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Abstract. Recent advancements in post-Quantum secure signing have revitalized interest in
one-time signatures, such as Lamport’s, and their many signature extensions. Predominantly
based on standard hash functions, these signatures avoid reliance on number theoretic assump-
tions. Existing methods utilize a commitment array, with de-commitment contingent on the
hashed message’s representation bits. State-of-the-art variants incorporate pseudorandom func-
tions.
This study introduces a novel method utilizing a probabilistic “set membership data structure”
derived from hash functions. It involves accessing a long array with k independent hash functions
for each message, analogous to Bloom filters. This stateless signature scheme is adjustable to
accommodate any pre-set maximum number of signatures by modulating the array’s length.
The key concept is the partial loading of the de-committed array, ensuring validation of signed
messages, non-validation of unsigned messages, and signature unforgeability (forgery equates
to decommitment without the private key). This approach extends to improving one-time or
bounded-message Constructions, like the Naor-Yung extension, for regular signature applications
in the new Hash-Based Stateless Signature (HBSS) scheme.

Keywords: Stateless signatures · Hash-based signatures · Cryptographic hash functions · Post-
quantum security

1 Introduction

Binding a public key to an entity is the hardest chain in connecting an entity in the real world, be it
a person, a company, or an organization, to its digital representation. It is a cumbersome process that
may involve certificate authorities, courts, lawyers, offline and online documents, cameras, biometrics,
etc., binding the entity (detailed description) with the public key.

One would like to minimize the number of binding a public key (that fits a public value that is
carefully kept privately by the user) to the entity he/she represents (either themselves or another
physical or organizational entity).

Post-quantum one-way functions and cryptographic schemes based on: Lattice-based cryptography,
multivariate cryptography, hash-based cryptography, code-based cryptography, supersingular elliptic
curve isogeny cryptography, see e.g., [1]. Out of the above, non-number-theory based hash primitives,
such as the SHAs, are not based on long-standing unsolved (in polynomial time) mathematical problems
for which a solution may be (or secretly already has been) found; SHA512 is commonly believed to be
post-quantum.

Lamport’s signature can be based on any one-way function as a primitive, and in particular, those
that are PQ-secure and hence are not proven to be breakable by the Shor algorithm [18]. In particular,
the Secure Hashing Algorithm (SHA) family is believed to be quantum-safe. The main possible cavity
of Lamport’s signature is the one-time usage, requiring a new binding process of another public key for
each signature. Merkle trees allow performing many signatures (exponentially growing number with
the tree depth) but requires tracking the state, namely the leaves that are already used [14,15].

⋆ Partially supported by the Rita Altura Trust Chair in Computer Science and the Israeli Science Foundation
(Grant No. 465/22).
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A complicated scheme to yield a stateless signature is presented in [10] whereas lately, more efficient
stateless schemes, SPHINCS, were presented, [12,2]. The SPHINCS schemes, in principle, are based
on Merkle trees and the idea of trees of trees (where the capability of further signing is increased
dynamically), signing the next signing object is a basic idea originating from [16], where this idea was
proposed as a way to base signatures on one-way only functions (without the trapdoor property, which
was needed till then for secure signatures), yet has now been incorporated into NIST proposals.

See also [6,17,2,4] for more recent (hyper) tree based stateless schemes. We believe the various
SPHINCS schemes are more complicated to implement and maintain than HBSS, the scheme we
suggest here.

2 Related Work

Many signature schemes exist that do not rely on hash-based cryptography. These are based on func-
tions believed to be one-way, including code-based, lattice-based, and multivariable cryptography. Our
focus, however, is on hash-based schemes that can employ any one-way function primitive, particu-
larly SHA and AES, which are planned for use in post-quantum secure communication (e.g., as part
of symmetric encryption). Consequently, our primary competitor is the NIST-approved SPHINCS
enhancement, SPHINCS+.

SPHINCS is distinguished by its unique “tree of trees” architecture. This structure comprises a
complete binary hash tree, where the internal nodes values are hash values derived from the XOR
operation on the concatenated values of their direct node descendants, integrated with the mask at
their respective levels. The authentication path to a leaf includes all sibling nodes along the path from
the selected leaf to the root. Each leaf in the tree functions as a public key for the WOTS+ L-trees,
striking a balance between tree size and security, enabling smaller trees without compromising security.
SPHINCS+ represents an enhancement over its predecessor, improving upon SPHINCS in terms of
speed and signature size.

In contrast, our research proposes the HBSS scheme, which adopts a more streamlined approach.
Whereas SPHINCS and SPHINCS+ feature complex cryptographic structures, HBSS emphasizes sim-
plicity in implementation and maintenance, without sacrificing security and efficiency. This simplicity
positions HBSS as an attractive alternative in scenarios where ease of implementation is paramount,
offering a formidable solution in the field of stateless signatures.

3 Our HBSS Scheme

This scheme is based on several facets involving hash functions and it seems to be simpler (to implement
and maintain) as a stateless bounded (multi-time) signature. This is so since it is inherently stateless.
Further, HBSS has a new approach: it is inspired by Hash tables and Bloom filters (which is an array
data structure that keeps membership of strings compactly), where a load factor α plays an essential
performance/correctness factor.

A long array Preimage of dimensions 2 ×m is created (where m is a parameter), together with a
Commitment array of the same dimensions. Then 2m random (or pseudorandom) numbers are created
and assigned to the 2m entries of the Preimage array. Lastly, each Commitment[i, j] entry is assigned
by the SHA result of the Preimage[i, j] entry. The value of the Commitment array is made public,
binding with the entity description that holds the Preimage private.

A comment: usually, a certificate with both a public key (commitment array) and the entity de-
scription is signed by (the private key of) a certificate authority for which, in turn, the public key is
known worldwide. Obviously, exposure of a private key of certificate authority can cause tremendous
harm to internet security. This PKI infrastructure weakness is out of the scope of our paper (see, e.g.,
[7] for a relevant discussion).

Back to our technique: To sign a signature to a message, a message digestD of length k is computed,
by using, for example, SHA512 (where the other particular hash functions can be chosen, e.g., SHA256)
is the size of the hash function output which is tuned to the security level chosen.

For each message, it will be hashed by the collection of k independent random hash functions
(assuming SHA is a random oracle) into indices in the array, and these indices will open (i.e., expose)
their primages corresponding to the committed value at that index. In detail: k indices, i0, i1, . . . ik−1
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are computed, by assigning the value of SHA(j,D) mod m, 0 ≤ j ≤ k−1 to ij . The signer then exposes
Preimage[D[j], ij ] for every 0 ≤ j ≤ k − 1.

Note that some of the Preimage entries can be already exposed; however, m is chosen to be large
enough to yield a small ratio (say, less than 1/2) of exposed entries of Preimage with relation to m,
taking in account all the signatures made in a lifetime.

There is a tradeoff between storing all the values of Preimage array versus computing them from
s0 and s1 as needed. Note that it is possible to store several representative values of nested hashes
for s0 and s1, spread in the 2m domain, and continue the nested hash from them. Thus, keeping a
small memory and reducing the needed number of nested hashes when an entry of Preimage should
be revealed.

Pseudocode for initializing the public and private arrays, Commitment and Preimage, respectively,
appears in Algorithm 1. Algorithm 1 allocates two arrays, each of two dimensions. The first dimension
corresponds to a digest bit being either 0 or 1, just as Lamport’s signature does. The second dimension
corresponds to the length of the digest. Random numbers, in the pseudocode, a particular concrete
choice of 512 bits long is made, are assigned to the 2m entries of Preimage (lines 4-5). Then each of
the entries of Preimage is hashed. Again a particular concrete choice of SHA512 is made to compute
the corresponding entry of Commitment array (lines 6-7).

The pseudocode for signing appears in Algorithm 2. The pseudocode starts with the digest, D,
computation, here too, SHA512 is the particular concrete hash function used (line 1). Then, an array,
Signature, of k = |D| entries, each of size KeySize bits, is allocated (line 2). Each Signature entry is
assigned by an entry from the Preimage array. Where the j’th index of the Signature array is assigned
by one of the two ij entries of Preimage, where ij is a result of a hash function3 over the signed Message

(line 4). The choice of which of the two entries of the ij index is assigned to the j’th entry of Signature
is made by the value of the j’th bit in the digest (lines 5 to 9).

The pseudocode for signature verification appears in Algorithm 3. First, the message digests D is
calculated (line 1). Then the Signature entries are verified to correspond to the indexes ij , as computed
in the signature process, and the value of the j’th bit of the digest. A True value is returned only when
all entries of Signature are correct, and False is returned otherwise.

Algorithm 1 HBSS – keygen()

1: Preimage← array [2,m] of KeySize

2: Commitment← array [2,m] of KeySize

3: for i = 0 to m− 1 do

4: Preimage[0][i]← Random(512bits)
5: Preimage[1][i]← Random(512bits)
6: Commitment[0][i]← SHA512(Preimage)[0][i]
7: Commitment[1][i]← SHA512(Preimage)[1][i]
8: end for

return key(Preimage, Commitment)

Algorithm 2 HBSS – sign(Message, Preimage)

1: D ← hash with SHA512(Message)
2: Signature← array(k ·KeySize)
3: for j = 0 to k − 1 do

4: ij ← SHA512(j,Message) mod m
5: if D[j] = 0 then

6: Signature[j]← Preimage[0, ij ]
7: else

8: Signature[j]← Preimage[1, ij ]
9: end if

10: end for

return Signature

3 Here SHA512 over the index j together with the message, is used to make each index pseudo-random and
pseudo-independent. Many other possibilities for using k results of hash functions as done in Bloom filter
are possible as well.



4 Dolev, Yagudaev, Yung

Algorithm 3 HBSS – Verify(Message,Signature,Commitment)

1: D ← hash with SHA512(Message)
2: for j = 0 to k − 1 do

3: ij ← SHA512(j,Message) mod m
4: if D[j] = 0 then

5: if (SHA512(Signature[j]) ̸= Commitment[0, ij ] ) then return False

6: end if

7: else

8: if (SHA512(Signature[j]) ̸= Commitment[1, ij ] ) then return False

9: end if

10: end if

11: end for

return True

The size of m is a function of the upper bound on n, the number of signatures made during the
lifetime of the system/entity, and k the number of entries of Preimage exposed (αm of which, for the
first time) with each signature. If we chose m ≥ 2nk, then even the last signature of the n exposes, for
the first time, an expected number of k/2 entries of the Preimage array. Thus, if k is 512 bits (when
using SHA512), then it is expected that 256 of them are verified to be originated by the signer, which
in turn may imply a sufficient security level. Hence, the choice of k, the upper bound on α, and the
size of each entry of the Preimage array can be tuned to imply the required security level.

Note that several one-way functions (OWF) can be chosen; (a) one that is used to define the entries
of Commitment array as the OWF function of the entries of Preimage array, (b) one that is used to
define D the digest of messages, and (c) one that defines the k indices in m for which a corresponding
entry (of the two) of Preimage should be revealed.

Next, we outline the claims that ensure the post-quantum security of our scheme.

Theorem 1. HBSS is post-quantum secure.

Proof.

We establish our signing scheme parameters by the following guidelines: (a) Entries of Preimage are
random or generated by a sufficiently strong pseudorandom mechanism, potentially utilizing SHA256.
Each entry consists of an adequate number of bits, for example, 256 bits. Predicting or calculating
the values of the Preimage entries is computationally infeasible unless they are explicitly disclosed. (b)
Entries of Commitment result from a robust one-way cryptographic hash, such as SHA256, rendering
them computationally infeasible to invert. (c) α is maintained small, ideally α < 1/2, or confined to a
small proportion relative to an upper bound on n. (d) k is sufficiently large, for instance, k ≥ 512. To
achieve 512 bits digest from the message msg, one might concatenate the result of SHA256(1,msg)
with SHA256(2,msg). Under these stipulations, even for the final signature, the expected number of
newly exposed entries in the Preimage array exceeds 256. This number is determined by the signer. (e)
The probing indices for revealing entries of the Preimage array are the outcomes of a post-quantum
hash function, such as SHA256.

Consider M as the set of messages signed thus far, exposing entries of the Preimage array. Our
policy selections imply that it is fundamentally impossible, even with a quantum computer employing
Grover’s algorithm [11], to find a message msg /∈ M that utilizes only the previously exposed entries
of the Preimage array. Note that the necessity to invert SHA256 arises even with one unexposed entry.
Mining a message (analogous to a blockchain preimage search) that results in indices of only already
exposed entries in the Preimage array necessitates scanning an expected number of potential messages
on the order of 2256. This task is virtually impossible, even when equipped with a quantum computer.
Thus, the following requirements hold:

• Soundness: If the signer did not sign, there is a way to show it, given access to the signer’s signing

history.

This is clear when at least one of the signature entries does not correspond, via hash, to the public
key array entry. If all signature entries correspond to the public key array, finding a message with a
signature that is only mapped to the revealed entries is essentially impossible.
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• Correctness: If the signer signed, there is no way to repudiate.

See the non-deniability arguments above.

• Unforgeability: The signer or any poly-time adversary cannot forge a new message.

The choice of parameter choices implies that forging a new message is essentially impossible.
⊓⊔

4 One Dimensional Bloom Filter

The new technique used here is the hash mapping of the indexes to the array. Apparently, a single-
dimension Bloom filter will fully capture the power of our suggestion. Instead of mapping the digest
value 0 digits to a single dimension array and the value one digit to a separate one, we can use k hash
functions from the message itself or from the digest of the message.

The single-dimension solution is equivalent to the two dimensions solution. We choose one of the
two single-dimensional arrays with equal probability and then choose indexes within the chosen array.

The security level, the resources, and the performance are functions of the particular choices made;
for which the detailed discussion is omitted from this short version.

Bloom filter [5] common analysis exhibits a false positive probability for n items each using k hash
mappings in an array of size m to be less than: (1− e−(k(n+0.5)/(m−1))k.

The probability for an entry of Preimage to be not yet revealed is p = (1 − 1/m)kn ≈ e−kn/m.
Which yield me−kn/m expected number of unrevealed Preimage entries, or expected α = me−kn/m/m.

Choosing k to be optimal for n and m, one should choose k = (m ln 2)/n, yielding α = 1/2 after
the last signature is issued. Thus, the expected number of entries of the Preimage revealed for the last
signature, when k = 1024, is 512.

A malicious signer may act toward a deniability claim, choosing many messages that together reveal
all the entries a message msg reveals. By doing so, the signer wishes to claim later that he/she did not
sign msg. However, the malicious signer may need to “mine” (in the head) messages that (together)
expose the k indexes that msg exposes. The probability of hitting one index of these k indexes is 1/m.
The expected number of messages that should be examined to have full coverage for the k entries of
msg is mk/k; for example, when m = 2 Billion and k = 1024, the adversary is doomed to surrender.

If k = 1024, then the number of signatures n, is approximate to be n = m/1477, say we use one
TeraBytes of memory; in fact, for now, we use even two TeraBytes for Preimage and Commitment, in
the sequel, we suggest ways to reduce the need for storage for the Preimage array or using Merkle tree
(and re-computation of the tree) for the Commitment array. Divided the two TeraBytes by 512 bits for
each entry for both Preimage and Commitment, we get m = 2 billion entries (as one TeraByte divided
by half KiloByte is more than two billion), which implies n, to be more than 1.3 million signatures.

To avoid storing the Preimage array, one may use the technique suggested in [8] that uses two
random seeds s0 and s1 that are used to produce the 2m entries of Preimage. Namely, to produce a
pseudo-random sequence from a one-way function, such as SHA. To simplify the discussion, consider
the entries of Preimage as a single sequence where Preimage[1, i] immediately follows Preimage[0, i]. To
produce the j’th entry in the above 2m (or m, in terms of the one-dimensional case) length sequence,
s0 is hashed j times. Namely, the result of r1 =SHA(s0) is hashed again to obtain r2 =SHA(r1) and
so on, until rj is reached. Then s1 is hashed 2m− j times to obtain t2m−j . At last the corresponding
entry of Preimage is assigned by the xor of rj and t2m−j , namely, rj ⊕ t2m−j . The xor operation serves
as a “lock” for the possibility of predicting other entries of Preimage (by the use of SHA) once the
value of Preimage in the j’th index is revealed.

We utilized this approach to implement the HBSS* scheme, which conserves memory space by
retaining only a portion of the Preimage array.

For the HBSS* scheme, a parameter named Step is introduced. This parameter dictates the size
of the Preimage array. After each Step, two preimage values are computed based on two seeds. With
these, any desired preimage can be regenerated, showcasing a tradeoff in memory space. During the
signature process, the targeted preimage value is deduced. The signature size is consistent with the
HBSS scheme, and the verification process is analogous to that of HBSS.
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Algorithm 4 HBSS* – keygen()

1: Preimage← [2, Step]
2: Seeds← [2, 2m/Step]
3: Commitment← array [2,m] of KeySize

4: Seeds[0][0]← Random(256 bits)
5: Seeds[1][0]← Random(256 bits)
6: for i = 0 to 2m/Step− 1 do

7: Seeds[0][i+ 1]← Seeds[0][i]
8: Seeds[1][i+ 1]← Seeds[1][i]
9: for j = 0 to Step do

10: Seeds[0][i+ 1]← SHA256(Seeds[0][i+ 1])
11: Seeds[1][i+ 1]← SHA256(Seeds[1][i+ 1])
12: end for

13: end for

14: for i = 0 to 2m/Step do

15: Preimage[0][0]← Seeds[0][i]
16: Preimage[1][0]← Seeds[1][2m/Step− i− 1]
17: for j = 0 to Step− 1 do

18: Preimage[0][j + 1]← SHA256(Preimage[0][j])
19: Preimage[1][j + 1]← SHA256(Preimage[1][j])
20: end for

21: for j = 0 to Step do

22: Commitment[j + i · Step]← SHA256(Preimage[0][j]⊕ Preimage[1][Step− j − 1])
23: end for

24: end for

return key(Seeds, Commitment)

Algorithm 5 HBSS* – sign(Message, Seeds)

1: D ← hash with SHA256(Message)
2: Signature← array(k ·KeySize)
3: for j = 0 to k − 1 do

4: ij ← SHA256(j,Message) mod 2m
5: Preimage[0]← Seeds[0][ij/Step]
6: Preimage[1]← Seeds[1][(2m− ij)/Step− 1]
7: bit← D[j]
8: for k = 0 to (ij + bit) mod Step do

9: Preimage[0]← SHA256(Preimage[0])
10: end for

11: for k = 0 to Step− ((ij + bit) mod Step)− 1 do

12: Preimage[1]← SHA256(Preimage[1])
13: end for

14: Signature[j]← Preimage[0]⊕ Preimage[1]
15: end for

return Signature

Algorithm 6 HBSS* – verify(Message, Signature, Commitment)

1: D ← hash with SHA256(Message)
2: for j = 0 to k − 1 do

3: ij ← SHA256(j,Message) mod 2m
4: bit← D[j]
5: if SHA256(Signature[j]) ̸= Commitment[ij + bit] then return False

6: end if

7: end for

return True
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5 HBSS with Committeed Merkle (Tree and) Root

When we are restricted in the commitment storage, we can employ the Merkle tree scheme over our
Commitment array entries and publish only the tree’s root. Computing and exposing in the signature
the relevant paths (in fact, a subtree) to the root from the leaves commitments and the corresponding
preimage of these leaves.

There is a tradeoff between the storage and processing used in different settings for the preimages
(whether seed(s) for reproducible pseudorandom or actual random values), the storage used by the
signing party for the commitment array (whether actual commitment array or Merkle tree for the
commitment), the storage is publicly verified and maintained by authority/blockchain to be associated
with the signer (whether the entire commitment array or only the Merkle root value). The particular
setting implies different messages signature lengths.

To illustrate, the HBSS** scheme seamlessly integrates the Merkletree with the Preimage array,
emphasizing the unique use of the tree’s root for signature verification.

Algorithm 7 HBSS** – keygen()

1: Preimage← array[2m] of KeySize

2: for i = 0 to 2m do

3: Preimage[i]← Random(256 bits)
4: end for

5: Tree← MerkleTree(Preimage)

return key(Tree, Preimage)

Algorithm 8 HBSS** – sign(Message,Tree,Preimage)

1: D ← hash with SHA512(Message)
2: Signature← array(k · (2 + log

2
(m)) of KeySize

3: for j = 0 to k − 1 do

4: ij ← SHA256(j,message) mod 2m
5: bit← D[j]
6: Signature[j]← Preimage[ij + bit] + authpath(ij + bit)
7: end for

return Signature

Algorithm 9 HBSS** – verify(Message, Signature, root)

1: D ← hash with SHA512(Message)
2: for j = 0 to k − 1 do

3: ij ← SHA256(j,message) mod 2m
4: path number = ij + bit
5: path← SHA256(signature[j][0])
6: for i = 1 to log

2
(2m) + 1 do

7: if path number mod 2 == 0 then

8: path← SHA256(path||signature[j][i])
9: else

10: path← SHA256(signature[j][i]||path)
11: end if

12: path number = path number ÷ 2
13: end for

14: if path ̸= root then return False

15: end if

16: end for

return True



8 Dolev, Yagudaev, Yung

In the HBSS** scheme, instead of generating a Commitment array, a comprehensive Merkle tree
is built in tandem with the Preimage array. During the signing phase, the path of the preimage’s hash
value in the Merkle tree—leading up to the root—is disclosed alongside the desired preimage value.
For verify, only the root value of the Merkle tree is necessary.

6 Experiments

Table 1. Speed Evaluation

Scheme Key gen [cycles] Sign [cycles] Verify
[cycles]

Pub
key
[Bytes]

Sec key
[Bytes]

Sig
[Bytes]

Signatures NIST
level

Method

dilithium5 300,140 513,640 296,120 2,592 4,864 4,595 5 Lattice

sphincs-sha256-
256f-robust

19,856,910 384,169,000 8,565,840 64 128 49,856 264 5 Hash

sphincs-sha256-
256f-simple

4,899,140 102,604,610 3,472,430 64 128 49,856 264 5 Hash

sphincs-sha256-
256s-robust

315,851,400 1,875,061,810 3,649,740 64 128 29,792 264 5 Hash

sphincs-sha256-
256s-simple

77,007,920 566,442,880 1,287,760 64 128 29,792 264 5 Hash

HBSS* (1) 559,954,374,550 930,920 968,570 32 · 230 32 · (231 +2) 16,384 ≈ 219 5 Hash

HBSS* (4) 759,982,140,480 1,148,950 955,970 32 · 230 32·(229+23) 16,384 ≈ 219 5 Hash

HBSS** 4,038,277,757,770 7,483,620 4,304,980 32 32 · 3 · 230 507,904 ≈ 219 5 Hash

The speed evaluation tests were conducted using the AMD EPYC 7702P 64-Core Processor. The
results for the dilithium5 and sphincs+ schemes are consistent with those reported in publications
[9] and [3]. We have also included the results of our schemes, which are elucidated further in the
subsequent figures.

Fig. 1. HBSS-KeyGen
The HBSS key generation process involves the calculation of preimage and commitment values. As noted,

both the Preimage and Commitment sizes are identical in HBSS, encompassing all values.
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Fig. 2. HBSS-Sign
HBSS’s signing process is influenced by the randomness of the preimage values, accounting for variations in

cycle times. The signature size in HBSS remains consistent.

Fig. 3. HBSS-Verify
The verification time for HBSS remains analogous to that of the HBSS* scheme.
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Fig. 4. HBSS*-KeyGen
In the HBSS* variant, the key generation time remains consistent regardless of the Step parameter. Notably,
HBSS* boasts the most efficient key generation process among all the investigated variants. The extended
duration observed in HBSS and HBSS** is due to the requirement of computing a pseudo-random value for
each preimage. Conversely, HBSS* requires only two pseudo-random value calculations for the seeds and
subsequently employs SHA256. In our specific implementation, the execution of SHA256 is faster than the

generation of a pseudo-random value.

Fig. 5. HBSS*-Sign
There is a direct linear correlation between the size of the Step and the signing cycle time. The signature size
for HBSS* is consistent with that of the original HBSS. Notably, in HBSS and HBSS**, the signing duration

hinges on the size of the Preimage array, which is already established and merely requires access. In
contrast, for HBSS*, the signing time is determined by the chosen Step size. To identify the desired preimage

in HBSS*, one must execute Step iterations.

Fig. 6. HBSS*-Verify
The verification time for HBSS* mirrors that of the original HBSS scheme.
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Fig. 7. HBSS**-KeyGen
HBSS** takes more time during key generation compared to its predecessors. This increase is attributed to

the necessity of computing a larger Merkle tree in lieu of the Commitment array present in HBSS.

Fig. 8. HBSS**-Sign
The signing process in HBSS** reveals not only the desired preimage value but also the path of the

preimage’s hash value in the Merkle tree, up to the root.
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Fig. 9. HBSS**-Verify
The verification process in HBSS** is inherently more extensive due to its reliance on the Merkle tree’s root
value for verification. Coupled with its larger signature size, this makes the HBSS** verification time longer

compared to HBSS and HBSS*.

7 Extensions

The entity may sign a new public key (extension) once the ratio α of the number of exposed entries
of Preimage, over m, is bigger than a threshold. Thus, the signer may upper bound the number of
signatures made during a period, say a year, and sign and commit to a new additional Commitment

array at the end of the period. Such a signature over the new Commitment implies the binding of
the new Commitment to the entity. The verifier will not accept signatures from a Commitment array
for which the threshold is violated and will verify the binding chain of the (entries indexes in the)
commitment array used for the signature; a binding chain that leads to the first Commitment array.
The signature will be regarded as valid only when the binding chain leads to the (first) trusted au-
thentication process. Obviously, the signer will not reveal too many entries of any Preimage, avoiding
the possibility of forging his/her signature by others.

Note that finding an input (collision) when several (say, half of the) bits of the inputs for the
cryptographic hash function, e.g., SHA512, are known resembles the mining task in blockchain; mining
for an input with so many zeroes. The level of security can be tuned to be harder when choosing SHA
with more bits. To facilitate, for our purposes, an SHA result of 1024 bits (or more), we can define D
to be a concatenation of i results of SHA512, where, say, the j’th, 1 ≤ j ≤ i concatenated result is
SHA512(j,m).

All along, we suggest using a post-quantum hash function, such as SHA512, for which there exist
fast and efficient implementations, see, e.g., [13].

The complete code can be found in [19] .
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