
Code Vectorization and Sequence of Accesses
Strategies for Monolith Microservices Identification

Vasco Faria and António Rito Silva
INESC-ID, Instituto Superior Técnico, University of Lisbon – Lisbon, Portugal

{vasco.faria, rito.silva}@tecnico.ulisboa.pt

Abstract—Migrating a monolith application into a microser-
vices architecture can benefit from automation methods, which
speed up the migration and improve the decomposition results.
One of the current approaches that guide software architects
on the migration is to group monolith domain entities into
microservices, using the sequences of accesses of the monolith
functionalities to the domain entities. In this paper, we enrich
the sequence of accesses solution by applying code vectorization
to the monolith, using the Code2Vec neural network model.
We apply Code2Vec to vectorize the monolith functionalities.
We propose two strategies to represent a functionality, one by
aggregating its call graph methods vectors, and the other by
extending the sequence of accesses approach with vectorization
of the accessed entities. To evaluate these strategies, we compare
the proposed strategies with the sequence of accesses strategy
and an existing approach that uses class vectorization. We run all
these strategies over a large set of codebases, and then compare
the results of their decompositions in terms of cohesion, coupling,
and complexity.

Index Terms—Monolith, Microservices, Microservices Identifi-
cation, Static Analysis, Machine Learning, Architecture Migra-
tion

I. INTRODUCTION

As microservices architectures prove their value over mono-
liths, an increasing number of monoliths are being migrated
to the microservices architecture, which provides significant
benefits in terms of scalability, agile development, and main-
tainability. Despite these advantages, and depending on the
size and complexity of a monolith codebase, this migration
process can become very complex and expensive, which makes
it worth the use of tools to automate some steps of the
migration.

Abdellatif et al. [1] present, in a survey on the mod-
ernization approaches of legacy systems, several migration
approaches for the automatic identification of microservices
in monolith systems. These approaches are classified by their
inputs, processes, and outputs. These approaches work on
a codebase’s representation obtained by applying collection
tools, which can be static if they rely only on the monolith
source code, or dynamic if they require the monolith execution
to collect data. However, according to this study, it can be
observed that the majority of the approaches for monolith
migration perform a static analysis of the source code, fol-
lowed by a clustering algorithm in conjunction with similarity
measures, that define the distances between the elements of
the monolith that will constitute the microservices.

In what concerns the collection part, the static analysis,
though the mainly used technique, becomes difficult to scale
because it depends on the particular programming languages
and frameworks used in the monolith implementation, which
requires continuous effort in the implementation of static
analyzers. On the other hand, there is a report that the use of
dynamic collection techniques presents some problems with
the completeness of the collection and the management of a
large amount of collected data [2].

The goal of this paper is to study whether an approach
that does not require a complex static analysis data collection
can generate good decompositions. This would remove some
bottlenecks of previous work since the collector wouldn’t be
restricted to a particular programming language, web devel-
opment stack, and object-relational mapper.

This approach is inspired by Al-Debagy and Martinek’s
work [3], which analyzes the monolith code like a Natural
Language Processing problem (NLP). They use a neural net-
work model called Code2Vec for microservices identification.
This model takes advantage of a method abstract syntax tree
(AST) and the lexical interpretation of its tokens to calculate
a numerical vector, representing as much information about
that method as possible. With this tool, they generate vectors
associated with the monolith classes and measure the quality
of the decomposition in terms of cohesion and coupling
metrics. However, they do not analyze the monolith from
the perspective of the monolith functionalities sequences of
accesses, which is one of the most common approaches,
e.g. [4], [5].

In particular, in [5], a large number of monolith codebases
are used for an extensive analysis of the identification of
microservices in a monolith, which uses the monolith function-
alities sequences of accesses. The study analyzes the results
by applying coupling, cohesion, and complexity metrics for
the generated decompositions.

In this paper, we leverage on [3], [5], by integrating their
perspective to verify, using a larger number of codebases,
whether:

1) The use of Code2Vec with the functionality perspective
provides better results than sequences of accesses in [5];

2) The application of the functionality perspective provides
better results than Al-Debagy and Martinek [3];

3) The input parameters of the proposed strategies impact
the results of the evaluation metrics.

1

ar
X

iv
:2

21
2.

11
65

7v
1 

 [
cs

.S
E

] 
 2

1 
D

ec
 2

02
2



The proposed solution starts with a Data Collection phase,
where a new collector is used to extract all the methods of a
monolith codebase, along with all their information (package,
class, type, source code, and method calls). During this phase,
the Code2Vec model is used to generate each method’s respec-
tive vector. After, we test two different strategies to generate
the functionalities vectors.

For evaluation, we apply the different strategies to a large
set of codebases, and then compare the results using cohesion,
coupling, and complexity metrics.

After this section, Section II discusses work related to
the application of machine learning techniques in software
migration, followed by, Section III, a short description of
the background required to the proposed solution. Section IV
presents new strategies for microservices identification in
monolith systems. Section V evaluates and compares the new
strategies with previous work, and finally, Section VI presents
the final conclusions of this work.

II. RELATED WORK

Since the emergence of microservices architectures, migrat-
ing monoliths to these architectures has been an increasingly
active topic [1].

There are approaches [4]–[6] that use the monolith function-
alities sequences of accesses to the monolith domain entities
to feed an aggregation algorithm that proposes candidate
decompositions for microservices. These approaches can use
static analysis of the monolith code, e.g. [5], or dynamic
execution of the monolith to collect the sequences of accesses.
Andrade et al. [2] compares the use of static and dynamic
collection for microservices identification. They conclude that,
while in static analysis the data collection needs to be adapted
to each programming language or framework, which requires
tool adaption effort for each new programming language of
full-stack technology, the dynamic collection of data shown
to have worse coverage, though generating a huge amount of
data. Based on these results, our research intends to explore
the use of lexical analysis, a form of static analysis that
requires less effort because it is more language and technology
independent.

On the other hand, several approaches for the identification
of microservices, or grouping classes into packages, apply
lexical analysis.

Hammad and Banat [7] propose a technique that utilizes the
K-Means clustering algorithm [8] to group a set of classes into
packages, where the similarity measure presented consists of
how many relevant tokens two classes have in common. This
approach didn’t achieve good results in terms of modularity,
because the tokens must be identical in order to find a
similarity between two parts of the code, which ignores all
words that belong to the same semantic or lexical field.

Mazlami et al. [9] present three formal coupling strategies
to generate a weighted graph from the meta-information
of a monolithic codebase. They decompose the generated
graph using a graph-based clustering algorithm. One of the
strategies follows the same logic of the previously mentioned

approach [7], based on coupling two classes containing the
same tokens but considering their frequency. Although this
strategy presents a worse execution time when compared with
their other approaches, it shows better results in what concerns
the team size reduction and the average domain redundancy.

Brito et al. [10] use topic modeling to identify services
according to domain terms, where words with higher proba-
bilities indicate a possible good topic. They also refer that the
relevant tokens extraction could be easier with a pure Natural
Language Processor (NLP), but the results would be worse.
This topic modeling approach is also agnostic of the develop-
ment stack, but the results depend on an optimal lexical token
extraction, using specific parsers for each language to extract
and process the ASTs as input to the model, which means
increasing its complexity. As a result of their work, the model
shows good cohesion values of the identified microservices,
with the trade-off of generating a high number of clusters in
order to achieve good values in a metric that evaluates whether
microservices follow the Single Responsibility principle [11].

Nowadays, there are not many approaches besides clustering
when it comes to machine learning techniques to decompose
monolith applications into microservices. However, the use of
NLPs has been increasing due to their significant progress in
performing lexical analyses, making the Data Collection phase
easier and more generic.

Ma et al. [12] propose a solution based on Word2Vec [13],
a widely-used machine learning method in Natural Language
Processing, to match existing microservices to new require-
ments. Their approach only works for applications where
scenarios are written in a common language describing the
features of the target system and that already follow a mi-
croservices architecture since their goal is to discover where
to place new requirements. They use the vectors generated
by the Word2Vec model as the similarity measure between
scenarios.

Leveraging on the Word2Vec [13] work, Alon et al. [14]
created Code2Vec, a neural network model trained to represent
methods as fixed-length numerical vectors, also called code
embeddings.

Al-Debagy and Martinek [3] propose an approach to de-
compose a monolith application into microservices using
Code2Vec [14], by extracting the methods’ code embeddings.
Using these vectors, they define a class embedding as the
aggregation of its methods’ embeddings. After testing, they
found that the mean is the most suitable aggregation function
to define a class embedding. The results of this novel approach
show high cohesion values since all the semantically similar
classes are grouped in a microservice, making this solution
achieve even better results than the other approaches they
consider in the evaluation.

Overall, although there is some work on the use of
Code2Vec for the identification of microservices in a monolith,
it does not follow an approach where the data collected from
the monolith is based on the functionalities accesses to domain
entities. Additionally, there is a lack of studies that compare
the approaches for a large number of codebases, using different

2



quality metrics.

III. BACKGROUND

Code2Vec [14] is a neural network model trained to rep-
resent methods as fixed-length numerical vectors, also called
code embeddings. In machine learning, an embedding is a
low-dimensional vector that represents high-dimensional data
preserving the most information possible. Although the model
is designed for method naming, the learned code embeddings
can be used for several other applications.

The first stage of Code2Vec consists of transforming a code
snippet into abstract syntax tree (AST) paths, since it improves
scalability while training the model, avoiding the costs of
learning the language syntax itself.

Following the extraction of the AST paths, each path is
mapped into a three-value tuple composed of the path’s start
node, intermediate expressions, and the final node. Then, each
part of the tuple is converted to a real-valued representation,
creating a three-dimension numerical vector known as a con-
text vector acting as input to the path-attention network.

A neural attention network architecture is used to overcome
the data sparsity problem of similar methods having different
ASTs paths. With this attention mechanism, the model also
learns the importance of each path, applying higher weights
to the most important ones.

By applying the learned weights and the hyperbolic tangent
function on the input vectors, the code embedding is computed
using the attention weights to calculate a weighted average of
all the combined context vectors.

IV. SOLUTION

A. Data Collection

The first step of our approach consists of extracting all
the necessary information from the monolith codebase and
preparing it. This is done using the JavaParser library1, which
is a popular static analysis tool used to parse and modify
java code by generating an interactive abstract syntax tree
and providing a symbol resolution module. JavaParser also
provides a type resolution module (symbol-solver) that can
combine different type solvers to increase the capability of
solving complex references like superclass methods.

For the data collection, we explore all the codebase files,
recurring to the JavaParser type solvers. For each java file,
our parser starts by identifying the package, the class/interface
name, the annotations, and all the present methods as well as
checking if the class extends another.

Every time the parser founds a new method, its respective
body is converted into a code embedding by the Code2Vec
model, which we save along with the method signature. Also,
inside each method body, the parser looks for all methods
invocations’ and tries to solve their signature using the type
solvers. If the invoked method belongs to external libraries of
the codebase, those invocations are discarded.

1https://javaparser.org/

Since the evaluation is applied to monoliths implemented
using Spring-Boot and an Object-Relational Mapper (ORM)
each code embedding is characterized in terms of Spring-Boot
architectural elements: Controller, Entity, Service, Repository,
and Configuration classes. This categorization is used to verify
whether some parts of the monolith code can provide more
accurate results, and to identify the starting point of each
functionality (Controller) and what are the monolith persistent
domain entities (Entity).

B. Functionality Vectorization Strategies

We propose two functionality vectorization strategies to
represent a functionality as an embedding by using the func-
tionality call graph, or the functionality sequence of accesses
to domain entities. The purpose of these strategies is to
represent each microservice as a set of functionalities and thus
understand which functionalities should be implemented in the
same microservice.

Fig. 1: Extraction of a functionality call graph vector.

Figure 1 presents the Functionality Vectorization by Call
Graph (FVCG) strategy, which represents each functionality
as the call graph of its methods invocations, where the first
method is the controller where the functionality starts exe-
cuting. By traversing a method call graph it is possible to
reach loops, so to overcome this problem, a maximum depth
parameter on the call graph is considered to compute the
vector.

After discovering all the methods and the respective code
embeddings, represented in Figure 1 by the mv vectors, that
belong to the call graph of a functionality for a given depth,
we apply the mean weighted function to those embeddings
in order to achieve the functionality representing embedding.
The method annotations are used to infer each method type.
The following weights for method types are considered:
• wc: The controllers weight;
• ws: The services weight;
• we: The entities weight;
• wi: The remaining methods (e.g., auxiliary or unclassified

methods) weight, which will be referred as intermediate.
The weights are positive values that should sum 100 (wc +

ws + we + wi = 100).
The vector is computed according to equation 1, where

f.cg(d) denotes the functionality (f ) call graph, generated
with depth d, due to possible recursive invocations, and
.C, .S, .I, .E, denote, the call graph nodes that are of type,

3



cgv(f) =

∑
mv∈f.cg(d).C wc ×mv +

∑
mv∈f.cg(d).S ws ×mv +

∑
mv∈f.cg(d).I wi ×mv +

∑
mv∈f.cg(d).E we ×mv∑

mv∈f.cg(d).C wc +
∑

mv∈f.cg(d).S ws +
∑

mv∈f.cg(d).I wi +
∑

mv∈f.cg(d).E we
(1)

respectively, controller, service, intermediate and entity. Note
that, additionally to the weight parameters, d parameter on the
call graph depth determines the number of method vectors to
consider. The purpose of these parameters is to study their
impact on the quality of the result, and how they affect the
evaluation metrics results. This study will help to understand
the level of computational effort required in the construction
of the vectors. For instance, if vectors computed using low
depth provide good results, it will significantly reduce the
computational effort. On the other hand, if the weights are
irrelevant, the data collector will not need to recognize the type
of each method, being a positive aspect to make the collector
framework and architecture agnostic.

Fig. 2: Extraction of a functionality sequence of accesses
vector, where R stands for read and W stands for write.

Figure 2 presents the Functionality Vectorization by Se-
quences of Accesses (FVSA) strategy, which represents each
functionality as the sequence of its accesses to domain entities,
where read accesses are distinguished from write accesses. It
uses the sequences of accesses done by a functionality, and
associates to each access the embedded vector of the accesses
entity, ev. The entity embedded vector is computed by first
identifying the entity methods, and then calculating the mean
of that method’s embeddings.

In order to represent entities as the mean of its methods’
embeddings all classes should have methods. This is not
the case of some classes that extend other classes or use
annotations to generate their methods in compile time. To
mitigate this problem, we include inheritance in each class
embedding by using all the top hierarchy classes’ methods in
the aggregation function. However, the case of methods gen-
erated through annotations at compile time, are not addressed
and their empty classes are not considered. In the experiment,
codebases having these type of classes are excluded.

sav(f) =

∑
ev∈f.sa.R wr × ev +

∑
ev∈f.sa.W ww × ev∑

ev∈f.sa.R wr +
∑

ev∈f.sa.W ww
(2)

Having functionality sequences of accesses and the entities’
embeddings, the functionality embedding is the weighted
average of the entities’ embeddings of all the entities possibly
accessed during the functionality execution, as presented in
equation 2. In the equation, the entities read by functionality
f in its sequence of accesses are denoted by f.sa.R, while
f.sa.W denotes the entities written. The parameters wr and
ww, represent, respectively, the weight associated with the type

of access, read and write. The weight values are positive and
should sum to 100. Note that, as in the previous vectorization,
the parameters will be used to assess the impact of distinguish-
ing reads from write accesses in the quality of the generated
decompositions.

V. EVALUATION

To answer the research questions, we compare the Code2Vec
decompositions generated using the Code2Vec similarity mea-
sures built on the monolith functionalities with the decompo-
sitions generated using sequences of access, as in [15], the
decompositions generated using vectors for classes built with
Code2Vec, as in [3], and the decompositions that only consider
vectors for entities, which is a sub-category of the previous
strategy [3].

A. Strategy Comparison

The strategy by Al-Debagy and Martinek [3] represents a
microservice as a set of classes. They use Class Vectorization
(CV), where each class has an embedding calculated as the
mean of its methods embeddings, a method already applied in
the FVSA strategy.

Nevertheless, there are approaches where microservices are
represented by monolith domain entities, instead of their
classes, to highlight that the main aspect of a microservice
is the independence of its database from other microservices
databases. Therefore, we use another strategy adapted from the
CV strategy in which, rather than representing a microservice
as a set of classes, it is represented as a set of entities. The
Entity Vectorization (EV) strategy only considers the classes
in CV strategy that are entities.

The third strategy we are going to compare to is the
Sequence of Accesses (SA). There are four similarity mea-
sures based on the sequences of access [15]. They aggregate
the monolith domain entities that are accessed by the same
functionalities. The main idea behind these measures is that
in a microservices architecture it is necessary to minimize the
number of distributed transactions. Therefore, by having all the
domain entities that are accessed by a functionality in the same
cluster, the functionality can execute as a single transaction.
These similarity measures represent the distance between two
domain entities by using the sequences of accesses strategy
(SA) of the functionalities that access them. Therefore, each of
the similarity measures between entities ei and ej are defined
as the following:

1) Access: Given a set of functionalities that access, both
read or write, entity ei, is the percentage of those who
also access entity ej .

2) Read: Given a set of functionalities that read entity ei, is
the percentage of those who also read entity ej .

4



3) Write: Given a set of functionalities that write entity ei,
is the percentage of those who also write entity ej .

4) Sequence: The percentage of the number of consecutive
accesses to ei and ej entities over the maximum number
of consecutive accesses for two domain entities.

Note that these measures, except the sequence, are not
symmetric.

The SA strategy uses the four similarity measures by assign-
ing weights to each one of them, such that their sum should
be 100.

To compare the different strategies, they have to produce the
same type of decomposition clusters. However, the strategies
produce three different types of decompositions. SA and EV
strategies generate clusters of entities, FVCG and FVSA strate-
gies clusters of functionalities, and the CV strategy clusters of
classes. Therefore, to compare the results, it is necessary to
convert a decomposition type into the other. Since the metrics
to be used in the evaluation are defined as decompositions of
clusters of domain entities, the decompositions are converted
into decompositions with clusters of entities.

To convert a cluster of classes into an entity’s clusters, it is
only necessary to remove all the non-entity classes from the
clusters, which can lead to empty clusters and so we discard
those clusters.

The functionalities clusters are converted into clusters of
entities by counting the functionalities entity accesses present
in each cluster. This is, for each domain entity’s access by a
functionality of a given cluster, the probability of that entity
belonging to that respective cluster increases. Then, for each
domain entity, we look for the cluster that accesses it the most
to assign the entity to that respective cluster. Afterward, since
this conversion may also result in empty clusters, those are
discarded.

B. Decomposition Generation

To evaluate the strategies it is necessary to generate a
significant number of decompositions, varying the number of
clusters and the strategies weights. In terms of the number
of clusters, for codebases up to 10 entities, a maximum of 3
microservices are generated, between 10 and 20 a maximum of
5 microservices, and for more than 20 the maximum number
of microservices is 10.

We start at a minimum of 3 microservices and generate all
possible decompositions by varying the strategy’s parameters.
Then we repeat the process by increasing by one the number
of microservices to generate, until we reach the maximum
number of microservices. The strategies that don’t represent
a microservice by a set of entities may result in empty
clusters. Therefore, the real number of clusters of the generated
decompositions is smaller than the requested one. To overcome
this issue, we continue to increase the requested number of
microservices and generate the respective decompositions until
we achieve one that results in a number of clusters bigger than
the maximum value.

The number of decompositions generated for each strategy
depends on the number of its parameters since we explore all

the possible combinations. For the weight parameters, we need
to create all the combinations where the sum of the weights
equals 100, using intervals of 10. In the FVCG strategy, we
decided to vary the depth parameter from 1 to 6.

A hierarchical clustering algorithm is applied to the strate-
gies vectors and distances, using the euclidean distance. A
dendrogram is generated, which is cut to generate decompo-
sitions with different numbers of clusters.

Since the hierarchical clustering algorithm supports different
types of linkage criteria to determine the distances of the
clusters, they are also used as variations in the evaluation.
The three criteria considered are:
• Single-linkage clustering: Distance between the closest

entities of the measured clusters.
• Complete-linkage clustering: Distance between the fur-

thest entities of the measured clusters.
• Average-linkage clustering: Average of the distances be-

tween each entity of one cluster and the entities of the
other.

This linkage type parameter will also be exercised during
the generation of decompositions.

C. Evaluation Metrics

Three metrics are used to evaluate the quality of a generated
decomposition: coupling, cohesion, and complexity.

The cohesion measures the single responsibility princi-
ple [11]. The cohesion of a decomposition is computed using
the cohesion of each one of its clusters. The cluster cohesion is
percentage of the cluster’s entities accessed by the respective
functionalities. Therefore, a cluster has higher cohesion if the
accesses done by functionalities interact with all the entities in
the cluster. And so, it has low cohesion if each functionality,
that access the cluster, only accesses a small subset of the
cluster entities.

The coupling reflects the interdependence between mi-
croservices. This is measured by the percentage of entities
a cluster has to know of another. A cluster knows the entity
of another cluster if there is a functionality that immediately
after the access of an entity in the first cluster accesses an
entity in the second cluster. For instance, there is low coupling
from cluster c1 to cluster c2, if all functionalities that have an
access in c1 and immediately and access in c2, always access
the same entity in c2, and c2 has several other entities. The
accessed entity is in c2 interface from the point of view of
c1. Note that coupling is not a symmetric property because
it depends on the order of accesses. On the other hand, it
differs from cohesion because only the pairs of accesses where
two clusters are involved are relevant. The coupling of a
decomposition is the average of the coupling between all pairs
of the decomposition cluster.

Complexity measures the effort required to migrate a func-
tionality from a monolith to a microservices architecture [15].
This complexity results from the need to introduce a set of
distributed transactions to implement the functionality. Since
the distributed transactions execution needs to be implemented

5



using eventual consistency, due to scalability [16], it is nec-
essary to change the business logic to consider intermediate
states of the domain entities, which is a consequence of
the lack of isolation. Therefore, the complexity depends on
the number of distributed transactions required to implement
a functionality, and the number of intermediate states they
introduce. The former is calculated by how many times the
functionality sequence of accesses is split between clusters,
each split is a local transaction part of the overall distributed
transaction. The latter is calculated by identifying the read and
write accesses done by the local transactions. The complexity
of a decomposition is the sum the complexity of each one of
the functionalities.

An additional metric is built combining the three metrics, to
evaluate which decompositions have a better balance between
them, as presented in equation 3. Note that, the complexity is
divided by the maximum complexity of all decompositions,
to obtain a value between 0 and 1, this is called uniform
complexity. The cohesion has a negative value because higher
cohesion is better than lower cohesion, whereas, for instance,
lower coupling (complexity) is better than higher coupling
(complexity).

1 + complexity(d)
max complexity(D)

+ coupling(d)− cohesion(d)

3
(3)

D. Codebase Sample

To gather the codebases sample for this experiment, a
list of GitHub repositories that depend on the Spring Data
JPA library2 was filtered to exclude codebases with less than
five domain entities and controller classes. After that, the
remaining codebases were sorted by the number of GitHub
stars and manually selected from the top in order to keep the
sample quite diverse in terms of codebase sizes. From these
codebases we still had to exclude a few due to the dependence
on libraries that generate methods from annotations on compile
time, making these methods not available for a static analysis.

The selection process led to a relatively large number of
monolith codebases (85), with an average number of code lines
around 25 thousand and a standard deviation of 33 thousand
lines of code, indicating a high variation of the codebases size.
Also, it is possible to observe the distribution of the number
of controllers and domain entities in Figure 3.

E. Statistical Analysis

To validate the research questions we start to compare
the strategies for the cohesion, coupling, complexity, and
combined metrics, using decompositions for the 85 codebases
chosen for different numbers of clusters. To measure whether
the differences in the results of the strategies are statistically
significant, we apply the Welch’s t-test [17].

Welch’s t-test [17] is a two-sample location test used in
statistics to test the hypothesis that two populations have

2https://github.com/spring-projects/spring-data-jpa/network/dependents

Fig. 3: Representation of the 85 codebases used in the evalu-
ation.

equal means and it is more reliable when the two samples
have unequal variances and possibly unequal sample sizes,
which is the case. The hypotheses of the Welch’s t-test are the
following:
• H0: µ1 = µ2, the samples have equal means;
• H1: µ1 6= µ2, the samples have distinct means.
To reject or accept the presented null hypotheses, we use a

significance level of 0.05.
In addition, we also analyze each proposed strategy individ-

ually to study the impact of the strategy parameters on metrics
values. To do so, we run regressions for each type of parameter
applying the ordinary least squares (OLS) method to choose
the regression parameters, βi and cons of the equation 4.

metric(d) =
∑

i∈parameters

βi × wi + cons (4)

To test these regressions, we also use a significance level
of 0.05 to accept or reject the following hypotheses:
• H0: βi = 0 ∀i ∈ ]0,#parameters], the evaluation

metrics do not have any relation with the parameters
under analysis;

• H1: βi 6= 0 ∃i ∈ ]0,#parameters], the evaluation
metrics are at least affected by one of the parameters
under analysis.

For the functionality vectorization strategies, since they use
parameter weights, it will be necessary to study the problem
of multicollinearity, since the weights depend on each other
by adding up to 100. To overcome this problem, we repeat the
regression analysis without one of the dependent parameters,
and by doing this for each parameter we can retrieve better
coefficient values. During the evaluation, the parameters of the
clustering algorithm will also be considered as parameters of
the strategies to understand the impact of the linkage criteria.

F. Results

To answer the research questions, we went through all the
generated decompositions to calculate the respective values for
cohesion, coupling, complexity, and combined metrics. With

6



(a) Uniform complexity (b) Coupling

(c) Cohesion (d) Combined

Fig. 4: Evaluation Metrics applied to the 85 codebases

these values, it is possible to compare the strategies and look
for any correlation between the proposed strategies parameters
and the metrics values. Figure 4 presents the results.

We start by comparing the results for strategies FVSA and
FVCG. For complexity, the Welch’s t-test rejects the hypoth-
esis of having the same mean values except when the number
of clusters is 9 and 10, and through Figure 4a it is possible to
notice that most of the FVCG strategy values are most of the
times lower than those of the FVSA, since the median is lower.
Thus, it can be concluded that the decompositions generated
by the FVCG strategy are in general less complex than those
generated by the FVSA strategy.

Considering coupling, the hypothesis of having the same
median values in each number of clusters is also rejected by
Welch’s t-test. From Figure 4b it is possible to observe that the
coupling values for the FVCG strategy are lower than those
of the FVSA strategy.

As for cohesion, (Figure 4c), the FVSA seems to obtain best
results than FVCG since Welch’s t-test rejects the hypothesis
of having the same cohesion mean values and most of those
results are higher than the ones generated by the FVCG.

In addition to these metrics, it is interesting to analyze the
combined metric in figure Figure 4d that represents the balance
between the previous ones. Welch’s t-test only accepts the
hypothesis of both strategies have the same mean when the
number of clusters is 6 and 9, and as the values of the FVCG

strategies are lower than the ones of FVSA, except for 7 and
10 cluster, the FVCG achieve the best-balanced results.

TABLE I: Average number of decompositions and duration of
each strategy when generating all decompositions by permut-
ing the strategy parameters

CV FVCG FVSA SA EV
#Decompositions Mean 71 131168 503 1514 17
Performance Time Mean (s) 62 2830 350 39 32

Each strategy generated a different number of decomposi-
tions (table I) derived from the number of parameters and
from the conversion of functionalities’ clusters to entities’
clusters. Note that FVCG has the larger number of parameters.
Therefore, it was decided to perform a second analysis in
which only the best decompositions of each codebase are used
for every strategy and number of clusters. This way, the same
number of decompositions are considered for each strategy.
Additionally, and as is shown in Table I, the number of
decompositions associated with strategy FVCG is significantly
larger, which has an impact on the performance. Therefore, it
is relevant to understand which parameters can be discarded,
if any, to minimize the number of decompositions that need
to be generated.

By decreasing the number of decompositions, the results’
dispersion of the strategies that generated a higher number of

7



(a) Uniform complexity (b) Coupling

(c) Cohesion (d) Combined

Fig. 5: Evaluation Metrics applied to the best decompositions of the 85 codebases for each metric

decompositions decreased substantially along with the number
of outliers, as shown in Figure 5.

By using only the best decompositions for each codebase,
the results of the functionality vectorization strategies im-
proved significantly. For complexity, Welch’s t-test accepts the
hypothesis that they have the same mean when the number of
clusters is 3 and 5. Regarding cohesion, coupling, and the
combined metrics, the t-test continues to reject the hypothesis
for any number of clusters. Overall, when looking at figure 5,
the FVCG strategy distinguishes itself from the FVSA by
having better results for all metrics. Also, the FVCG strategy
proves to be more interesting because it does not require such
an in-depth analysis of the code as the FVSA strategy, and is
more independent of the technology stack.

After this analysis, we answer each one of the three research
questions.

1) Does the use of Code2Vec with the functionality perspec-
tive provides better results than sequences of accesses?: To
answer the first research question, the proposed strategies that
rely on feature vectorization and the Code2Vec model (FVSA,
FVCG) are compared with the SA strategy, which clusters
entities by their access sequences. By comparing the FVSA
strategy with SA, it will be possible to conclude the impact
of the Code2Vec model on the sequence of entity accesses.
And the comparison of FVCG and SA strategies will indicate
if only the use of Code2Vec can achieve better results than a

very detailed analysis used in the SA strategy.
In terms of complexity, Welch’s t-test only accepts the

hypothesis of 2 strategies having the same mean values when
comparing the FVSA and SA strategies and the number of
clusters is 4 or 5. In all other cases, including the FVCG
strategy, as shown in Figure 5a, most of the values of the
proposed strategies are lower than those of the SA strategy,
which leads to the conclusion that using the Code2Vec model
with a functionality perspective generates less complex de-
compositions.

Regarding coupling, Figure 5b the FVSA and the SA strategy
have very similar results, which can be validated with the
results of Welch’s t-test, that accepts the hypothesis that the
strategies have the same average coupling values for every
number of clusters except for 3 and 5. The FVCG strategy
obtains better results than the SA strategy since the Welch’s
t-test rejects that both strategies have the same mean for every
number of clusters and the FVCG coupling results are lower
than the ones of the SA strategy.

When it comes to the cohesiveness of the proposed strate-
gies 5c, the values are better compared to the SA strategy.
Welch’s t-test rejects all the hypotheses that the FVCG and
the FVSA strategies have the same mean cohesion values when
compared to SA strategy. This implies that the decompositions
generated by the Code2Vec proposed strategies have higher
cohesive microservices than by using SA strategy.

8



Overall, when applying the combined metric (Figure 5d)
to these strategies, the results of Welch’s t-test also reject
the hypothesis that the strategies have the same mean values
for every comparison between the proposed strategies (FVCG
and FVSA) and the SA strategy. With these results, it is
possible to conclude that the use of the Code2Vec model with a
functionality perspective to the sequence of accesses analysis
improves the results, but when using just the functionalities
vectorization without the sequence of accesses it is possible
to achieve even better results.

2) Does the application of the functionality perspective
provides better results than Al-Debagy and Martinek’s class
perpective?: To answer the second research question, the
proposed strategies (FVSA, FVCG) are compared with the CV
strategy, proposed by Al-Debagy and Martinek, and the EV
strategy, which is an adaptation of the CV.

Calculating Welch’s t-test between the proposed strategies
and the CV strategy it is possible to reject the hypothesis of
having the same complexity, cohesion, coupling, and com-
bined means for every number of clusters. These results show
that these strategies are quite different as can be seen in
figure 5 and that the results of the CV strategy are worse for
every metric than the ones of the FVCG and FVSA strategies.

As can be observed in the dendrogram in Figure 6, the
results of the CV strategy derive from clustering the vectorized
classes, groups them by their types: Entities, Service, Con-
troller, Configuration. Thus, when class clusters are converted
to entity clusters, most of the domain entities are grouped in
the same cluster leading to decompositions that have a large
cluster.

Fig. 6: Class dendrogram of a codebase using the CV strategy.

Trying to avoid this behavior, the EV strategy was imple-
mented, which only considers classes that represent domain
entities. But, this strategy ended up getting the same results
as the CV strategy, since Welch’s t-test accepts that it has
the same average across all strategies and for all numbers
of clusters, which led to Welch’s t-test also rejecting the
hypothesis that this strategy has the same means as the
proposed strategies across all metrics and for all numbers of
clusters.

This evaluation shows that the use of Code2Vec with a class
perspective generates worse decompositions, since the class
vectors are heavily influenced by each class type because of
its respective lexical tokens, but may be a good approach to

cluster classes into packages to organize the code by classes
types like in [7].

3) Does the input parameters of the proposed strategies
impact the results of the evaluation metrics?: To answer the
third research question we analyze the parameters of each of
the proposed strategies.

Starting with the FVCG strategy, there are six parameters to
analyze, the maximum depth (d) the call graph is explored, the
four weights to control which method types are more relevant,
and the linkage type used in the clustering algorithm.

Fig. 7: Regression of the depth parameter for the combined
metric values.

Figure 7 shows the results for the variation of the depth.
Welch’s t-test between a depth of 1 and a depth of 2 shows
that there is a significant difference between the results, and so
depth 1 provides worse results than higher depths. But, when
calculating an OLS regression for the depths higher than 1,
allows us to reject the hypotheses that by increasing the depth
more than 2 better results are obtained because the p-value is
smaller than the significance level.

Therefore, it is impossible to conclude, for depths greater
than 1, that any given depth is better than another. Since
smaller depths require less computation, it is possible to rely
just on depth 2, in which only the functionality controller
method and the methods it invokes there are used.

This leads us to conclude that when using a lexical approach
with functionalities call graph, only the first methods of each
functionality are needed since they present most of the lexical
tokens present in the entire functionality call graph.

On the other hand, the regression between the method type
weights for the combined metric rejects the hypothesis that
a different combination of the method type weights affects
the evaluation metric results since the p-value is less than the
significance level.

As it is not possible to find a perfect combination of
method type weights, we did an additional analysis of the best
decompositions for each codebase and number of clusters. This
allow us to understand whether the use of the same weights for
all method types can achieve good results when compared with
all possible weights combinations (Figure 8). But, Welch’s t-

9



Fig. 8: FVCG Comparison of the best decompositions com-
bined metric results when the weights are equally distributed
versus the best decompositions when using all possible
weights distributions.

test results reject the hypothesis that the combined metric mean
values using the same value for each weight produce better
results than a particular weight combination, when looking
for the best decomposition.

Regarding the linkage criteria, to understand the impact of
the cluster algorithm parameter over the combined metric, it
was used a depth of two when comparing the best results for
each linkage type: average, simple and complete.

By comparing the different linkage types for each number
of clusters, Welch’s t-test allows us to state that the results
of both three linkage types have the same means for the
combined metric, with just two exceptions where the number
of clusters is 6 and 7 when comparing the single type versus
the complete linkage type, but even those p-values are close
to the significance level. This indicates, that the choice of
the linkage type is irrelevant when clustering the functionality
vectors generated with the FVCG strategy.

For the FVSA strategy, there are only three parameters to
analyze, the two types of access weights, write and read, and
also the linkage type.

The regression between the accesses types weights for the
combined metric allows us to reject the hypothesis that a
different combination of the accesses types weights affects
results since the p-value is less than the significance level.
Once again, as these weights depend on each other, to avoid
the problem of multicollinearity, two regressions were made
separately, one with just the weights of read accesses, and one
with the weights of write accesses. Both regressions reject the
hypothesis that the weights have any statistically significant
impact on the combined metric results.

When it comes to the linkage criteria, Welch’s t-test rejects
the hypothesis that the single type has the same mean as
the average type for all cluster sizes except for 3. It accepts
the hypothesis that the complete and average types when the
number of clusters is 5, 7, 8, 9, and 10, which indicates that for
these two linkage types the results obtained are very similar

but worse than the single linkage type, which is the one that
obtains, in general, the best results for the FVSA strategy.

G. Threats to Validity

The FVCG strategy was only implemented to support java
codebases, but since it is possible to change Code2Vec to
accept more languages, it can be easily generalizable, just by
creating a new parser for each language. The parser only needs
to generate the methods ASTs.

Due to the codebases selection process, we believe that the
85 selected codebases are representative of monolith systems.
Although all codebases use the Spring framework, it does not
bias the results, because the frameworks used to develop web
monoliths implement the same architectural patterns.

It is possible that there is some correlation between coupling
and complexity metrics, so the results of the proposed new
combined metric may be biased. Nevertheless, the results are
still promising when analyzing each metric separately.

The conversion of functionality clusters to entity clusters
may bias the results. However, the strategies that applied this
conversion have shown better results.

H. Lessons Learned

• It is possible to perform a lexical analysis of the AST with
a neural network model and obtain better results than a
complex static analysis that captures the functionalities
sequences of access to domain entities.

• Adding a neural network model to the static analysis of
entity accesses (FVSA strategy) improves its results.

• Classes vectorization is shown to lead to decompositions
where the classes are grouped by their type.

• The FVCG strategy is shown to provide the best results,
when compared with the sequence of accesses strategy,
and it is only necessary to apply a depth of 2 in the
call graph generation, which dramatically improves per-
formance.

VI. CONCLUSION

As the majority of monolith decomposition approaches
perform a static analysis of the source code followed by a
clustering algorithm, this work aimed to simplify and general-
ize this process by recurring to a lexical analysis independent
of the technology stack.

The Code2Vec model was used to understand that a simple
lexical analysis strategy can overcome in terms of complexity,
coupling, and cohesion, a more complex analysis that has to
extract the functionalities domain entities accesses sequences.

Analyzing monoliths as a set of functionalities was shown
to provide better results than the monolith class vectorization
strategy, which led to clusters of classes of the same type.

We conclude that the FVCG strategy, which only relies on
the call graph for functionality vectorization, provides the best
results. Additionally, it is possible to reduce the number of
parameter combinations to choose the best decomposition by
only using depth 2 for the call graph generation.

10



The approach code and the experimental results are publicly
available3.

ACKNOWLEDGMENT

This work was partially supported by Fundação
para a Ciência e Tecnologia (FCT) through projects
UIDB/50021/2020 (INESC-ID) and PTDC/CCI-
COM/2156/2021 (DACOMICO).

REFERENCES

[1] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E. Boussaidi,
G. Hecht, J. Privat, and Y.-G. Guéhéneuc, “A taxonomy of service
identification approaches for legacy software systems modernization,”
Journal of Systems and Software, vol. 173, p. 110868, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0164121220302582

[2] B. Andrade, S. Santos, and A. R. Silva, “From monolith to
microservices: Static and dynamic analysis comparison,” 2022.
[Online]. Available: https://arxiv.org/abs/2204.11844

[3] O. Al-Debagy and P. Martinek, “A Microservice Decomposition Method
Through Using Distributed Representation of Source Code,” Scalable
Computing: Practice and Experience, vol. 22, no. 1, pp. 39–52, 2021.

[4] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
candidate identification from monolithic systems based on execution
traces,” IEEE Transactions on Software Engineering, vol. 47, no. 5, pp.
987–1007, 2021.

[5] S. Santos and A. R. Silva, “Microservices identification in monolith
systems: Functionality redesign complexity and evaluation of similarity
measures,” Journal of Web Engineering, Aug. 2022. [Online]. Available:
https://doi.org/10.13052/jwe1540-9589.2158

[6] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a mi-
croservices architecture: An approach based on transactional contexts,”
in Software Architecture, T. Bures, L. Duchien, and P. Inverardi, Eds.
Cham: Springer International Publishing, 2019, pp. 37–52.

[7] M. Hammad and R. H. Banat, “Automatic Class Decomposition using
Clustering,” Proceedings - 2021 IEEE 18th International Conference on
Software Architecture Companion, ICSA-C 2021, pp. 78–81, 2021.

[8] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Inf.
Theory, vol. 28, pp. 129–136, 1982.

[9] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from
Monolithic Software Architectures,” Proceedings - 2017 IEEE 24th
International Conference on Web Services, ICWS 2017, pp. 524–531,
2017.

[10] M. Brito, J. Cunha, and J. Saraiva, “Identification of microservices from
monolithic applications through topic modelling,” Proceedings of the
ACM Symposium on Applied Computing, pp. 1409–1418, 2021.

[11] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. USA: Prentice Hall PTR, 2005, vol. 46, no. 2.

[12] S. P. Ma, Y. Chuang, C. W. Lan, H. M. Chen, C. Y. Huang, and C. Y. Li,
“Scenario-Based Microservice Retrieval Using Word2Vec,” Proceedings
- 2018 IEEE 15th International Conference on e-Business Engineering,
ICEBE 2018, no. Ddd, pp. 239–244, 2018.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013. [Online]. Available:
https://arxiv.org/abs/1301.3781

[14] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[15] N. Santos and A. Rito Silva, “A complexity metric for microservices
architecture migration,” in 2020 IEEE International Conference on
Software Architecture (ICSA), 2020, pp. 169–178.

[16] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tolerant systems,”
in Proceedings of the The Seventh Workshop on Hot Topics in Operating
Systems, ser. HOTOS ’99. USA: IEEE Computer Society, 1999, p. 174.

[17] B. L. Welch, “The Generalization of ‘Student’s’ problem when
several different population variances are involved,” Biometrika,
vol. 34, no. 1-2, pp. 28–35, 01 1947. [Online]. Available: https:
//doi.org/10.1093/biomet/34.1-2.28

3https://github.com/socialsoftware/mono2micro/tree/feature/code2vec

11

https://www.sciencedirect.com/science/article/pii/S0164121220302582
https://www.sciencedirect.com/science/article/pii/S0164121220302582
https://arxiv.org/abs/2204.11844
https://doi.org/10.13052/jwe1540-9589.2158
https://arxiv.org/abs/1301.3781
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28

	I Introduction
	II Related Work
	III Background
	IV Solution
	IV-A Data Collection
	IV-B Functionality Vectorization Strategies

	V Evaluation
	V-A Strategy Comparison
	V-B Decomposition Generation
	V-C Evaluation Metrics
	V-D Codebase Sample
	V-E Statistical Analysis
	V-F Results
	V-F1 Does the use of Code2Vec with the functionality perspective provides better results than sequences of accesses?
	V-F2 Does the application of the functionality perspective provides better results than Al-Debagy and Martinek's class perpective?
	V-F3 Does the input parameters of the proposed strategies impact the results of the evaluation metrics?

	V-G Threats to Validity
	V-H Lessons Learned

	VI Conclusion
	References

