.07 0.991± 0.02
ECGAN 0.989± 0.01 0.998± 0.00 0.977± 0.03 0.982± 0.02 0.997± 0.01
TimeGAN 0.988± 0.01 0.995± 0.04 0.978± 0.05 0.983± 0.04 0.988± 0.01
C-RNNGAN 0.987± 0.01 0.994± 0.00 0.979± 0.05 0.984± 0.04 0.992± 0.01
SpecGAN 0.969± 0.02 0.956± 0.05 0.985± 0.00 0.988± 0.00 0.963± 0.03
WaveGAN 0.950± 0.03 0.927± 0.07 0.979± 0.02 0.983± 0.01 0.943± 0.04
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