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Abstract. Predictive process analytics focuses on predicting future
states, such as the outcome of running process instances. These tech-
niques often use machine learning models or deep learning models (such
as LSTM) to make such predictions. However, these deep models are
complex and difficult for users to understand. Counterfactuals answer
“what-if” questions, which are used to understand the reasoning behind
the predictions. For example, what if instead of emailing customers, cus-
tomers are being called? Would this alternative lead to a different out-
come? Current methods to generate counterfactual sequences either do
not take the process behavior into account, leading to generating invalid
or infeasible counterfactual process instances, or heavily rely on domain
knowledge. In this work, we propose a general framework that uses
evolutionary methods to generate counterfactual sequences. Our frame-
work does not require domain knowledge. Instead, we propose to train
a Markov model to compute the feasibility of generated counterfactual
sequences and adapt three other measures (delta in outcome prediction,
similarity, and sparsity) to ensure their overall viability. The evalua-
tion shows that we generate viable counterfactual sequences, outperform
baseline methods in viability, and yield similar results when compared
to the state-of-the-art method that requires domain knowledge.

Keywords: Counterfactual · Explainable AI · Predictive Process
Analytics · Evolutionary Algorithm

1 Introduction

Predictive process analytics is an emerging research field in the process mining
discipline that focuses on predicting the future states or outcome of running cases
of business processes. The proposed techniques often use Machine Learning (ML)
models or deep learning models (such as LSTM). These predictive models are
trained on historical executions of business processes (i.e., event logs) to make
predictions of future states or outcomes. Studies have shown that predictive
models can forecast the outcome of processes from various domains well [12,20].
For instance, in the medical domain, predictive models are applied to predict
the outcome or trajectory of a patient’s condition [13].
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While these predictive models are very powerful, they are usually complex
and difficult to comprehend. Therefore, they are also known as blackbox mod-
els. A lack of comprehension is undesirable for many application domains. For
example, not knowing why a mortgage application was denied makes it impos-
sible to rule out possible biases. In critical domains like medicine, the reasoning
behind decisions becomes more crucial. For instance, if we know that a treat-
ment process of a patient reduces the chances of survival, we want to know which
treatment step is the critical factor we ought to avoid. For the engineering of
fair and effective information systems, it is essential to comprehend and explain
the reasoning behind predictions.

The Explainable AI (XAI) discipline proposes counterfactuals as a human-
friendly approach to understanding the underlying reasoning of ML models [14,
p. 221]. Counterfactuals can help us answer hypothetical “what-if” questions. In
other words, assuming we know what would happen if we changed the execution
of a process instance, we could change it for the better. For example, what if
instead of emailing customers, customers are contacted by phone? Would this
alternative sequence have led to a different outcome (e.g., instead of rejecting
the offer, the customer accepts the offer)?

Existing methods can be divided into two categories: traditional and process-
aware. The traditional counterfactual methods focus on static, tabular data,
such as DICE [15]. These methods aim to minimize the feature changes while
maximize the flip in the outcome prediction. These methods do not take the
process behavior into account. Applying them directly to event logs may lead
to generating invalid or infeasible counterfactual sequences. The process-aware
methods adapt the traditional methods for counterfactual generations of event
logs [8]. While taking normative process behavior into account, these state-of-
the-art methods, however, heavily rely on domain knowledge (e.g., users need to
know the flows between milestones of a process) [8].

In this paper, we approach the problem of generating counterfactual
sequences for process outcome prediction without domain knowledge. In par-
ticular, we propose a general framework that uses evolutionary algorithms to
generate sequences. The framework contains three components. The first com-
ponent is a pre-trained predictive model, which we require to explain using
counterfactuals. We assume that the prediction model accurately predicts the
outcome of a process at any step1. The second component implements the evo-
lutionary algorithm, which generates counterfactual sequences that should be of
high quality. To quantify the quality of counterfactual sequences and select the
best ones, we define a viability measure as our third component, which takes
four measures into account, namely (1) feasibility of a counterfactual sequence,
(2) the delta flipped in the outcome prediction, (3) the similarity between fac-
tual and counterfactual, and (4) the sparsity counting the number of changes.
As we use evolutionary algorithms to generate our counterfactuals, we refer to

1
The accuracy-condition is favorable, but not necessary. If the component is accurately modelling
the real world, we can draw real-world conclusions from the explanations generated. If the com-
ponent is inaccurate, the counterfactuals only explain the prediction decisions and not the real
world.
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this framework as CREATED: the CounteRfactual Sequence generation with
Evolutionary AlgoriThms on Event Data. The name reflects how our model
CREATEs new counterfactual sequences.

To evaluate the CREATED framework, we used ten event logs from three
real-life processes and performed two experiments. First, we examined 54 con-
figurations of the CREATED framework to obtain optimal configurations and
compared our results with three baseline methods (case-based, sample-based,
and random). The results show that we outperform the baseline methods in via-
bility. In the second experiment, we compared our counterfactual sequences to
the ones generated by a state-of-the-art method, showing that we yield similar
counterfactuals without requiring domain knowledge.

The remainder of the paper is structured as follows. Sections 2 and 3 respec-
tively discuss the related work and preliminary concepts. Section 4 presents our
approach. Section 5 explains the evaluation set-up. Section 6 discusses the results,
and Sect. 7 concludes the paper.

2 Related Work

As stated before, We divide the existing methods for counterfactual generation
into two categories: traditional methods and process-aware methods. The tradi-
tional methods concern the classical ML models, and the topic of counterfactual
generation as an explanation method was first introduced by [22]. The authors
defined a loss function that incorporates the criteria to generate a counterfactual
that maximizes the likelihood of a predefined outcome and minimizes the dis-
tance to the original instance. A more recent approach by [4] incorporates four
main criteria for counterfactuals by applying a genetic algorithm with a multi-
objective fitness function [4]. This approach strongly differs from gradient-based
methods, as it does not require a differentiable objective function. However, the
above traditional methods focus on static data. They do not take process behav-
iors into account. Applying these methods directly on event logs may result in
generating infeasible counterfactual sequences.

Within process mining, the process-aware methods for counterfactuals have
followed two streams. The first steam uses the Causal Inference techniques to
analyse and model business processes, as the causal relationships can be used to
understand the effect of decisions in a process on its outcome. However, early
work has often attempted to incorporate domain-knowledge about the causality
of processes in order to improve the process model itself [2,7,19,23]. Among
these, the approach in [16] is one of the first to include counterfactual reasoning
for process optimization [16]. Later, the work by [17] uses counterfactuals to
generate alternative solutions to treatments, which lead to a desired outcome.
However, the authors do not attempt to provide an explanation of the model’s
outcome and therefore, disregard multiple viability criteria for counterfactuals
in XAI. [18] published the most recent paper on the counterfactual generation
of explanations. The authors use a known Structural Causal Model (SCM) to
guide the generation of their counterfactuals. However, this approach requires
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a process model which is as close as possible to the true process model. Our
approach assumes no knowledge of such a normative process model.

The second stream in process-aware methods adapts the traditional counter-
factual methods for process-aware counterfactuals. The DICE4EL approach [8]
extends the DICE method [15] to generate counterfactuals for event logs while
building on the same notion of incremental generation. The authors recognised
that some processes have critical events (mile-stones) which govern the overall
outcome. Hence, by simply avoiding the undesired outcome from critical event
to critical event, it is possible to limit the search space and compute viable
counterfactuals. However, their approach requires concrete domain knowledge
about these critical points. We propose a framework that avoids this constraint
and does not require domain knowledge. The LORELEY approach [9] extends
the LORE method [5] and also uses an evolutionary algorithm. However, this
approach focuses on mutating the case/event attributes. More specifically, the
approach treats the encoded features representing the control flow as a single
attribute in the crossover and mutation steps; thus, no unseen counterfactual
sequences are created. In contrast, we generate unseen process sequences. Fur-
thermore, we propose to automatically train a Markov model from the input
event log to capture the likelihood of a process sequence. This Markov model is
then used to derive the feasibility of counterfactual sequences.

3 Background

We start by formalising the event log and its elements.

Definition 1. Case, Event and Log. Let E be the universe of the event iden-
tifiers and E ⊆ E a set of events. An event log L ⊆ E∗ is a set of sequences of
events. Let C be a set of case identifiers and πc : E �→ C a surjective function
that links every element in E to a case c ∈ C in which c signifies a specific
case. For a set of events E ⊆ E , the shorthand sc denotes a particular sequence
sc = 〈e1, e2, . . . , et〉 with c as case identifier and a length of t. Each s is a trace of
the process log s ∈ L. Let T be the time domain and πt : E �→ T a non-surjective
linking function which strictly orders a set of events. Each event et consists of a
set et = {a1 ∈ A1, a2 ∈ A2, . . . , aI ∈ AI} with the size I = |A|, in which Ai is
an attribute and ai represents a possible value of that attribute.

Definition 2. Attribute Representation. Let πd : Ai �→ N be a surjective
function, which determines the dimensionality of ai, and let F be a set of size I
containing a representation function for every attribute. Let fi ∈ F be mapping
functions to a vector space fi : ai �→ R

d
i , in which d represents the dimensionality

of an attribute value d = πd(Ai). We denote any event et ∈ sc of a specific
case c as a vector, which concatenates every attribute representation fi as ect =
[f1; f2; . . . ; fI ]. Therefore, ect is embedded in a vector space of size D which is the
sum of each individual attribute dimension D =

∑
i πd(Ai). In other words, we

concatenate all representations, whether they are scalars or vectors to one final
vector representing the event. Furthermore, if we refer to a specific attribute Ai,
we use the shorthand ai.



CREATED 545

4 Methods

4.1 Methodological Framework: CREATED

To generate counterfactuals, we need to establish a conceptual framework con-
sisting of three main components. The three components are shown in Fig. 1.

Fig. 1. The CREATED framework: the input is the process log; the log is used to
train a predictive model (Component 1) and the generative model (Component 2).
This process produces a set of candidates which are subject to evaluation via the
validity metric (Component 3).

The first component is a predictive model. As we attempt to explain model
decisions with counterfactuals, the predictive model needs to be pretrained. We
can use any model that can predict the probability of a sequence. The prediction
model in this paper is a simple LSTM model using the process log as an input.
The architecture is inspired by [8]. The model is trained to predict the outcome
given a sequence.

The second component is a generative model. The generative model produces
counterfactuals given a factual sequence. We implement an evolutionary genera-
tor that takes a factual as input and yields counterfactuals candidates as output.

The generated candidates are subject to the third major component. To select
the most viable counterfactual candidate, we evaluate their viability score using
a custom metric. The metric incorporates four criteria for viable counterfactuals.
We measure the similarity between two sequences using a multivariate sequence
distance metric. The outcome-delta is the difference between the likelihood of
the factual and the counterfactual. For this purpose, we require the predictive
model, which computes a prediction score reflecting the likelihood. We measure
sparsity by counting the number of changes in the features and computing the
edit distance. Lastly, we need to determine the feasibility of a counterfactual.
We measure the feasibility by estimating the probability of a counterfactual.
Note that our method was developed for outcome prediction but can be adapted
to the next activity prediction task.
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4.2 Counterfactual Generators

Generative Model: Evolutionary Algorithm. In this section, we describe
the concrete set of operators and select a subset that we want to explore further.

For our purposes, the gene of a sequence consists of the sequence of events
within a process instance. Hence, if an offspring inherits one parent gene, it
inherits the activity associated with the event and its event attributes. Our
goal is to generate candidates by evaluating the sequence based on our viability
measure. Our measure acts as the fitness function. The candidates that are
deemed fit enough are subsequently selected to reproduce offspring. This process
is explained in Fig. 2.

Fig. 2. A newly generated offspring inheriting genes in the form of activities and event
attributes from both parents.

The offspring is subject to mutations. We evaluate the new population and
repeat the procedure until a termination condition is reached. We can optimise
the viability measure established in Sect. 4.3.

Operators. We implemented several different evolutionary operators. Each one
belongs to one of five categories. The categories are initiation, selection, crossing,
mutation, and recombination. Table 1 contains a complete list of the operators.

Naming-Conventions. We use abbreviations to refer to each model configu-
ration. For instance, CBI-RWS-OPC-RM-RR refers to an evolutionary operator

Algorithm 1. The basic structure of an evolutionary algorithm.
Require: factual, configuration, sample-size, population-size, mutation-rate,

termination-point
Ensure: The result is the final counterfactual sequences

counterfactuals ← initialize(factual)
while not termination do

cf-parents ← select(counterfactuals, sample-size)
cf-offsprings ← crossover(cf-parents)
cf-mutants ← mutate(cf-offsprings,mutation-rate)
cf-survivors ← recombine(counterfactuals, cf-mutants, population-size)
termination ← determine(cf-survivors, termination-point)
counterfactuals ← cf-survivors

end while
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Table 1. An overview of all evolutionary operators used in this paper and a short
description.

Label Name Description

Initiation

RI Random Initialisation Generates an initial population in which the event sequence was chosen at random based
on the log. The event attributes were drawn from a normal distribution

SBI Sampling-Based Initialisation Generates an initial population by sampling from a data distribution estimated from the
data directly. The event sequence was sampled using the event transition probabilities.
The attributes were sampled using distributions conditioned on the emitted events

CBI Case-Based Initialisation Samples initial population directly from the Log

Selection

RWS Roulette-Wheel-Selection Selects individuals randomly in proportion to their fitness value

TS Tournament-Selection Selects pairs of individuals and compares each pair. The better individual between both
pairs has a higher chance of being selected

ES Elitism-Selection Selects individual with the highest fitness

Crossover

UCx Uniform Crossover Uniformly choose a fraction of genes of one individual (Parent 1 ) and overwrite the
respective genes of another individual (Parent 2 )

OPC One-Point Crossover Chooses a point in the sequence and overwrites the genes of Parent 2 by the genes
Parent 2 from that point onward

TPC Two-Point Crossover Chooses two points in the sequence and overwrites the sequence in between the two
points from Parent 2 with the sequence from Parent 1

Mutation

RM Random-Mutation Inserts, changes or deletes activities randomly. Event attributes are drawn from a normal
distribution

SBM Sampling-Based Mutation Inserts, changes or deletes activities randomly. Event attributes are drawn from an
estimated data distribution

Recombination

FSR Fittest-Survivor Recombination Strictly determines the survivors among the mutated offsprings and the current
population by sorting them in terms of viability

BBR Best-of-Breed Recombination Determines offsprings that are better than the average within their generation and adds
them to survivors of past generations

RR Ranked Recombination Selects the new population differently than the former recombination operators. Instead
of using the viability directly, we sort each individuum by every viability component
separately. This approach allows us to select individuals regardless of the scales of every
individual viability measure

configuration that samples its initial population from the data (CBI), probabilis-
tically samples parents based on their fitness (RWS), crosses them on one point
(OPC), and so on. For the Uniform-Crossing (UCx) operator, we additionally
indicate its crossing rate using a number. For instance, CBI-RWS-UC3-RM-RR
uses the Uniform-Crossing (UC3) operator. The child receives roughly 30% of
the genome of one parent and 70% of another parent.

Hyperparameters. The evolutionary approach comes with a number of hyper-
parameters. We first discuss the model configuration. As shown in this section,
there are a 135 ways to combine all operators. Depending on each operator com-
bination, we might see very different behaviours. The decision of the appropriate
set of operators is by far the most important in terms of convergence speed and
result quality. The next hyperparameter is the termination point which deter-
mines the duration of the search. Optimally, we find a termination point, which
is not too early but not too late, too. The mutation rate is another hyperparam-
eter. It signifies how much a child can differ from its parent.
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4.3 Viability Measure

Feasibility-Measure. To determine the feasibility of a counterfactual trace, it
is important to consider two aspects. First, we have to compute the probability
of the sequence of event transitions. This is a difficult task, given the Open World
assumption2. Therefore, we have to assume the data is representative and the
underlying process is static. This assumption allows us to estimate first-order
transition probabilities by counting event transitions.

Second, we have to compute the feasibility of the individual feature values
given the sequence. We can relax the computation of this probability using the
Markov Assumption. In other words, we assume that each event vector depends
on the current activity but on none of the previous events and features. This
means that we can model density estimators for every event and use them to
determine the likelihood of a set of features.

We define the feasibility measure in Eq. 1, where et represents the current
event, transited from the previous event et−1. Likewise, f represents the emission
of the feature attributes. Hence, the probability of a particular sequence is the
product of the transition probability multiplied by the state emission probability
for each step.

p (e0:T , f0:T ) = p (e0) p (f0 | e0)
T∏

1

p (et | et−1) p (ft | et) (1)

Delta-Outcome. For the delta measure, we evaluate the likelihood of a coun-
terfactual trace by determining whether a counterfactual leads to the desired
outcome or not. For this purpose, we use the predictive model, which returns a
prediction for each counterfactual sequence. As we are predicting process out-
comes, we typically predict a class. However, forcing a deterministic model to
produce a different class prediction is often difficult. Therefore, we can relax
the condition by maximising the prediction score of the desired counterfactual
outcome [14]. If we compare the difference between the counterfactual predic-
tion score with the factual prediction score, we can determine an increase or
decrease. Ideally, we want to increase the likelihood of the desired outcome. We
refer to this value as delta. For the binary outcome prediction case, we define
the function as shown in Eq. 2.

delta =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|p(o|s∗) − p(o|s)| if p(o|s) > 0.5&p(o|s) > p(o|s∗)
−|p(o|s∗) − p(o|s)| if p(o|s) > 0.5&p(o|s) ≤ p(o|s∗)
|p(o|s∗) − p(o|s)| if p(o|s) ≤ 0.5&p(o|s) > p(o|s∗)
−|p(o|s∗) − p(o|s)| if p(o|s) ≤ 0.5&p(o|s) ≤ p(o|s∗)

(2)

Similarity Measure. We use a function to compute the similarity between
the factual sequence and the counterfactual candidates. To incorporate dif-
ferences in length between both sequences, we use a weighted version of the
2 In theory, we cannot know whether or not any event can follow after another event.
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Table 2. All datasets used within the evaluation. DiCE4EL is used for the qualitative
evaluation, and the remaining are used for quantitative evaluation purposes.

Dataset #Cases Min Len Max Len % Unique Traces #Unique Ev #Data Columns #Event Attr #Regular #Deviant

DiCE4EL 3 051 12 25 0.000328 23 9 7 1 853 1 198

BPIC12-25 3 051 12 25 0.000328 23 23 21 1 853 1 198

BPIC12-50 4 587 12 50 0.000218 23 23 21 2 405 2 182

BPIC12-75 4 677 12 75 0.000214 23 23 21 2 436 2 241

BPIC12-100 4 685 12 96 0.000213 23 23 21 2 442 2 243

Sepsis-25 707 5 25 0.001414 15 75 73 610 97

Sepsis-50 770 5 47 0.001299 15 76 74 662 108

Sepsis-75 777 5 66 0.001287 15 76 74 667 110

Sepsis-100 779 5 88 0.001284 15 76 74 669 110

TrafficFines 129 615 2 20 0.000008 10 40 38 70 602 59 013

Damerau-Levenshtein distance [3]. The Damerau-Levenstein distance applies a
cost constant of 1 for each sequential difference. However, as process instances
differ not only in event sequences but also in their event attribute values, we use
a distance function to weigh the cost. In the case of similarity, we apply the
euclidian distance. For formal definitions, we refer to [11, p. 42].

Sparsity Measure. For measuring the sparsity, we use the same weighted ver-
sion of the Damerau-Levenshtein distance. However, to measure the distance, we
count the number of differences between event attributes. For formal definitions,
we refer to [11, p. 42].

Viability-Measure. We combine the feasibility measure, the outcome delta,
the normalised sparsity, and normalised similarity measure by summation. As
each measure can have values between 0 and 1, the viability measure ranges
between 0 and 4. For more details on the viability measure, we refer to [11,
Chap. 3.3].

5 Evaluation

5.1 Datasets

For our evaluation, we use ten event logs of three real-life processes, which were
also used in [21]. Each dataset consists of events and contains labels that signify a
process instance’s outcome. We focus on binary outcome predictions. We include
a variation of the BPIC dataset. This dataset was used in [8]. The difference
between Hsieh et al.’s dataset and the original dataset is two-fold. First, the
authors focus on the generation of two event attributes. Second, the dataset
is primarily designed for next-activity prediction, not outcome prediction. We
modified the dataset to fit the outcome prediction model. For more information
about these datasets we refer to the comparative study by [21]. We list the
important descriptive statistics in Table 2.

We list the predictions of our prediction component in Table 3. The F1-Scores
on the test sets are generally higher for the BPIC dataset. Furthermore, in the
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case of the BPIC datasets, the prediction model always predicts the correct
outcome if the max-length of the sequence exceeds 25. It is fair to assume that
the length of a loan application process determines the chance of getting rejected
or not.

Table 3. The evaluation metrics for the prediction component on all datasets. Includes
precision, recall and f1 score for test, training and validation data.

Subset Dataset Precision Recall f1-score Support

Test Training Validation Test Training Validation Test Training Validation Test Training Validation

BPIC12-100 1.000 0.999 0.999 1.000 0.999 0.999 1.000 0.999 0.999 60.000 1000.000 841.000

BPIC12-25 0.808 0.770 0.765 0.750 0.742 0.733 0.738 0.733 0.723 60.000 1000.000 1000.000

BPIC12-50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 60.000 1000.000 819.000

BPIC12-75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 60.000 1000.000 841.000

DiCE4EL 0.780 0.806 0.821 0.700 0.755 0.749 0.677 0.744 0.739 60.000 1000.000 1000.000

Sepsis-100 0.259 0.246 0.250 0.509 0.496 0.500 0.343 0.329 0.333 55.000 123.000 42.000

Sepsis-25 0.478 0.511 0.528 0.483 0.508 0.519 0.449 0.482 0.495 60.000 1000.000 873.000

Sepsis-50 0.250 0.240 0.261 0.500 0.490 0.511 0.333 0.322 0.346 60.000 1000.000 1000.000

Sepsis-75 0.207 0.254 0.300 0.455 0.504 0.548 0.284 0.338 0.388 55.000 123.000 42.000

TrafficFines 1.000 0.987 0.984 1.000 0.987 0.983 1.000 0.987 0.983 60.000 1000.000 1000.000

5.2 Preprocessing

To prepare the data for our experiments, we employed basic tactics for prepro-
cessing. First, we split the log into a training and a test set. Then, we filter out
every case whose sequence length exceeds 25. We keep this maximum threshold
for most experiments focusing on the evolutionary algorithm. The reason is the
polynomial computation time of the viability measure. The similarity and spar-
sity components of the proposed viability measure have a runtime complexity of
at least N2. Hence, limiting the sequence length saves a substantial amount of
temporal resources. Next, we extract time variables if they are provided in the
log. Then, we normalise the values. Each categorical variable is converted using
binary encoding. The activity is label-encoded. As a result, every category is
assigned to a unique integer. The label column is binary encoded, as we focus on
outcome prediction. Lastly, we pad each sequence towards the longest sequence
in the dataset.

5.3 Baseline Models

We use three baseline models and compare them to the evolutionary models. The
first baseline generates a random sequence of events and event attributes. Hence,
we refer to this approach as Random baseline (RGW). We expect most models
to perform better than this baseline. Otherwise, it would indicate that a random
search would generate better counterfactuals than a guided one. The second
baseline resembles the random baseline. However, we use the data likelihood to
guide the random search for the generation of counterfactuals. We first generate
a random seed of possible starting events (p (e0)). Afterwards, we randomly
sample subsequent events by iteratively sampling new activities according to the
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transition probabilities we gathered from the data (
∏T

1 p (et | et−1)). Given the
sequence, we simply sample the features per event from p (ft | et). We call this
baseline Sample-Based (SBGW). In contrast to both sampling-based baselines,
the last baseline leverages actual examples of the data. We refer to this case-
based approach as Case-Based baseline (CBGW). The idea is to randomly
pick traces from the log and evaluate them using the viability measure.

5.4 Experimental Setup

All the experiments were run on a Windows machine with 12 processor cores
(Intel Core i7-9750H CPU 2.60 GHz) and 32 GB Ram. The code is written
in Python version 3.8. The models were developed with Tensorflow [1] and
NumPy [6]. We provide the full code and instructions on Github [10].

In terms of operators, we introduced three initiators, three selectors, five
crossers, two mutators, and three recombiners. For the experiments, we exclude
the random mutator as preliminary experiments showed that it often leads to
results with a feasibility of 0. To reduce the number of model configurations, we
initially compare all 135 evolutionary operator combinations. We select the best
three models and compare them to the three baseline models. Afterwards, we
assess the viability of all the chosen evolutionary and baseline generators. We
sample 10 factuals from the BPIC-25 dataset and use our models as well as the
baselines to generate 50 counterfactuals for each factual. We determine the mean
viability across the counterfactuals. We expect the evolutionary algorithms to
outperform the baselines when it comes to viability. In the end, we assess the
quality of the generated counterfactuals. In line with [8], we aim to answer the
question what would one have had to change in order to flip the outcome of
a process. The goal is to show that the counterfactuals our models generate
are viable without having to rely on domain-specific knowledge. In the current
paper, we did not include any results of the individual viability components.
Furthermore, we refer to [11, p.64] for more specific and extensive observations.

6 Results

6.1 Experiment 1: Comparing with Baseline Generators

We examined a set of model-configurations containing 135 elements. We choose
to run each model configuration for 100 evolution cycles. We randomly sample
four factual process instance from the test set. Afterwards, we use the average
viability across the instances to evaluate all model configurations. Fig. 3 shows
the bottom and top-5 model configurations based on the viability after the final
iterative cycle. The figure also shows how the viability evolves for each iteration.

According to Fig. 3, CBI-ES-UC3-SBM-RR, CBI-RWS-OPC-SBM-BBR, and
CBI-RWS-OPC-SBM-FSR are the best model configurations. As all best-
performing model-configurations use the Case-Based Inititiation-operator, we
identify it as the most important configuration. The results suggest that the ini-
tiation operator governs the starting point of the optimisation. For the following
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Fig. 3. This figure shows the average viability of the five best and worst model config-
urations. The x-axis shows how the viability evolves for each evolutionary cycle. The
semi-transparent lines are the model configurations that are neither in the best five
nor worst five groups. They show the general trend of the viability improvement.

Fig. 4. This figure shows boxplots of the viability of each model’s generated counter-
factuals.

experiment, we ran each evolutionary algorithm for 200 iterative cycles and set
the mutation rate to 0.01.

Next, we employed the baseline models mentioned in Sect. 4.2 and examined
their results across all datasets. We randomly sampled 20 factuals from the
test set and used the same factuals for every generator. We ensured that the
outcomes are evenly divided. The remaining procedure followed the established
practice of previous experiments. The results in Fig. 4 show that the evolutionary
algorithm CBI-ES-UC3-SBM-RR returns better results when it comes to the
mean viability. The worst model is the randomly generated model. The Case-
Based model appears to be evenly and normally distributed at a viability of 2.25.
The CBI-RWS-OPC-SBM-FSR has outliers that far exceed and underperform
against other evolutionary algorithms on both ends.
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Fig. 5. Boxplots of the viability of each model’s generated counterfactuals across a
heterogeneous collection of datasets.

Figure 5 displays the results of running each algorithm on a set of different
datasets. The figure shows a clear dominance of the evolutionary models across
all datasets. Here, CBI-ES-UC3-SBM-RR and CBI-RWS-OPC-SBM-FSR dis-
play a higher median of viability across all datasets. This is unsurprising as
the evolutionary algorithm uses initiators based on the baselines. However, it is
surprising that the evolutionary models consistently outperform the Casebased-
Search Generator (green) across all datasets. In six out of nine datasets, we see
an improvement of at least 0.15. The highest median is reached for CBI-RWS-
OPC-SBM-FSR at 2.94. The Random-Search Generator never manages to come
even close to the case-based model. Except for the BPIC12-100 dataset, the
Random-Search Generator has a median below 2.

The results for Fig. 5 show that both evolutionary algorithms outperform
the competition across all datasets and against all baselines. This result shows
that the algorithm can outperform baselines regardless of the process log and
its length. The baseline comparison also shows that we can optimise towards
viability successfully. Recall that we defined four criteria for the viability of
counterfactuals (similarity, sparsity, feasibility, and delta in likelihood); a model
optimising towards those criteria can apparently return superior results.
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Table 4. A comparison between the CBI-RWS-OPC-SBM-FSR and D4EL.

Factual Seq. Our CF Seq. DiCE4EL CF Seq.

Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

5 000 A-SUBMITTED 0 112 7 000 A-SUBMITTED 1 112

5 000 A-PARTLYSUBMITTED 0 112 7 000 A-PARTLYSUBMITTED 1 112

5 000 A-PREACCEPTED 0 101 7 000 A-PREACCEPTED 1 112

5 000 W-Afhandelen leads 0 101 A-SUBMITTED 112 5 000

5 000 A-ACCEPTED 0 111 A-PARTLYSUBMITTED 112 5 000

5 000 O-SELECTED 0 111 7 000 A-ACCEPTED 1 111 A-PREACCEPTED 112 5 000

5 000 A-FINALIZED 0 111 7 000 O-SELECTED 1 111 A-ACCEPTED 1 5 000

5 000 O-CREATED 0 111 7 000 A-FINALIZED 1 111 O-SELECTED 1 5 000

5 000 O-SENT 0 111 7 000 O-CREATED 1 111 A-FINALIZED 1 5 000

5 000 W-Completeren aanvraag 0 111 7 000 O-SENT 1 111 O-CREATED 1 5 000

5 000 W-Nabellen offertes 0 111 7 000 W-Completeren aanvraag 1 111 O-SENT 1 5 000

5 000 O-CANCELLED 0 111 W-Completeren aanvraag 1 5 000

5 000 A-CANCELLED 0 111 7 000 W-Nabellen offertes 1 111 O-SENT-BACK 11259 5 000

5 000 W-Nabellen offertes 0 111 7 000 W-Nabellen offertes 1 111 W-Nabellen offertes 11259 5 000

7 000 O-ACCEPTED 1 629 O-ACCEPTED 9 5 000

6.2 Experiment 2: Qualitative Assessment

Figure 4 shows the generation of the model-configuration CBI-RWS-OPC-SBM-
FSR and the model of [8]. Both models also return reasonable counterfactuals.
The counterfactual sequence of events of both approaches are almost identi-
cal. For instance, our counterfactual and the D4EL counterfactual recognize
that after O-SENT, there appears at least one W-Completeren aanvraag and
one W-Nabellen offertes that eventually leads to an acceptance of the coun-
terfactual. We also see that both evolutionary algorithms start the process
with the correct sequence of A-SUBMITTED, A-PARTLYSUBMITTED and
A-PREACCEPTED. These are strictly the same across all cases. If our genera-
tive model had not recognised these, one could question its utility.

In Table 5 we applied the same approach on a different dataset. The generator
generates a counterfactual that is close to the original factual and only modifies
the number of open cases. Here, we can conclude that a sudden increase in open
cases during the Add penalty step results in a change of outcome.

The examples show that our generative approach does not rely on domain
knowledge, such as milestones. In contrast, the approach by [8] only applies to
datasets with clear milestones such as BPIC-12.

Table 5. A counterfactual for the Traffic-Fines dataset by the CBI-RWS-OPC-SBM-
FSR model.

Factual Seq. Our CF Seq.

Open Cases Activity Outcome Resource Open Cases Activity Outcome Resource

16 318 Create Fine 1 537 15 742 Create Fine 0 537

16 612 Send Fine 1 537 16 504 Send Fine 0 537

16 693 Insert Fine Notification 1 537 16 693 Insert Fine Notification 0 537

16 972 Add penalty 1 537
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6.3 Discussion and Limitations

All models successfully flip the outcome of the prediction model and are close to
the factual. In contrast, the model by [8] proposes more changes to the sequence.
It is important to recall that the generated counterfactuals focus on explaining
the prediction model rather than the true process. More specifically, our gener-
ative model shows which events and attributes have to be present or omitted to
flip the outcome of the prediction model.

In contrast to [8], we show that we can create these counterfactuals with-
out incorporating domain-specific knowledge, such as an understanding of mile-
stone patterns. Domain knowledge can help to improve or evaluate our solutions.
However, they are not strictly required. Furthermore, our models can generate
sequences not present within the input event log. Case-based solutions often
overlook this aspect, as they are heavily biased toward the input data.

It is worthwhile to discuss that counterfactual sequences differ from coun-
terfactual rules or explanations. To obtain explicit explanations or rules, the
generated counterfactuals should be compared to the factual. Our framework
enables some alignments between the generated counterfactuals with the factual
sequence (see Fig. 4), which may act as an explanation. We consider deriving
rules as a post-prior analysis, which is interesting for future work.

Our viability components showed that they can lead to an optimised solution.
However, there are most likely other ways to operationalise viability criteria. In
addition, what makes an excellent counterfactual and how we can quantify that
is still a subject of debate. Currently, there is a lack of standardized evaluation
protocols, benchmark techniques, and datasets. As a result, many researchers
fall back on defining their custom evaluation methods. In fact, this is still an
open research question [8,15]. Therefore, we often have to evaluate the coun-
terfactuals in some subjective and qualitative way. In this paper, we decided
to compare the counterfactuals with another approach in the literature and the
factual themselves. Because our counterfactuals produced reasonable results, we
deemed them viable. As future work, we also see value in incorporating experts
to evaluate such an approach.

7 Conclusion

In this paper, we proposed CREATED, a modular framework to generate viable
counterfactuals. The framework incorporates an evolutionary algorithm to gen-
erate counterfactual sequences while not requiring any domain knowledge other
than the log itself. In addition, we proposed a viability measure to quantify
and assess the quality of counterfactual sequences when compared to a factual
sequence. The viability measure takes four aspects into account: feasibility, the
delta in flipping the outcome prediction, similarity, and sparsity. The approach
is capable of generating counterfactuals without explicit knowledge about the
domain, as we only require the log. We achieve this by incorporating a Markov
model trained on the event log. Our evaluation shows that our framework can
generate counterfactual sequences which are higher than our naive baselines
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(i.e., case-based, sample-based, and random baselines). With these results, we
demonstrate that optimizing a viability measure does generate higher-quality
counterfactuals. We also compared the generated counterfactuals to the state-
of-the-art method in the literature and show that our framework can generate
similar counterfactuals, without using domain knowledge. The current feasibility
measure tends to return lower values than other viability components as it is very
sensitive to trace length. In the future, we aim to investigate better feasibility
measures.
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