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Abstract. We introduce and discuss the Minimum Capacity-Preser-
ving Subgraph (MCPS) problem: given a directed graph and a retention
ratio α ∈ (0, 1), find the smallest subgraph that, for each pair of ver-
tices (u, v), preserves at least a fraction α of a maximum u-v-flow’s value.
This problem originates from the practical setting of reducing the power
consumption in a computer network: it models turning off as many links
as possible while retaining the ability to transmit at least α times the
traffic compared to the original network.
First we prove that MCPS is NP-hard already on directed acyclic graphs
(DAGs). Our reduction also shows that a closely related problem (which
only considers the arguably most complicated core of the problem in the
objective function) is NP-hard to approximate within a sublogarithmic
factor already on DAGs. In terms of positive results, we present a simple
linear time algorithm that solves MCPS optimally on directed series-
parallel graphs (DSPs). Further, we introduce the family of laminar
series-parallel graphs (LSPs), a generalization of DSPs that also includes
cyclic and very dense graphs. Not only are we able to solve MCPS on
LSPs in quadratic time, but our approach also yields straightforward
quadratic time algorithms for several related problems such as Minimum
Equivalent Digraph and Directed Hamiltonian Cycle on LSPs.

Keywords: Maximum flow · Minimum equivalent digraph · Series-
parallel graphs · Inapproximability

1 Introduction

We present the Minimum Capacity-Preserving Subgraph (MCPS) problem.
Interestingly, despite it being very natural, simple to formulate, and practically
relevant, there seems to have been virtually no explicit research regarding it.
We may motivate the problem by recent developments in Internet usage and
routing research: Not only does Internet traffic grow rapidly [18,10,34], current
Internet usage shows distinct traffic peaks in the evening (when people, e.g., are
streaming videos) and lows at night and in the early morning [30,19]. This has
sparked research into the reduction of power consumption in backbone Internet
providers (Tier 1) by turning off unused resources [35,9]: One natural way is to
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turn off as many connections between servers as possible, while still retaining the
ability to route the occurring traffic. Typically, one assumes that (a) the original
routing network is suitably dimensioned and structured for the traffic demands
at peak times, and (b) the traffic demands in the low times are mostly similar to
the peak demands but “scaled down” by some ratio.

Graph-theoretically, we are given a directed graph G = (V,E), a capacity
function cap : E → R+ on its edges, and a retention ratio α ∈ (0, 1). All graphs
are simple (i.e., contain no self-loops nor parallel edges). For every pair of ver-
tices (s, t) ∈ V 2, let cG(s, t) denote the value of a maximum flow (or equivalently,
a minimum cut) from s to t in G according to the capacity function cap. Thus,
in the following we unambiguously refer to cG(s, t) as the capacity of the ver-
tex pair (s, t) in G, which intuitively represents how much flow can be sent
from s to t in G. The lowest capacity among all vertex pairs corresponds to the
size c(G) of the global minimum cut. One may ask for an edge-wise minimum
subgraph G′ = (V,E′), E′ ⊆ E, such that c(G′) ≥ α · c(G). We call this problem
Minimum Global Capacity-Preserving Subgraph (MGCPS):

Observation 1 MGCPS is NP-hard, both on directed and undirected graphs,
already with unit edge capacities.

Proof. Identifying a Hamiltonian cycle in a directed strongly-connected (or undi-
rected 2-edge-connected) graph G is NP-hard [22]. Consider an optimal MGCPS
solution for G with unit edge capacities and α = 1/c(G) (2/c(G)): every vertex pair
is precisely required to have a capacity of at least dα · c(G)e = 1 (dα · c(G)e = 2).
Hence, an α-MGCPS of G must also be strongly-connected (2-edge-connected,
respectively) and is a Hamiltonian cycle if and only if one exists in G. ut

However, in our practical scenario, MGCPS is not so interesting. Thus, we
rather consider the problem where the capacities cG(u, v) have to be retained for
each vertex pair (u, v) individually: In the Minimum Capacity-Preserving
Subgraph (MCPS) problem, we are given a directed graph G = (V,E) includ-
ing edge capacities cap and a retention ratio α ∈ (0, 1). We ask for a set of
edges E′ ⊆ E with minimum size |E′| yielding the subgraph G′ = (V,E′), such
that cG′(s, t) ≥ α · cG(s, t) for all (s, t) ∈ V 2. For an MCPS instance (G,α),
we will call a vertex pair (s, t) (or edge st) covered by an edge set E′ if the
graph G′ = (V,E′) satisfies cG′(s, t) ≥ α · cG(s, t). In the following, we discuss
the special setting where the capacity function cap assigns 1 to every edge—in
this setting, cG(s, t) equals the maximum number of edge-disjoint s-t-paths in G.

Related Work. Capacity-preserving subgraphs are related to the research
field of sparsification. There, given a graph G, one is typically interested in an
upper bound on the size of a graph H that preserves some of G’s properties up
to an error margin ε. Graph H may be a minor of G, a subgraph of G, or a
completely new graph on a subset of G’s vertices (in which case it is called a
vertex sparsifier [25]). Such research does not necessarily yield approximation
algorithms w.r.t. minimum sparsifier size as the obtained upper bound may not
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. . .

(a) G is a cycle. The red path has
stretch |V | − 1 but retention ratio 1

2
.

. . .

(b) G is a complete graph. The red star
has stretch 2 but retention ratio 1

|V |−1
.

Fig. 1. Two examples of subgraphs (in red) whose stretch differs greatly from
their retention ratio. All edge lengths and edge capacities are 1, making clear
that using the reciprocals of the edge lengths as edge capacities does not lead to
a direct relation between stretch and capacity either.

be easily correlated to the instance-specific smallest possible H (e.g., the general

upper bound may be |E(H)| = O( |V | log |V |ε2 ) whereas there are instances where
an optimal H is a path); however, sparsifiers often can be used as a black box in
other approximation algorithms. A majority of cut/flow sparsification research
only concerns undirected graphs: For example, Benczúr and Karger show how to
create a subgraph that approximately preserves the value of every cut by sampling
edges of the original graph [6,7]. Spielman and Teng present a more general result
concerning spectral graph properties [31]. Furthermore, there exist techniques for
finding vertex sparsifiers that preserve the congestion of any multi-commodity
flow [5,17]. The main results for directed graphs concern sparsifiers that depend
on cut balance [8], and spectral sparsifiers of strongly connected graphs [11,12] or
general directed graphs [36] that, however, do not necessarily preserve cut values.

Closely related to sparsifiers are spanners (see, e.g., [1] for a survey on this
rich field). These are subgraphs that preserve the length of a shortest path
within a given ratio (stretch factor) between each pair of vertices. However, even
the most basic results in this line of work cannot be applied to MCPS due to
fundamental differences between shortest paths and minimum cuts (Figure 1
illustrates this point). Results by Räcke [27], later generalized in [4] and used for
flow sparsification in [17], show (on undirected graphs) a direct correspondence
between the existence of probabilistic mappings with stretch at most % ≥ 1 and
those with congestion at most %. However, the notion of congestion differs greatly
from capacity, where the former is defined as the maximum ratio between the
flow routed over an edge in a multi-commodity flow setting and its capacity.

When the capacity is equal to the number of edge-disjoint paths (i.e. for
unit edge capacities), MCPS is a special case of the Directed Survivable
Network Design (DSND) problem, where one asks for the smallest subgraph
of a directed graph that satisfies given edge-connectivity requirements for each
vertex pair. Dahl [13,14] studied DSND from a polyhedral point of view and
presented an ILP approach that can easily be adapted to solve MCPS. But
algorithmically, DSND has not received as much attention as its undirected
counterpart [23] (for which a 2-approximation algorithm exists [21]).
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Lastly, MCPS can be seen as a generalization of the well-established Minimum
Equivalent Digraph (MED) problem [24,33,2]: Given a directed graph G =
(V,E), one asks for a cardinality-wise minimum edge set E′ ⊆ E such that the
subgraph G′ = (V,E′) preserves the reachability relation for every pair of vertices.
We may think of the MED as a directed version of the Minimum Spanning Tree
(despite not being tree-like)—the latter contains an undirected path from each
vertex to every other reachable vertex, the former contains a directed one. MED
has been shown to be NP-hard via a reduction from Directed Hamiltonian
Cycle [29,20,22]. The NP-hardness of MCPS follows from a simple observation:

Observation 2 MED is the special case of MCPS with α = min(s,t)∈V 2 1/cG(s,t).

There exist several polynomial approximation algorithms for MED, which are
all based on the contraction of cycles [24,37]; the currently best ratio is 1.5 [33].
Moreover, MED can be solved optimally in linear time on graphs whose shadow—
the underlying undirected graph obtained by ignoring edge orientations—is
series-parallel [28], and in quadratic time on DAGs [2]. The latter algorithm
simply deletes all those edges uv for which there exists another u-v-path.

Our Contribution. In this paper, we introduce the natural problem MCPS,
which we assume may be of wider interest to the algorithmic community.

Based on the fact that MED is simple on DAGs, one might expect to similarly
find a polynomial algorithm for MCPS on DAGs as well. However, in Section 2 we
show that the arguably most complex core of MCPS cannot even be approximated
within a sublogarithmic factor, already on DAGs, unless P=NP.

In Section 3 we introduce the class of laminar series-parallel graphs (LSPs)—a
generalization of directed series-parallel graphs (DSPs) that also allows, e.g.,
cycles and dense subgraphs. LSPs have the potential to allow simple algorithms
and proofs for a wider array of problems, not just MCPS, due to their structural
relation to DSPs. For example, the MCPS-analogue of a well-known spanner
property [3] holds on LSPs but not on general graphs: if the retention constraint
is satisfied for all edges, it is also satisfied for every vertex pair (see Theorem 11).

In Section 4, we complement the hardness result by a linear-time algorithm
for MCPS on DSPs, and a quadratic one on LSPs. While the latter algorithm’s
proof requires the one of the former, both algorithms themselves are independent
and surprisingly simple. Lastly, we show a further use of LSPs: our algorithms can
directly be applied to other related problems, and we prove that the algorithm for
MED on DAGs described in [2] in fact also works on general LSPs (Section 4.3).

2 Inapproximability on DAGs

Since a capacity-preserving subgraph always contains an MED (which might be
quite large), MCPS can be approximated on sparse graphs by simply returning
an arbitrary feasible solution (i.e., a set of edges such that the corresponding
subgraph satisfies the capacity requirement for every vertex pair).
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Observation 3 Every feasible solution for a connected MCPS instance is an
m/n−1-approximation.

Proof. Every feasible MCPS solution must contain at least as many edges as an
MED to ensure a capacity of 1 for all vertex pairs (u, v) where v is reachable
from u. An MED of a connected graph is also connected. Thus, an optimal
MCPS solution contains at least n− 1 edges whereas a feasible one contains at
most all m original edges. ut

Hence, it seems sensible to consider a slightly altered version MCPS∗ of the
MCPS with a tweaked objective function |E′| − mMED, which does not take
into account the number of edges mMED in an MED but aims at focusing on
the problem’s core complexity beyond the MED. We show that it is NP-hard
to approximate MCPS∗ on DAGs to within a sublogarithmic factor using a
reduction from the decision variant of Set Cover (SC): given a universe U and
a family of sets S = {Si ⊆ U | i = 1, . . . , k} with k ∈ O(poly(|U |)), one asks
for a subfamily C ⊆ S with minimum size |C| such that

⋃
S∈C S = U . For an

SC instance (U,S), let f(u) := |{S ∈ S | S 3 u}| denote u’s frequency, i.e., the
number of sets that contain u, and f := maxu∈U f(u) the maximum frequency.

Theorem 4. Any polynomial algorithm can only guarantee an approximation
ratio in Ω(log |E|) for MCPS∗, unless P=NP. This already holds on DAGs with
maximum path length 4.

Proof. We give a reduction from SC to MCPS∗ on DAGs such that any feasible
solution for the new MCPS∗ instance can be transformed into a feasible solution
for the original SC instance with an equal or lower objective function value
in linear time. The size |E| of our MCPS∗ instance is linear in the size N ∈
O(|U | ·k) = O(|U |r) of the SC instance, i.e., |E| = c · |U |r for some constants c, r:
if it was possible to approximate MCPS∗ on DAGs within a factor in o(log |E|) =
o(log(c · |U |r)) = o(log |U |), one could also approximate SC within o(log |U |).
However, it is NP-hard to approximate SC within a factor of ε ln(|U |) for any
positive ε < 1 [15,26]. To create the MCPS∗ instance (G,α), let α := 1

2 and
construct G as follows (see Figure 2 for a visualization of G):

G := (VU ∪ V U
S ∪ VS ∪ V St ∪ {t}, EU ∪ ES ∪ EG ∪ ER)

VU := {vu | ∀u ∈ U} VS := {vS | ∀S ∈ S}
V U
S := {xuS , yuS | ∀S ∈ S, u ∈ S} V St := {zS | ∀S ∈ S}
EU := {vuxuS , vuyuS , xuSvS , yuSvS | ∀S ∈ S, u ∈ S} ES := {vSzS , zSt | s ∈ S}
EG := VS × {t} ER := VU × {t}

As G is a DAG, its MED is unique [2]. This MED is formed by EU ∪ ES and
already covers all vertex pairs except VU ×{t}. Let (vu, t) ∈ VU ×{t}: Its capacity
in G is 2f(u) + 1 and this pair thus requires a capacity of d 12 · (2f(u) + 1)e =
f(u) + 1 in the solution. Since the MED already has a vu-t-capacity of f(u),
only one additional edge is needed to satisfy the capacity requirement: either
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a b c d

S1 S2 S3

t

Fig. 2. MCPS instance constructed from the SC instance (U,S) with U =
{a, b, c, d}, S = {{a, b, c}, {c, d}, {b, c}}. An optimal solution contains the MED
(drawn in black) as well as one corresponding red or green edge for each u ∈ U .
Edges are directed from upper to lower vertices.

the corresponding red edge vut ∈ ER, or one of the corresponding green edges
{vSt ∈ EG | S 3 u}. After choosing a corresponding red or green edge for each
item u ∈ U , the number of these edges is the value of the resulting solution.

Given an SC solution C, we can construct an MCPS∗ solution EU∪ES∪{vSt ∈
EG | S ∈ C} with the same value. Since every item is covered by the sets in C,
the constructed MCPS∗ solution includes at least one corresponding green edge
for each item, ensuring its feasibility.

To turn a feasible solution E′ for the MCPS∗ instance into a feasible solution
for the original SC instance with an equal or lower value, we remove all red edges
vut ∈ ER from the MCPS∗ solution and replace each of them—if necessary—by
one green edge vSt ∈ EG with S 3 u. Since the MCPS∗ solution has at least
one corresponding green edge for each item u ∈ U , the resulting SC solution
{S | vSt ∈ EG ∩ E′} also contains at least one covering set for each item. ut

The same reduction shows the NP-hardness of MCPS on DAGs: an optimal
SC solution {S | vSt ∈ EG ∩ E′} can be easily obtained from an optimal
solution E′ for the MCPS instance (G,α), α = 1

2 . Moreover, the largest capacity
between any two vertices in G is 2f + 1. Since SC is already NP-hard for f = 2
(in the form of Vertex Cover [20,22]), we arrive at the following corollary:

Corollary 5. MCPS is NP-hard already on DAGs G with maximum path
length 4 and max(u,v)∈V 2 cG(u, v) = 5.

The above reduction for MCPS∗ with α = 1
2 can be generalized to MCPS∗ for

every α = p
p+1 with p ∈ N>0. This only requires a small change in the construction:

EU must contain p+ 1 vu-vS-paths of length 2 for all (vu, vS) ∈ VU × VS , and
ES must contain p vS-t-paths of length 2 for all vS ∈ VS .
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u

s

t

v

Fig. 3. (Left) The graph W , whose subdivisions cannot be contained in DSPs.
(Right) Graph W with two added paths of length 2, see Observation 12. The
u-v-capacity is 3. For α = 1

2 , all edges of the original graph are covered by the
MED (black edges) but the vertex pair (u, v) is not. Observe that the graph is
not a DSP but its shadow is s-t-series-parallel.

3 Laminar Series-Parallel Graphs

In this section, we introduce laminar series-parallel graphs (LSPs)—a rich graph
family that not only includes the directed series-parallel graphs (DSPs) but also
cyclic graphs and graphs with multiple sources and sinks. A (directed) graph G is
(directed) s-t-series-parallel (s-t-(D)SP) if and only if it is a single edge st or there
exist two (directed, resp.) si-ti-series-parallel graphs Gi, i ∈ {1, 2}, such that G
can be created from their disjoint union by one of the following operations [16]:

1. P-composition: Identify s1 with s2 and t1 with t2. Then, s = s1 and t = t1.
2. S-composition: Identify t1 with s2. Then, s = s1 and t = t2.

There also exists a widely known forbidden subgraph characterization of DSPs:

Theorem 6 (see [32]). A directed graph G = (V,E) is a DSP if and only if
it is acyclic, has exactly one source, exactly one sink, and G does not contain a
subgraph homeomorphic to W (displayed in Figure 3(left)), i.e., a subgraph that
is a subdivision of W .

Given a directed graph G = (V,E), for every vertex pair (u, v) ∈ V 2, let
G〈u, v〉 be the graph induced by the edges on u-v-paths. Note that such a path-
induced subgraph may contain cycles but a single path may not. If e = uv is
an edge, we call G〈u, v〉 an edge-anchored subgraph (EAS) and may use the
shorthand notation G〈e〉. Based on these notions, we can define LSPs:

Definition 7 (Laminar Series-Parallel Graph). A directed graph G = (V,E)
is a laminar series-parallel graph (LSP) if and only if it satisfies:

P1 For every (s, t) ∈ V 2, G〈s, t〉 is either an s-t-DSP or contains no edges; and

P2 {E(G〈e〉)}e∈E form a laminar set family, i.e., for all edges e1, e2 ∈ E we have

G〈e1〉 ⊆ G〈e2〉 ∨ G〈e2〉 ⊆ G〈e1〉 ∨ E(G〈e1〉) ∩ E(G〈e2〉) = ∅.
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(a) Graph whose biconnected components are all DSPs or cyclic DSPs

(b) A more complex biconnected LSP (c) Complete bipartite graph with
natural orientation

Fig. 4. Examples of LSPs. Every edge represents a DSP of arbitrary size.

Figure 4 shows some example LSPs. LSPs not only include the graphs whose
biconnected components are all DSPs but also some cyclic graphs, e.g., cyclic
DSPs constructed by identifying the source and sink of a DSP. Moreover, there
exist very dense LSPs, e.g., the natural orientations of complete bipartite graphs.
Below, we present some interesting properties of LSPs; for proofs see Appendix A.

Theorem 8. A directed graph G = (V,E) satisfies P1 if and only if G does not
contain a subgraph homeomorphic to W (displayed in Figure 3(left)).

Theorem 9. Every directed graph G has a subdivision Ḡ that satisfies P2.

Theorem 10. Every DSP G is an LSP.

4 Efficient Algorithms

We first present an algorithm that finds an optimal MCPS solution for DSPs
in linear time (Section 4.1) and then a quadratic-time algorithm for LSPs (Sec-
tion 4.2), which can also be applied to several related problems (Section 4.3).

4.1 MCPS on Directed Series-Parallel Graphs

Our linear-time algorithm will exploit a useful property of capacities in P1-graphs:
if every edge is covered, then all vertex pairs are covered.

Theorem 11. Given a retention ratio α ∈ (0, 1), let G = (V,E) be a P1-graph
and G′ = (V,E′), E′ ⊆ E, with cG′(u, v) ≥ α · cG(u, v) for all edges uv ∈ E.
Then, E′ is a feasible α-MCPS solution, i.e., cG′(u, v) ≥ α · cG(u, v) for all
vertex pairs (u, v) ∈ V 2.
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Algorithm 1 Compute an optimal MCPS in DSPs.

Input: DSP G = (V,E), retention ratio α ∈ (0, 1).
1: E′ ← E
2: T ← clean series-parallel decomposition tree for G
3: for each tree node σ in a bottom-up traversal of T
4: (H, (s, t)) ← graph and terminal pair corresponding to σ
5: if σ is a P-composition and st∈E(H) and (s, t) is covered by (E′∩E(H))\{st}
6: remove st from E′

7: return E′

Proof. Consider any vertex pair (u, v) ∈ V 2 with u 6= v (as vertex pairs with
u = v are trivially covered). We can assume w.l.o.g. that a maximum flow from u
to v passes only over edges of H := G〈u, v〉: for any maximum flow from u to v
that uses cycles outside of H, we can find one of the same value in H by simply
removing these cycles. As G is a P1-graph, H is a u-v-DSP. We use induction
over the series-parallel composition of H to prove that (u, v) is covered. If uv ∈ E,
the edge is already covered as asserted in the hypothesis of the theorem; this
includes the base case of H containing a single edge.

Let H be created from the disjoint union of two smaller ui-vi-DSPs Hi, i ∈
{1, 2}, for which the theorem holds. Further, let X ′ := (V (X), E(X)∩E(G′)) for
any subgraph X ∈ {H,H1, H2} of G. If H is constructed from an S-composition,
i.e. u = u1, v = v2, and v1 = u2, each maximum u-v-flow in H (H ′) passes through
both H1 and H2 (H ′1 and H ′2, resp.): cH′(u, v) = min{cH′

1
(u, v1), cH′

2
(v1, v)} ≥

min{α · cH1(u, v1), α · cH2(v1, v)} = α · cH(u, v). If H is constructed from a P-
composition, i.e. u = u1 = u2 and v = v1 = v2, its u-v-capacity in H (H ′)
is the sum of u-v-capacities in H1 and H2 (H ′1 and H ′2, resp.): cH′(u, v) =
cH′

1
(u, v) + cH′

2
(u, v) ≥ α · cH1

(u, v) + α · cH2
(u, v) = α · cH(u, v). ut

Observation 12 Theorem 11 does in general not apply to graphs for which
only their shadow is series-parallel. In particular, it does not even hold for the
graph W—the smallest graph without property P1—when two paths of length 2
are added to it, see Figure 3(right).

We give a simple linear-time algorithm to solve MCPS in DSPs. The algorithm
requires the series-parallel decomposition tree to be clean, i.e., if there are multiple
P-compositions of several s-t-DSPs H0, . . . ,Hk where E(H0) = {st} is a single
edge, we first compose H1, . . . ,Hk into a common s-t-DSP H before composing
H with H0. Standard decomposition algorithms can easily achieve this property;
the proof below also describes an independent linear-time method to transform a
non-clean decomposition tree into a clean one.

Theorem 13. Algorithm 1 is optimal for MCPS on DSPs, taking O(|V |) time.

Proof. We use induction over the clean series-parallel decomposition tree T of G,
maintaining the following invariants: at the end of each for-loop iteration with
(H, (s, t)) as the graph and terminal pair for the respective tree node, E′∩E(H) is
an optimal solution for H, and all optimal solutions of H have equal s-t-capacity.
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Let σ be a leaf of T : A graph H with a single edge st only allows one feasible
(and hence optimal) solution consisting of its only edge. The edge is added to
E′ during the algorithm’s initialization and is not removed from it before σ has
been processed. Now observe S-compositions and those P-compositions where
no edge st exists in any of the components: They produce no additional paths
between the endpoints of any edge (which are the only vertex pairs that have
to be covered, see Theorem 11). Thus, the feasible (optimal) solutions of H are
exactly those that can be created by taking the union of one feasible (optimal,
respectively) solution for each respective component. The algorithm proceeds
accordingly by keeping E′ unchanged. Since the components’ respective optimal
solutions all have the same source-sink-capacity (per induction hypothesis), this
also holds true for their unions, i.e., the optimal solutions of H.

Now consider a P-composition with st ∈ E(H). As T is clean, there are two
components H1 and H2 with E(H2) = {st}, and G〈s, t〉 = H. All edges e ∈ H1

are covered optimally by E′ ∩E(H1) both in H1 and in H since (s, t) /∈ E(H〈e〉).
Case 1: If one optimal solution for H1 already covers st in H, then all

optimal solutions for H1 do so (as they all have the same s-t-capacity per
induction hypothesis). Then, the optimal solutions for H1 are exactly the optimal
solutions for H, and the algorithm finds one of them by keeping its solution
for H1 intact and removing st from E′. Note that this removal does not affect the
feasibility of E′ for subgraphs of G \G〈s, t〉 that have already been processed.

Case 2: If st is not yet covered by our optimal solution for H1, it is not
covered by any optimal solution for H1. Our algorithm chooses the edge st by
keeping its optimal solutions for both H1 and H2. An optimal solution S for H
must contain an optimal solution for H1: S′ := S \ {st} covers all edges of H1.
If S′ were not optimal, there would exist another solution S′′ that covers all edges
and thus vertex pairs of H1 with |S′′| < |S′|. But S′′′ := S′′ ∪ {st} is feasible
for H because the capacity requirements for vertex pairs in H and H1 only differ
by at most one. We arrive at |S′′′| = |S′′|+ 1 < |S′|+ 1 ≤ |S|, a contradiction.

— In addition to an optimal solution for H1, we need exactly one more edge to
increase the s-t-capacity and cover st in H: this additional edge is either st itself
or another edge from H1. Assume that adding an additional edge e1 ∈ E(H1)
(instead of st) increases the capacity for st or a later source-sink-pair by 1, then st
by construction does so as well. Thus, adding st instead of e1 is never worse;
furthermore, all optimal solutions for H have the same s-t-capacity.

For the running time, note that a (clean) series-parallel decomposition tree T
can be computed and traversed in linear time [32]. If T were not clean, it is trivial
to establish this property in linear time: Traverse T bottom-up; whenever a leaf λ
is the child of a P-node, ascend the tree as long as the parents are P-nodes. Let %
be the final such P-node, and γ the other child of % that was not part of the
ascent. Swap λ with γ. Observe that the ascents for different leafs are disjoint,
and thus this operation requires overall only O(|T |) = O(|V |) time.

In each step during the traversal in line 3, we can compute the capacity of the
current source and sink—for both the current solution and G overall—in constant
time using the values computed in previous steps: a single edge is assigned a
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Algorithm 2 Compute an optimal MCPS in LSPs.

Input: LSP G = (V,E), retention ratio α ∈ (0, 1).
1: E′ ← ∅
2: for each edge e ∈ E
3: µe ← number of edges in G〈e〉
4: sort all edges e ∈ E by non-descending µe

5: for each edge e = uv ∈ E in order
6: if uv is not covered by E′

7: add e to E′

8: return E′

capacity of 1, and an S-composition (P-composition) is assigned the minimum
(sum, respectively) of the capacities of its two components. ut

4.2 MCPS on Laminar Series-Parallel Graphs

An intuitive approach to solve MCPS on an LSP G = (V,E) is based on the
observation that every LSP can be partitioned into a set of edge-disjoint DSPs:
Consider the maximal edge-anchored subgraphs (MEASs), i.e., those G〈e〉 for
e ∈ E such that there is no other edge e′ ∈ E \ {e} with E(G〈e〉) ⊆ E(G〈e′〉).
Since LSPs are P1-graphs, each of these MEAS must be a DSP, and it suffices to
cover its edges (see Theorem 11). Further, the EAS G〈e′′〉 for each edge e′′ ∈ E is
contained in a single MEAS (as LSPs are P2-graphs). Hence, one could identify
the MEASs and run Algorithm 1 on each of them to obtain an optimal MCPS
solution. We give a more straightforward but functionally equivalent Algorithm 2.

Theorem 14. Algorithm 2 is optimal for MCPS on LSPs, taking O(|E|2) time.

Proof. We prove by induction over µe that for each DSP (and hence for each
MEAS), Algorithm 2 returns the same result as Algorithm 1: Edges e with µe = 1
(i.e., MED-edges) are added to E′ by Algorithm 2 in order to cover themselves.
Similarly, Algorithm 1 will add such edges during its initialization and never
remove them: edge e would only be removed if e connected the source and sink
of a subgraph constructed with a P-composition, a contradiction to µe = 1.

Now assume that the edges with a µ-value smaller than i for some i > 1
are already processed equivalently to Algorithm 1. Consider any edge e = uv
with µe = i. Since G is a P1-graph, H := G〈e〉 is a u-v-DSP. As e ∈ E(H), H
can be constructed with a P-composition from two graphs H1 and H2 where
E(H2) = {e}. All edges in H1 have already been processed (they have a µ-value
smaller than i), and the solutions of Algorithm 2 and Algorithm 1 thus coincide
on H1. Hence, both algorithms produce the same solution for H as they both
contain e if and only if e is not already covered by the current solution for H1.

For each MEAS, Algorithm 1 and, as we have now shown, Algorithm 2 both
find the smallest subgraph that covers all of its edges. As LSPs are P1-graphs, this
suffices to guarantee an optimal MCPS solution for the MEAS by Theorem 11.
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Further, we can consider the different MEASs in isolation since their solutions are
independent of each other: LSPs are P2-graphs, and thus, for any edge uv ∈ E(G),
all u-v-paths are completely contained in a single MEAS.

It remains to argue the running time. For each e = uv ∈ E, we compute µe

by starting a depth-first search at u and counting tree- and cross-edges when
backtracking from v. Overall, this results in O(|E|2) time. The sorting of the
edges can be done in O(|E|) time as the domain are integer values between 1
and |E|. Lastly, to check whether an edge uv is covered, we precompute the
s-t-capacity for every edge st ∈ E on G〈s, t〉 and then, when needed, compute
the u-v-capacity on the graph G[E′ ∩ E(G〈u, v〉)] for the current solution E′.
Note that both of these subgraphs are DSPs as G is a P1-graph. This allows us
to compute a series-parallel decomposition tree in O(|E|) time and traverse it
bottom-up to obtain the capacity (cf. the proof of Theorem 13). Doing so twice
for every edge takes O(|E|2) time overall. ut

4.3 Applications of Algorithm 2 to Other Problems

Consider the Minimum Strongly Connected Subgraph (MSCS) prob-
lem [24,33], the special case of MED on strongly connected graphs, i.e., graphs
where every vertex is reachable from every other vertex. Since there are straight-
forward reductions from Directed Hamiltonian Cycle to MSCS to MED
to MCPS that all use the original input graph of the instance, Algorithm 2 can
be adapted to solve these problems as well: To solve MED, one simply has to set
α = min(s,t)∈V 2 1/cG(s,t) and then run the algorithm on the input graph. However,
with α set this way, Algorithm 2 does precisely the same as the algorithm for
finding the MED on DAGs [2]: it returns all those edges for which there is only
one path between their endpoints (namely the edge itself). Hence, our new insight
with regards to the MED is that the aforementioned approach does not only
solve MED optimally on DAGs, but on arbitrary LSPs as well. Moreover, if the
input graph is strongly connected (Hamiltonian), the returned MED forms the
MSCS (directed Hamiltonian cycle, respectively).

Corollary 15. There are quadratic time algorithms that return optimal solu-
tions for Directed Hamiltonian Cycle, Minimum Strongly Connected
Subgraph and Minimum Equivalent Digraph on any LSP.

5 Conclusion and Open Questions

We have laid the groundwork for research into capacity-preserving subgraphs
by not only showing the NP-hardness of MCPS on DAGs but also presenting a
first inapproximability result as well as two algorithmically surprisingly simple
algorithms for MCPS on DSPs and LSPs. Several questions remain, for example:
Is MCPS on undirected graphs (which is a generalization of Minimum Spanning
Tree) NP-hard? Is it NP-hard to approximate MCPS within a sublogarithmic
factor? Is there a linear-time algorithm for MCPS on LSPs? Moreover, one may
investigate MCPS with non-unit edge capacities, or other problems on LSPs.



Capacity-Preserving Subgraphs of Directed Flow Networks 13

References

1. Ahmed, A.R., Bodwin, G., Sahneh, F.D., Hamm, K., Jebelli, M.J.L., Kobourov,
S.G., Spence, R.: Graph spanners: A tutorial review. Comput. Sci. Rev. 37, 100253
(2020), https://doi.org/10.1016/j.cosrev.2020.100253

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972), https://doi.org/10.1137/0201008
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Proc. STOC 1996. pp. 47–55. ACM (1996), https://doi.org/10.1145/237814.237827
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APPENDIX

A Proofs of LSP Properties

In the following, we give proofs for the theorems presented in Section 3 that con-
cern properties of LSPs. The first one states that P1-graphs can be characterized
as those graphs that do not contain a W -subdivision:

Theorem 8. A directed graph G = (V,E) satisfies P1 if and only if G does not
contain a subgraph homeomorphic to W (displayed in Figure 3(left)).

Proof. Consider the smallest subgraph H of G that is a subdivision of W , if it
exists. Let s and t denote the source and sink of H respectively, and note that
H ⊆ G〈s, t〉. Hence, G〈s, t〉 cannot be a DSP, and G is not a P1-graph.

If G is not a P1-graph, then it contains a vertex pair (s, t) such that H ′ :=
G〈s, t〉 is neither empty nor a DSP. Since H ′ contains exactly one source and
one sink, Theorem 6 lets us conclude that H ′ (and thus G) either contains a
subgraph homeomorphic to W or a cycle C. In the latter case, consider a set of
s-t-paths P that is inclusion-wise minimal with respect to spanning C. Let one
such path P ∈ P enter C for the first time at u+ and exit it for the last time
at u−. Since no single s-t-path may contain C completely, there must be other
s-t-paths that contain the cycle’s edge(s) starting at u− and going to u+. At the
same time, these paths may not contain P ∩ C completely as P is inclusion-wise
minimal. So consider the subpath S of C from u+ to u−. There exists an s-t-path
which exits C at a vertex v− and one entering C at the vertex v+ such that
v− comes after (or is identified with) u+ and v+ comes before (or is identified
with) u− along S. Moreover, v− comes strictly before v+ along S as there exists
at least one edge between them which is only contained in P , and not in any
other path from P \ {P} (since P is inclusion-wise minimal). Thus, we can find
a subdivision of W in H ′ (and consequently in G) as shown in Figure 5. ut

s u+ v− v+ u− t

Fig. 5. G〈s, t〉 containing a cycle (shaded in gray). The wiggly lines denote paths.
Dashed paths may have length 0, others must contain at least one edge. Red
paths visualize the W -subdivision. Note that while u+ and u− lie on the cycle,
the subpath of P between them may leave and enter the cycle repeatedly.
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Unlike P1-graphs, there can be no characterization of P2-graphs via forbidden
subdivisions or (directed versions of) minors:

Theorem 9. Every directed graph G has a subdivision Ḡ that satisfies P2.

Proof. Construct Ḡ by subdividing every edge of G. Each edge e ∈ E(Ḡ) is either
the only incoming or the only outgoing edge at some subdivision vertex. Thus,
Ḡ〈e〉 contains only edge e. As all Ḡ〈e〉 are disjoint, Ḡ satisfies P2. ut

Nonetheless, it is easy to see:

Theorem 10. Every DSP G is an LSP.

Proof. G satisfies P1 by Theorem 8. For P2, we use induction over the directed
series-parallel composition of G. A graph with a single edge e satisfies P2 since
there is no other EAS that G〈e〉 could intersect with. Now consider the creation
of a new s-t-DSP G from two DSPs G1 and G2, for which P2 holds. If st /∈
E(G), the composition does not create any new paths between the endpoints
of any edge, so G〈e〉 = Gi〈e〉 for every e ∈ E(Gi), i ∈ {1, 2}; we already know
that {E(Gi〈e〉)}e∈E(Gi) for i ∈ {1, 2} form laminar set families, respectively, so
{E(G〈e〉)}e∈E(G1)∪E(G2) does so as well. Finally, assume st ∈ E(G). We only
have to show that the laminar set family {E(G〈e〉)}e∈E(G)\{st} remains laminar
when E(G〈s, t〉) is added to it. This is the case since G〈s, t〉 fully contains G. ut
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