
HAL Id: hal-04241350
https://hal.science/hal-04241350

Submitted on 13 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Knapsack with Removal and Recourse
Hans-Joachim Böckenhauer, Ralf Klasing, Tobias Mömke, Peter Rossmanith,

Moritz Stocker, David Wehner

To cite this version:
Hans-Joachim Böckenhauer, Ralf Klasing, Tobias Mömke, Peter Rossmanith, Moritz Stocker, et al..
Online Knapsack with Removal and Recourse. Combinatorial Algorithms. IWOCA 2023, Jun 2023,
Tainan, Taiwan, France. pp.123-135, �10.1007/978-3-031-34347-6_11�. �hal-04241350�

https://hal.science/hal-04241350
https://hal.archives-ouvertes.fr

Online Knapsack with Removal and Recourse

Hans-Joachim Böckenhauer1, Ralf Klasing2⋆, Tobias Mömke3⋆⋆,
Peter Rossmanith4, Moritz Stocker1, and David Wehner1

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
{hjb,moritz.stocker,david.wehner}@inf.ethz.ch

2 CNRS, LaBRI, Université de Bordeaux, Talence, France
ralf.klasing@labri.fr

3 Institute of Computer Science, University of Augsburg, Augsburg, Germany
moemke@informatik.uni-augsburg.de

4 Departement of Computer Science, RWTH Aachen University, Aachen, Germany
rossmani@cs.rwth-aachen.de

Abstract. We analyze the proportional online knapsack problem with
removal and limited recourse. The input is a sequence of item sizes; a
subset of the items has to be packed into a knapsack of unit capacity such
as to maximize their total size while not exceeding the knapsack capacity.
In contrast to the classical online knapsack problem, packed items can
be removed and a limited number of removed items can be re-inserted
to the knapsack. Such re-insertion is called recourse. Without recourse,
the competitive ratio is known to be approximately 1.618 (Iwama and
Taketomi, ICALP 2002). We show that, even for only one use of recourse
for the whole instance, the competitive ratio drops to 3/2. We prove that,
with a constant number of k ≥ 2 uses of recourse, a competitive ratio
of 1/

(√
3 − 1

)
≤ 1.367 can be achieved and we give a lower bound of

1 + 1/(k + 1) for this case. For an extended use of recourse, i.e., allowing
a constant number of k ≥ 1 uses per step, we derive tight bounds for
the competitive ratio of the problem, lying between 1 + 1/(k + 2) and
1 + 1/(k + 1). Motivated by the observation that the lower bounds heavily
depend on the fact that the online algorithm does not know the end of the
input sequence, we look at a scenario where an algorithm is informed when
the instance ends. We show that with this information, the competitive
ratio for a constant number of k ≥ 2 uses of recourse can be improved
to strictly less than 1 + 1/(k + 1). We also show that this information
improves the competitive ratio for one use of recourse per step and give
a lower bound of ≥ 1.088 and an upper bound of 4/3 in this case.

Keywords: online knapsack · proportional knapsack · recourse · semi-
online algorithm

⋆ Partially supported by the ANR project TEMPOGRAL (ANR-22-CE48-0001).
⋆⋆ Partially supported by DFG Grant 439522729 (Heisenberg-Grant) and DFG Grant

439637648 (Sachbeihilfe).

1 Introduction

In the classical knapsack problem, we are given a knapsack of capacity B and a
set of items, each of which has a size and a value. The goal is to pack a subset
of items such that the total size does not exceed the capacity B, maximizing
the value of the packed items. In the proportional variant of the problem (also
called unweighted or simple knapsack problem), the size and the value of each
item coincide. Stated as an online problem, B is given upfront, but the items are
revealed one by one in a sequence of requests. The online algorithm has to decide
whether the requested item is packed or discarded before the subsequent item
arrives and cannot revoke the decision. To measure the quality of the solution,
we use the competitive ratio, i.e., the value attainable by an optimal offline
algorithm divided by the value of the solution computed by the online algorithm
in the worst case. It is well-known that, even in the proportional variant, no
online algorithm for the online knapsack problem achieves a bounded competitive
ratio [20]. This indicates that the classical notion of online algorithms is overly
restrictive for the knapsack problem. Unless otherwise stated, we focus on the
proportional variant in this paper.

In the literature, several ways of relaxing the online requirements have been
considered for various online problems, leading to so-called semi-online problems
[7,10]. Such semi-online problems enable to study the effect of different degrees of
online behavior on the hardness of computational problems. Semi-online problems
can be roughly divided into two classes: On the one hand, one can equip the
algorithm with some extra information about the instance, e.g., the size of an
optimal solution. On the other hand, one can relax the irrevocability of the
algorithm’s decisions. Several models from the second class have already been
considered for the online knapsack problem: In the model of delayed decisions
[23], one grants the online algorithm the right to postpone its decisions until they
are really necessary. This means that the algorithm is allowed to temporarily
pack items into the knapsack as long as its capacity allows and to remove them
later on to avoid overpacking of the knapsack [17]. In the reservation model, the
algorithm has the option to reserve some items in an extra storage at some extra
cost, with the possibility of packing them into the knapsack later [2].

In this paper, we consider a semi-online model called recourse. In the model
of recourse, the algorithm is allowed to withdraw a limited number of its pre-
vious decisions. Recourse has mainly been studied for the Steiner tree problem,
MST, and matchings [16,13,22,12,21,1,6]. In case of the knapsack problem, we
distinguish two types of recourse: (i) An item that has been selected previously
is discarded (to make space for a new item); and (ii) an item was previously
discarded and is added afterwards. The second type of recourse is costlier than
the first type, as an unlimited number of items has to stay at disposal.

Applying the first type of recourse directly to the classical online knapsack
problem does not get us too far: The same hard example as for the problem
without recourse, i.e., one instance consisting of the items ε and 1 (for some
arbitrarily small ε > 0) and another one consisting of the ε only, also proves

2

Upper bound Lower bound
1 recourse in total 3

2 (Theorem 2) 3
2 (Theorem 1)

k ≥ 2 recourses in total 1√
3−1 ≤ 1.367 (Theorem 3) 1 + 1

k+1 (Theorem 1)
k recourses per step f(k) ≤ 1 + 1

k+1 (Theorem 4) f(k) ≥ 1 + 1
k+2 (Theorem 5)

Table 1. Our results on the competitive ratio for online knapsack with removal and
limited recourse. Here, f(k) = 2/(

√
k2 + 6k + 5 − k − 1).

Upper bound Lower bound
k ≥ 2 recourses in total f(k) ≤ 1 + 1

k+1 (Theorem 6)
1 recourse per step 4

3 (Theorem 8) 18
5+

√
133 ≥ 1.088 (Theorem 7)

Table 2. Our results on the competitive ratio for online knapsack with removal
and limited recourse, given information on the end of an instance. Here, f(k) =
2/(

√
k2 + 6k + 5 − k − 1).

an unlimited competitive ratio here since discarding the first item makes the
instance stop and does not leave room for any recourse.

We combine the option of unlimited removal with limited recourse, that is, a
limited number of re-packings of discarded items. The resulting upper and lower
bounds on the competitive ratio are shown in Table 1. Classically, in the online
model, upon arrival of an item, the algorithm does not know whether this will
be the last item in the sequence or not. Besides analyzing this standard model,
we additionally consider various ways of communicating information about the
end of the sequence to the algorithm. The problem exhibits a surprisingly rich
structure with respect to this parameter. Our respective bounds are shown in
Table 2. Due to space constraints, some proofs are omitted in this paper.

1.1 Preliminaries

In the online knapsack problem OnlineKP used in this paper, an instance is
given as a sequence of items I = (x1, . . . , xn). For convenience of notation, we
identify an item with its size. In each step 1 ≤ i ≤ n, an algorithm receives
the item xi > 0. At this point, the algorithm has no knowledge of the items
(xi+1, . . . , xn) and no knowledge of the length n of the instance. It maintains a
knapsack S ⊆ I such that, in each step, the items in the knapsack do not exceed
the capacity of the knapsack. We normalize this size to 1 and thus assume that
xi ∈ [0, 1] for all i. All items xj for j < i that are not in S are considered to be
in a buffer of infinite size.

In the framework of this paper, given the item xi, an algorithm first adds
it to the knapsack S, potentially exceeding the size limit. It may then remove
any number of items from S, moving them to the buffer, and possibly return a
certain number of items from the buffer to S afterwards, expending one use of

3

recourse for each returned item. For simplicity, we say that the algorithm packs
an item if it is kept in the knapsack upon its arrival, and that it discards an
item if it is immediately removed in the step of its arrival. The number of such
uses available to the algorithm will vary between various scenarios. After this
process, the condition

∑
xi∈S xi ≤ 1 must hold, i.e., the selected items respect

the capacity of the knapsack. In our algorithms, we frequently classify the items
by their sizes: For a bound b with 1/2 < b < 1, we call an item small if it is of
size at most 1 − b, medium if its size is greater than 1 − b but smaller than b,
and large if its size is at least b.

The gain gainAlg(I) of the algorithm Alg on the instance I is given as the
sum

∑
xi∈S xi of the item sizes in S after the last step n. Its strict competitive

ratio ρAlg(I) on I is defined as ρAlg(I) = gainOPT(I)/gainAlg(I). The smaller
the ratio, the better the algorithm performs. The strict competitive ratio ρAlg
of the algorithm is then defined as the worst case over all possible instances,
ρAlg = supI ρAlg(I) . This definition is often generalized to the competitive
ratio of an algorithm, which allows for a constant additive term to be added to
gainAlg(I) in the definition of ρAlg(I). However, since in OnlineKP the optimal
solution for any instance is bounded by 1, this relaxation does not add any benefit
to the analysis of this problem. We will therefore only consider the strict version
and refer to it simply as competitive ratio.

1.2 Related Work

Online problems with recourse date back to Imase and Waxman [16] who have
studied the online Steiner tree problem and utilized the benefit of a limited number
of rearrangements. The number of required recourse steps was subsequently
reduced by a sequence of papers [13,22,12]. Recently, recourse was considered for
further problems, in particular online matching [21,1,6].

Many different kinds of semi-online problems have been considered in the
literature; Boyar et al. [7] give an overview of some of these. In particular, many
results on semi-online algorithms focus on makespan scheduling problems with
some extra information, starting with the work by Kellerer et al. [18]; see the
survey by Dwibety and Mohanty [10] for a recent overview of this line of research.

Many semi-online settings assume the availability of some extra information,
e.g., the total makespan in scheduling problems. In the model of advice complexity,
one tries to measure the performance of an online algorithm in the amount of any
information conveyed by some oracle that knows the whole input in advance. This
very general approach to semi-onlineness provides a powerful tool for proving
lower bounds. The model was introduced by Dobrev et al. [9] in 2008 and shortly
afterwards revised by Emek et al. [11], Böckenhauer et al. [4], and Hromkovič et
al. [15].

Since then, it has been applied to many different online problems; for a survey,
see the work by Boyar et al. [7] and the textbook by Komm [19].

In this paper, we consider a slightly different kind of semi-online problems,
where the online condition is not relaxed by giving some extra information to the
algorithm, but by relaxing the irrevocability of its decisions. In one approach,

4

the online algorithm is allowed to delay its decisions until there is a real need
for it. For instance, in the knapsack problem, the algorithm is allowed to pack
all items into the knapsack until it is overpacked, and only then has to decide
which items to remove. Iwama and Taketomi [17] gave the first results for online
knapsack with removal. A version in which the removal is not completely for free,
but induces some extra cost was studied by Han et al. [14]. Delayed decisions
were also studied for other online problems by Rossmanith [23] and by Chen
et al. [8]. Böckenhauer et al. [2] analyzed another semi-online version of online
knapsack which gives the algorithm a third option besides packing or rejecting
an item, namely to reserve it for possible later packing at some reservation cost.
The advice complexity of online knapsack was analyzed by Böckenhauer et al. [5]
in the normal model and later in the model with removal [3].

2 Number of Uses of Recourse Bounded per Instance

In this section, we analyze the scenario in which an algorithm can only use
recourse a limited number of k ≥ 1 times in total. Even if we just allow one use of
recourse per instance, the upper bound of (

√
5 + 1)/2 ≈ 1.618 proven by Iwama

and Taketomi [17] for the online knapsack problem with removal (but without
recourse) can be improved, as we show in the following. We find a lower bound
of 1 + 1/(k + 1) for the competitive ratio of any algorithm. In the case k = 1
where the algorithm can use recourse exactly once, we present an algorithm that
matches this lower bound of 3/2. In the case k > 1, we find an upper bound of
1/(

√
3 − 1) ≤ 1.367 that does not improve as k gets larger.

2.1 Lower Bound

Theorem 1. Any algorithm that uses recourse at most k ≥ 1 times in total
cannot have a competitive ratio of less than 1 + 1/(k + 1).

Proof. We present a family of instances dependent on ε > 0, such that any
algorithm that uses at most k recourses in total cannot have a competitive
ratio of less than (k + 2)/(k + 1) for at least one of these instances in the limit
ε → 0. These instances are given in Table 3; they all start with k copies of the
item x1 = 1

k+2 + ε. For the proof to work as intended, ε is chosen such that
0 < ε < 1

(k+2)2 . Note that any deterministic algorithm must act identically on
these instances up to the point where they differ.

Now, let Alg be any algorithm that uses at most k recourses in total and
assume that it has a competitive ratio strictly less than (k + 2)/(k + 1).

1. The algorithm must pack item x2 in each instance, removing all previously
packed copies of x1: otherwise, its competitive ratio on instance I1 is at least

ρAlg ≥ (k + 1)/(k + 2) + (k + 2)ε
k · (1/(k + 2) + ε) → k + 1

k
>

k + 2
k + 1 as ε → 0 .

5

k copies︸ ︷︷ ︸
I1 x1 x2

I2 x1 x2 x3

I3 x1 x2 x3 y3 = 1
k+2 − (k + 1)ε

I4 x1 x2 x3 x4 = k+1
k+2 + ε y4 = 1

k+2 − ε

I5 x1 x2 x3 x4 = k+1
k+2 + ε x5 = 1

k+2 y5 = k+1
k+2 − ε

I6 x1 x2 x3 x4 = k+1
k+2 + ε x5 = 1

k+2

Table 3. A family of instances showing that no algorithm that uses at most k recourses
in total can achieve a competitive ratio better than (k + 2)/(k + 1). All instances start
with k items of size x1, where x1 = x3 = 1

k+2 + ε and x2 = k+1
k+2 + (k + 2)ε.

2. The algorithm must then pack the item x3, remove x2 and use its entire
recourse to retrieve the k copies of x1 in instances I2 to I5:

– If it packs item x3 but only uses its recourse to retrieve m < k copies of
x1, its competitive ratio on instance I2 is at least

ρAlg ≥
k+1
k+2 + (k + 2)ε

(m + 1)(1
k+2 + ε)

≥
k+1
k+2 + (k + 2)ε

k(1
k+2 + ε)

→ k + 1
k

>
k + 2
k + 1 as ε → 0 .

– If it does not pack item x3 and keeps x2, its competitive ratio on instance
I3 is at least

ρAlg ≥ 1
k+1
k+2 + (k + 2)ε

→ k + 2
k + 1 as ε → 0 .

So, from here on, the algorithm cannot use any further recourse.
3. The algorithm must then pack item x4 in instances I4 to I6, removing x3

and all copies of x1: otherwise, its competitive ratio on instance I4 is at least

ρAlg ≥ 1
k+1
k+2 + (k + 2)ε

→ k + 2
k + 1 as ε → 0 .

4. The algorithm must then pack item x5 and remove x4 in instances I5 and I6:
otherwise, its competitive ratio on instance I5 is at least

ρAlg ≥ 1
k+1
k+2 + ε

→ k + 2
k + 1 as ε → 0 .

5. However, in this situation, its competitive ratio on instance I6 is at least

ρAlg ≥
k+1
k+2 + (k + 2)ε

1
k+2

→ k + 1 >
k + 2
k + 1 as ε → 0 .

Hence, Alg has a competitive ratio of at least (k +2)/(k +1) = 1+1/(k +1). ⊓⊔

6

2.2 Upper Bound
Upper Bound for k = 1. We present an algorithm Alg1 that uses recourse
at most once and that achieves a competitive ratio of 3/2. We set b = 2/3 and
distinguish between small, medium, and large items with respect to b as described
in Subsection 1.1. The algorithm Alg1

– packs any large item immediately, to this end removes some items from the
knapsack if necessary, and discards all other items from there on;

– packs any small item immediately. If a small item does not fit or has to be
discarded to fit a medium item, it discards all other items from there on;

– always keeps the largest medium item. If it encounters a medium item xi

that fits together with a previously encountered medium item xj , it removes
the currently packed one, uses its recourse to retrieve xj and discards all
other items from there on.

Theorem 2. The algorithm Alg1 has a competitive ratio of at most 3/2.
Proof. We prove that Alg1 is either optimal or achieves a gain of at least 2/3 and
thus a competitive ratio of at most 3/2. If there is a large item in the instance,
the algorithm packs it, leading to a gain of at least 2/3. We can therefore assume
that the instance contains no large items.

If the algorithm discards a small item at any point due to size limits, its gain
at that point must be at least 1 − 1/3 = 2/3. We can therefore assume that the
algorithm never discards a small item.

Now, consider the number of medium items in the optimal solution on the
instance, which cannot be more than two. If it contains exactly two, the algorithm
can pack two medium items, leading to a gain of at least 1/3 + 1/3 = 2/3. If the
optimal solution contains zero or one medium item, the algorithm packs all small
items and (if there is one) the largest medium item. Since all small items in the
instance are packed by assumption, the algorithm is optimal in this case. ⊓⊔

Upper Bound for k > 1. We define b as the unique positive solution of the
equation b2 + 2b − 2 = 0, so b =

√
3 − 1 ≈ 0.73. We present an algorithm Alg2

with a competitive ratio of at most 1/b ≤ 1.367 that uses recourse at most twice.
The algorithm again distinguishes between small, medium, and large items with
respect to b.

– The algorithm Alg2 treats any small or large item the same as Alg1.
– The algorithm only keeps the largest medium item, until it is presented with

a medium item that will fit with one that has already been encountered. If
that is the case, it will spend one use of its recourse to retrieve that item if it
is in the buffer. From there on, it will keep the two smallest medium items
encountered so far. (i) If it encounters a third medium item that will fit with
these two, it will pack it and discard everything else from there on. (ii) If,
however, at any point the algorithm encounters a medium item xi, such that
there is a previously encountered medium item xj with b ≤ xi + xj ≤ 1, it
packs xi, spends one use of recourse to retrieve xj if it is in the buffer and
discards everything else from there on.

7

– If at any point a medium item does not fit because of small items that have
already been packed, the algorithm removes small items one by one until the
medium item can be packed and discards everything else from there on.

Theorem 3. The algorithm Alg2 has a competitive ratio of at most 1/(
√

3 − 1).

3 Number of Uses of Recourse Bounded per Step

In this scenario, an algorithm could use recourse a limited number of k times per
step. We give sharp bounds on the competitive ratio of an optimal algorithm in
this case, tending to 1 when k tends to infinity. Let bk be the unique positive
root of the quadratic equation b2

k + (k + 1) · bk − (k + 1) = 0. Then it is easy to
check that 1 + 1/(k + 1) ≤ 1/bk ≤ 1 + 1/(k + 2).

3.1 Upper Bound

Let k ∈ N. We define bk = (
√

k2 + 6k + 5 − k − 1)/2 as the unique positive
solution of the quadratic equation b2

k + (k + 1) · bk − (k + 1) = 0. We construct
an algorithm Algk with a competitive ratio of at most 1/bk that uses recourse
at most k times per step, again distinguishing between small, medium, and large
items with respect to bk.

– The algorithm Algk treats any small or large item the same as Alg1 in
Subsection 2.2.

– As long as at most k medium items fit, Algk packs them optimally, using its
recourse to do so. As soon as it is presented with a medium item that will fit
with k previous ones, it will use its recourse to retrieve any of these that are
in the buffer. From there on, it will keep the k + 1 smallest medium items
encountered so far. (i) If it encounters an additional medium item that will
fit with these k + 1, it will pack it and discard everything else from there on.
(ii) If however at any point the algorithm encounters a medium item that fits
with at most k previously encountered ones, such that their sum is at least
bk, it packs it, uses its recourse to retrieve any of the others that might be in
the buffer and discards everything else from there on.

– If at any point a medium item does not fit because of small items that have
already been packed, Algk removes small items one by one until the medium
item can be packed and discards everything else from there on.

In the case k = 1, this is the algorithm Alg2 that is used in Subsection 2.2
for k > 1 uses of recourse in total. The algorithm not only uses recourse at most
twice but never spends both uses in the same step.

Theorem 4. The algorithm Algk has a competitive ratio of at most 1/bk ≤
1 + 1

k+1 .

8

3.2 Lower Bound

We now prove that the algorithm provided in Subsection 3.1 is the best possible.
Let bk be defined as in Subsection 3.1.

Theorem 5. Any algorithm that uses recourse at most k times per step cannot
have a competitive ratio of less than 1/bk ≥ 1 + 1

k+2 .

Proof (Sketch). We define ak = (1 − bk) + ε and present two instances I1 =
(ak, . . . , ak, bk + (k + 2)ε) and I2 = (ak, . . . , ak, bk + (k + 2)ε, 1 − (k + 1)ak). Both
instances start with k +1 items of size ak. The competitive ratio of any algorithm
must be at least 1/bk on at least one of these instances. ⊓⊔

4 Information on the End of the Instance

Previously, all problems were defined in a way where the algorithm had no
information on whether a certain item was the last item of the instance or not. It
might be natural to allow an algorithm access to this information. In the situation
where no recourse is allowed, this distinction does not matter: Any instance could
be followed by a final item of size 0, in which case removing any items would not
lead to a better solution. With recourse however, this might change.

4.1 Two Different Ways for Handling End of Instance

There appear to be two different ways in which the information that the instance
ends might be encoded. One one hand, the instance might be given in the form
(x1, . . . , xn, ⊥) where ⊥ informs the algorithm that the previous item was the last
one, allowing it to perform one last round of removal and recourse. On the other
hand, the instance could be given in the form (x1, . . . , xn−1, (xn, ⊥)), where the
algorithm is informed that an item is the last of the instance in the same step
that the item is given. It can be shown that an algorithm will always perform at
least as well if it receives the information in the former variant than in the latter.
However, in the scenario where the size of the recourse is bounded by k uses in
total, the chosen variant does not matter.

4.2 Upper Bound for k Uses of Recourse in Total Given Information
on the End of the Instance

When information about the end of an instance is available, k uses of recourse in
total are at least as useful as k uses of recourse per step without that information.
Since the way that information is received does not matter as mentioned in Sub-
section 4.1 we will assume that the instance is given in the form (x1, . . . , xn, ⊥).

We can now adapt the algorithm Algk from Subsection 3.1 to this situation,
where bk is again defined as the unique positive solution of the quadratic equation
b2

k +(k+1) ·bk −(k+1) = 0 and define small, medium and large items accordingly.
The obtained algorithm Alg(k,⊥) works as follows.

9

– It treats any small or large item the same as Alg1 in Subsection 2.2.
– It only keeps the smallest medium item unless it can achieve a gain of at least

bk using only medium items. In this case, as in the algorithm in Subsection 3.1,
it retrieves at most k items and discards everything from there on.

– If the algorithm receives the item ⊥ and has not yet decided to discard
everything else, it computes the optimal solution on the entire previous
instance, retrieves all medium items in that solution using its recourse and
discards all small items not contained in that solution.

Theorem 6. The algorithm Alg(k,⊥) has a competitive ratio of at most 1/bk.

4.3 Lower Bound for One Use of Recourse per Step Given
Information on the End of the Instance

We will assume that the algorithm handles instances of the form (x1, . . . , (xn, ⊥)).

Theorem 7. No algorithm that uses recourse at most once per step and that
recognizes the last item in an instance can have a competitive ratio of less than
18/(5 +

√
133) ≥ 1.088.

Proof (Sketch). We define b as the unique positive root of the equation 27b2 −
5b − 1 = 0, so b = (5 +

√
133)/54 ≈ 0.3062. We further define the additional item

a = (1−b)/3+ε ≈ 0.2313+ε and present two instances I1 = (a, a, a, b, b, b, 1−3a)
and I2 = (a, a, a, b, b, b, ε). The competitive ratio of any algorithm must be at
least 1/(3b) on at least one of these instances in the limit ε → 0. ⊓⊔

4.4 Upper Bound for One Use of Recourse per Step Given
Information on the End of the Instance

We assume that the instance is given in the form (x1, . . . , (xn, ⊥)) and present an
algorithm Alg⊥ with a competitive ratio of 4/3 ≈ 1.33, which is strictly better
than the optimal algorithm without that information in Subsection 3.1. We define
b = 3/4 and distinguish between small, medium and large items, depending on b
as before. The algorithm Alg⊥ then works as follows.

– It treats any small or large item the same as Alg1 in Subsection 2.2.
– It packs medium items as follows. (i) As long as only one medium item fits,

it keeps the smallest one of these. (ii) As soon as two medium items fit, it
computes the optimal sum of two medium items and keeps the larger of these
two, as well as the smallest medium item encountered so far. (iii) When it
encounters a medium item that fits with two previously encountered ones
(one being w.l.o.g. the smallest medium item, currently packed), it packs it,
retrieves the third of these three and discards everything from there on.

– If it encounters the item (xn, ⊥) and has not yet decided to discard everything
else, it computes the optimal solution on the entire instance. (i) If this solution
contains only one medium item, it retrieves it and returns the optimal solution.
(ii) If this solution contains two medium items, one of these must be either

10

xn or already packed. The algorithm retrieves the other one and returns the
optimal solution. (iii) If this solution contains three medium items, xn must
be a medium item and the algorithm proceeds as if it was not the last one.

Theorem 8. The algorithm Alg⊥ has a competitive ratio of at most 4/3.

5 Conclusion

Besides closing the gap between the upper and lower bounds for k ≥ 2 uses of
recourse in total without knowing the end of the instance and proving a lower
bound in the case of knowing the end, it is an interesting open problem to consider
a model in which the use of removal or recourse is not granted for free, but incurs
some cost for the algorithm.

In the general online knapsack problem, the items have both a size and a
value, and the goal is to maximize the value of the packed items while obeying the
knapsack bound regarding their sizes. If we consider the general online knapsack
problem with removal and one use of recourse per step, we can easily see that
the competitive ratio is unbounded: Suppose there is an online algorithm with
competitive ratio c. The adversary then presents first an item of size and value 1,
if the algorithm does not take this item, the instance ends. Otherwise, it presents
up to (c + 1)/ε many items of size ε/(c + 1) and value ε. If the online algorithm
decides at some point to take such an item of value ε and uses its recourse to
fetch another of these from the buffer, the instance ends and the competitive
ratio is 1/(2ε). A similar argument shows that a recourse of size k per step cannot
avoid an unbounded competitive ratio either. But, again, these arguments heavily
depend on the algorithm’s unawareness of the end of the instance. It remains as
an open problem to extend the results for known instance lengths to the general
case.

References

1. S. Angelopoulos, C. Dürr, and S. Jin. Online maximum matching with recourse. J.
Comb. Optim., 40(4):974–1007, 2020.

2. H.-J. Böckenhauer, E. Burjons, J. Hromkovič, H. Lotze, and P. Rossmanith. Online
simple knapsack with reservation costs. In M. Bläser and B. Monmege, editors,
38th International Symposium on Theoretical Aspects of Computer Science, STACS
2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187
of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

3. H.-J. Böckenhauer, J. Dreier, F. Frei, and P. Rossmanith. Advice for online knapsack
with removable items. CoRR, abs/2005.01867, 2020.

4. H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. On the
advice complexity of online problems. In 20th International Symposium on Algo-
rithms and Computation, ISAAC 2009, volume 5878 of Lecture Notes in Computer
Science, pages 331–340, 2009.

5. H.-J. Böckenhauer, D. Komm, R. Královič, and P. Rossmanith. The online knapsack
problem: Advice and randomization. Theor. Comput. Sci., 527:61–72, 2014.

11

6. J. Boyar, L. M. Favrholdt, M. Kotrbcík, and K. S. Larsen. Relaxing the irrevocability
requirement for online graph algorithms. Algorithmica, 84(7):1916–1951, 2022.

7. J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen. Online
algorithms with advice: A survey. ACM Comput. Surv., 50(2):19:1–19:34, 2017.

8. L. Chen, L. Hung, H. Lotze, and P. Rossmanith. Online node- and edge-deletion
problems with advice. Algorithmica, 83(9):2719–2753, 2021.

9. S. Dobrev, R. Královič, and D. Pardubská. How much information about the future
is needed? In V. Geffert, J. Karhumäki, A. Bertoni, B. Preneel, P. Návrat, and
M. Bieliková, editors, SOFSEM 2008: Theory and Practice of Computer Science,
34th Conference on Current Trends in Theory and Practice of Computer Science,
Nový Smokovec, Slovakia, January 19-25, 2008, Proceedings, volume 4910 of Lecture
Notes in Computer Science, pages 247–258. Springer, 2008.

10. D. Dwibedy and R. Mohanty. Semi-online scheduling: A survey. Comput. Oper.
Res., 139:105646, 2022.

11. Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with
advice. Theor. Comput. Sci., 412(24):2642–2656, 2011.

12. A. Gu, A. Gupta, and A. Kumar. The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput., 45(1):1–28, 2016.

13. A. Gupta and A. Kumar. Online steiner tree with deletions. In SODA, pages
455–467. SIAM, 2014.

14. X. Han, Y. Kawase, and K. Makino. Online unweighted knapsack problem with
removal cost. Algorithmica, 70(1):76–91, 2014.

15. J. Hromkovič, R. Královič, and R. Královič. Information complexity of online prob-
lems. In P. Hlinený and A. Kucera, editors, Mathematical Foundations of Computer
Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech Republic,
August 23-27, 2010. Proceedings, volume 6281 of Lecture Notes in Computer Science,
pages 24–36. Springer, 2010.

16. M. Imase and B. M. Waxman. Dynamic steiner tree problem. SIAM J. Discret.
Math., 4(3):369–384, 1991.

17. K. Iwama and S. Taketomi. Removable online knapsack problems. In P. Widmayer,
F. T. Ruiz, R. M. Bueno, M. Hennessy, S. J. Eidenbenz, and R. Conejo, editors,
Automata, Languages and Programming, 29th International Colloquium, ICALP
2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture Notes
in Computer Science, pages 293–305. Springer, 2002.

18. H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza. Semi on-line algorithms for
the partition problem. Oper. Res. Lett., 21(5):235–242, 1997.

19. D. Komm. An Introduction to Online Computation - Determinism, Randomization,
Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

20. A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems.
Math. Program., 68:73–104, 1995.

21. N. Megow and L. Nölke. Online minimum cost matching with recourse on the line.
In APPROX-RANDOM, volume 176 of LIPIcs, pages 37:1–37:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

22. N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for online
MST and TSP. SIAM J. Comput., 45(3):859–880, 2016.

23. P. Rossmanith. On the advice complexity of online edge- and node-deletion problems.
In H.-J. Böckenhauer, D. Komm, and W. Unger, editors, Adventures Between Lower
Bounds and Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion
of His 60th Birthday, volume 11011 of Lecture Notes in Computer Science, pages
449–462. Springer, 2018.

12

	Online Knapsack with Removal and Recourse

