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Abstract. Failures in pipeline transportation of crude oil have numer-
ous adverse effects, such as ecological degradation, environmental pol-
lution and a decrease in revenue for the operators, to mention a few.
Efficient data and service management can predict and prevent these
failures, reducing the downtime of the pipeline infrastructure, among
other benefits. Thus, we propose a two-stage approach to data and ser-
vice management in Leakage Detection and Monitoring Systems (LDMS)
for crude oil pipelines. It aims to maximise the accuracy of leakage detec-
tion and localisation in a fault-tolerant and energy-efficient manner. The
problem is modelled as a Markov Decision Process (MDP) based on the
historical incident data from the Nigerian National Petroleum Corpo-
ration (NNPC) pipeline networks. Results obtained guarantee detection
in at least two deployed nodes with a minimum localisation accuracy
of 90%. Additionally, we achieved approximately 77% and 26% reduc-
tion in energy consumption compared to a pessimistic strategy and a
globalised heuristic approach, respectively.

1 Introduction

The operations and processes across the oil and gas industry’s three sectors
(upstream, midstream, and downstream) present vast data. Although there are
several efforts to gain insights into the data in the upstream and downstream
sectors through big data analytics [1, 2], the data in the midstream (transporta-
tion) sector is largely left unexploited. In this sector alone, every 150,000 miles
of pipeline produces up to ten terabytes of data [3] through monitoring systems.
Such data enable the timely detection and localisation of leakages in the pipeline
and allow the deployment of services like predictive analysis, emergency ser-
vice and others. The monitoring systems utilised include legacy Leak Detection
Monitoring Systems (LDMS) such as Supervisory Control And Data Acquisition
(SCADA) and, more recently, Wireless Sensor Networks (WSN) and Internet of
Things (IoT)-based systems.

Nowadays, data and service management has become paramount in the mid-
stream sector due to ageing infrastructure, outdated technology, and incessant
node vandalisation [4, 5]. Its benefits include the reduction of the annual down-
time of LDMS by 70% and the associated cost by 22% through timely failure



detection and predictive maintenance [4]. Aliguliyev et al. and Hajirahimova, in
their work [2, 6], also highlight other benefits of data management and analytics
in this context.
However, data and service management must be efficiently done as it affects
various performance metrics in WSN and IoT-based LDMS. For example, de-
spite enabling data processing through fog computing in these systems, their
responsiveness, the energy consumption [7] and real-time management [8] in the
form of network fluctuation, latency, communication failure, and node failures
are nonetheless a challenge.

Therefore, this paper presents our work on efficient and robust data and
service management in WSN and IoT-based LDMS. The objectives are:

1. To analyse the historical data related to pipeline failures in Nigerian National
Petroleum Network (NNPC) pipelines.

2. To propose a Regionalised Markov Decision Process (R-MDP) for ensuring
a similar level of performance across the NNPC pipeline network.

3. To determine strategies using the MDP on the pipeline network’s defined
regions for minimal total energy consumption.

We aim to achieve this by exploiting the fog computing paradigm for dis-
tributed data and service management through simultaneous data and service
placement, replication and migration. This strategy is modelled as a Markov
Decision Process management based on the historical incident data from the
NNPC pipeline networks. Our technique is further divided into two stages: first,
we determine the performance measure for each predefined pipeline region; then,
we find the optimal value that minimises the energy consumption in the region
considered.

The remainder of this work is structured as follows: In Section 2, we discuss
related work, followed by our contribution in Section 3. In Section 4, we conclude
the paper and present our future work.

2 Related Work

Cloud computing enabled advanced data analytics, optimisation and decision-
making in IoT applications. However, the increased load for time-sensitive ap-
plications and real-time monitoring can significantly affect the system’s per-
formance. Fog computation and edge analytics addressed such limitations of
centralised cloud computing [9] by its integration into the network design. This
design significantly increases the scalability of the network by reducing latency
and computational overhead at the cloud servers. In addition, maintenance or
enhancement of system performance such as improved fault tolerance in real-
time operations is realised. Other approaches have also been adopted to improve
the overall system’s performance.

Therefore, this section discusses several approaches to improved efficiency in
WSN/IoT-based applications, real-time applications and fog-based infrastruc-



tures. In particular, we examine placement, communication strategies and game
theories for optimisation in the following subsections.

2.1 Placements and communication strategies in fog architectures

Although fog-based infrastructures can reduce latency and computational over-
head for real-time operations, misplacing data in the fog nodes can have a detri-
mental effect. Some of the applications of fog-based systems were demonstrated
in [10], where it extends the data analytic capability of cloud computing in the
context of smart cities using smart pipeline monitoring prototypes. Giordano et
al. [11] also showed its application operating a platform that incorporates smart
agents.

Paramount, however, are placement strategies on fog-enabled infrastructures
aimed to reduce the overall network latency and increase the fault tolerance of
the system. Naas et al. [12] proposed a runtime data placement algorithm in a
fog-based architecture focused on the nature of the data, the holder node’s be-
haviour and location. The results show that overall latency was reduced by 86%
compared to cloud solutions and 60% to simple fog solutions. Eral et al. [13]
worked on a replica placement algorithm using the size, location and priced
storage as the constraints for reducing latency in edge networks. Their work
yielded a 14% to 26% reduction -per tradeoffs- in latency compared to replicas’
absence. Shao et al. in [14] also worked on placing data replicas for IoT workflows
in both fog and cloud environments. Their work is based on an intelligent swam
optimisation algorithm based on user groups, data reliability, and workflows.
Results show improvement in comparison to other research.

In tandem with data placement, service placement plays a crucial role in the
overall efficiency of a fog-enabled environment, i.e. generic or wrong placements
could result in latency increment [15]. Hence, Velasquez et al. [15] defines an
IoT service placement architecture fusing cloud and fog computing and con-
strained by the system’s operating condition and latency requirements. They
used a three-module (service repository, information collection, and service or-
chestrator) generic and scenario-agnostic placement algorithm. Services conform-
ing to the state of the network and the user and server’s location are placed in the
fog nodes. Wang et al. [8] proposed an optimal data scheduling policy operating
multiple channels based on a four-layer fog computing architecture. It comprises
the device, data scheduler, Jstorm, and cloud layers. The Jstorm layer integrates
geographically distributed fog nodes into several clusters. As such, generated big
data is split into several blocks and transferred to different Jstorm clusters for
processing. Simulation shows a 15% gain over other data scheduling policies.

Additionally, Elsayed et al. [16] worked on distributed fault tolerance of sen-
sor node hardware WSNs. Experimental results proved their method performed
better than the compared scheme by tolerating approximately 67% of the en-
countered failures. Yuvaraja et al. [17] also worked on fault tolerance in WSN by



detecting and recovering node failures using a least disruptive topology repair
mechanism.
Other considerations for efficient systems are the mechanisms of data transmis-
sion or flow between data producers (clients) and data consumers (agents). Com-
monly used are the publish-subscribe (PB) messaging paradigms between clients
and agents [18]. Ioana et al. in their work [19] demonstrated the applicability of
the PB systems in several complex scenarios, for example, the Open Platform
Communication Unified Architecture protocol for Industry 4.0. Primarily, they
exhibited how a multi-channel User Datagram Protocol (UDP) communication
strategy for PB systems enables transmitting high-volume data like images in a
time frame fitted for the industry. Aslam et al. [20] worked on adaptive methods
to handle unknown subscriptions in a low-latency PB model for processing multi-
media events. Their system achieved between 79% and 84% accuracy. Jafarpour
et al. [21] focused on computing and transmission cost minimisation through
content-subscribers-based requested formats.

2.2 System optimisation using game theory

Game theory is increasingly being used to improve application efficiency and
optimise system performance. Garg et al., in their work [22], evaluated three
dynamic placements (greedy approximation, integer programming optimisation
and learning-based algorithms) for maximal user equipment availability employ-
ing minimal infrastructure. A drone swarm application experiment indicates that
all tested techniques met the latency requirement. Nevertheless, the learning-
based algorithm performed better in terms of the minimal variation in solution
providing a more stable deployment and thereby guaranteeing a reduction in in-
frastructural cost. Also, on placement optimisation, Ting et al. [23] presented an
optimal provision of edge services such as storage, communication and computa-
tional resources. Using a trace-driven simulation, they carried out an analysis of
the results obtained on optimal request scheduling (ORS as the baseline), greedy
service placement with optimal request scheduling (GSP ORS) and greedy ser-
vice placement with greedy request scheduling (GSP GRS). For joint service
placement and resource scheduling, both GSP ORS and GSP GRS, including
their linear programming relaxation, achieved optimal or near-optimal solutions.

Cai et al., in their work [24], introduced a Reinforcement Learning Heuristic
Optimisation (RLHO) framework aimed at the provision of better initial val-
ues for the algorithm. They conducted a comparative analysis between RLHO,
simulated annealing and proximal policy optimisation. An experiment on a bin
packing problem validated that RLHO outperformed pure reinforcement learn-
ing. Likewise, the following research based on game theory aims to improve
pipeline monitoring systems.
Islam et al. [25] and Rezazdeh et al. [26] worked on third-party interference such
as terrorist attacks on pipeline infrastructures. The former proposed a Stackel-
berg competition-based attacker-defender model to find the equilibrium between
pipeline security and possible attacks. They proved that in an equilibrium state,



the monitoring system achieves the best result by maintaining its strategy, as-
suming both the defender and attacker act rationally. On the other hand, the
latter proposed two-player non-zero-sum modelling of the problem. They also
assumed that both players acted rationally based on the chosen indices. Two
methods were proposed to solve this problem: a local optimisation for compre-
hensive analysis of the effect of countermeasures on attacks and a global opti-
misation enabling the security personnel (defender) to provide a solution from
the attacker’s perspective. Rezazadeh et al. [27] worked on modelling a moni-
toring system for pipeline security using the Bayesian Stackelberg game. They
proposed a scheduling policy based on time and distance discretisation. The pro-
posed framework enables the ranking of security risks, allowing different patrol
paths to be utilised.

While these works considered the efficient placement of data and services
to reduce latency in fog-enabled architectures, they have not considered the
robustness of their approach to failures. In addition, to the best of our knowledge,
no work has considered a data-driven MDP for efficiently managing failures in
crude oil pipelines. Thus, in our work, we take cognisance of failures, their nature
and history to guarantee the monitoring system’s availability and performance
by optimising the placement strategies across a multi-layered architecture.

3 Data-Driven Resilient and Regionalised MDP
(R-MDP)

This research implements fault-tolerant data and service management through
distributed data and service placement, replication and migration. As a prerequi-
site, we propose a three-layer fog-based architecture shown in Fig. 1 that allows
data and service placements closer to the users (sensors and gateways). The three
layers comprise sensors at layer one, the gateways (fog nodes) at layer two and
the cloud servers at layer three. The proposed architecture allows data sharing
amongst predefined neighbourhood sensors at layer one, enabling the implemen-
tation of services such as detection and localisation of leakages at that layer as
in our earlier works [28, 29]. We also extend data placement to the fog layer to
facilitate data processing, prioritisation, aggregation, replication, and migration
services. Lastly, the cloud layer stores historical data for long-term services like
predictive maintenance.

The sensor nodes produce various types of data made available through pub-
lication to which services can subscribe. As shown in Fig. 1, the data and services
are divided into two sub-layers. The publish-subscribe paradigm is used as the
sub-layer interaction model to improve efficiency further. The communication
aspect is the same as in our previous works [28, 29].

The following subsections elaborate on the problem definition and its mod-
elling.



Fig. 1. Data and service placement

3.1 Background and Problem Definition

Failures in pipeline transportation of crude oil include erosion, corrosion, equip-
ment failure, vandalisation, network failure, and others. Several pipeline monitor-
ing systems focus on accurately detecting the leakages in the pipelines. However,
the monitoring systems are also susceptible to third-party interference, which is
one of the leading causes of failure in this mode of transporting crude oil. Con-
sequently, this work aims to circumvent this problem through efficient data and
service management for the continuous detection of leakages in the presence of
failures in pipelines and deployed monitoring systems.

Our work is focused on a crude oil pipeline in Nigeria, specifically the NNPC
pipeline network shown in Fig. 2. This pipeline network spans several thou-
sand kilometres and is divided into five areas, i.e. PortHarcourt, Kaduna, Warri,
Gombe and Mosimi, based on their geographical locations. Different kinds of
failures characterise each area, each differing from another significantly. The fac-
tors contributing to this vast difference range from weather conditions to the
pipeline area’s proximity to the border; for instance, the Mosimi and PortHar-
court areas located close to the border experience the highest failure rates. A
snippet of historical data, as shown in Fig. 3, presents the incident rate depicting
the disparity in the number of incidents in each area.

Thus, to model this problem, let us consider the two principal components
we have discussed. On one hand, we have various failure-causing elements in
pipeline transportation of crude oil. On the other hand, we have several moni-
toring techniques proposed as solutions to this problem.



Fig. 2. NNPC pipeline network [30]

Considering this information, we could model the problem as a non-cooperative
two-player game with player 1 representing the failure-causing components and
player 2, the monitoring system. Since our goal is to provide a fault-tolerant
monitoring system, we could also apply the maximin strategy for player 2 (the
monitoring system). The maximin strategy of a player is that strategy that
maximises the player’s worst-case payoff, i.e. the minimum amount of payoff
guaranteed or the security level of the player [32]. For example, let us denote a
player’s security level as Zi; then, for player 2, the security level is defined in the
following equation:

Z2 = max
A2

min
A1

r2(A2, A1) (1)

Equation 1 above is used to find the policy that maximises player 2’s security
level through action(s)-A2- and minimises the effect of action(s)-A1- taken by
player 1, i.e. the saddle point of the two players. With this approach, although
pessimistic, we will guarantee leakage detection, whatever the failure is (i.e. the
other player will not change its strategy based on the theory of Nash equilib-
rium).
However, to consider our problem a two-player game, we must define the actions
set A and utilities r of at least one player. While we can easily quantify the
utility in the case of player 2, for example, as the number of leaks detected in
ratio to the total number of leaks- over a predefined period, it does not translate
to the same utility in the case of the other player. For player 1, most failure-



Fig. 3. 5 year pipeline incidents [31]

causing components like corrosion and erosion result from natural occurrences.
Thus, their effects cannot be considered utility for the player. Moreover, we are
more interested in the impact of player 1’s action(s) on player 2 than its gain
for itself, if any. Thus, making it difficult to be modelled as a 2-players game.
However, we have an environment (NNPC pipeline network presented in Fig.
2) with data that gives us information on the properties and the behaviour of
player 1. Hence, we model this problem as a game against nature, i.e. a one-player
game. In the subsequent subsection, we discuss, in more detail, this modelling.

3.2 Environment Setting and Model Definition

Modelling the problem as a game against nature allows us to optimise the util-
ities defined for our player (the monitoring system) solely in response to the
failures in our environment. While this can be applied as a global solution, the
data presented in Fig. 3 shows a large diversity in incident rates from one area
to the other. Thus, we propose a tailored solution for each area by broadly cate-
gorising them into different logical regions defined as R = {r0, r1, r2}. The aim
is to optimise the performance of each region without the cost of a globalised
solution.
Using an empirical study, we define a failure-rate-based threshold on which the
region of the area is determined. The area(s) with an incidents rate (IR) of 0−5%
is categorised as region r0 and represents the area(s) with the least number of
incidents. The area(s) with an average number of incidents from 6% to 20% is
in region r1. The area(s) with IR of 21% and above is placed in the critical
region r2. Putting the areas into small, average and high (r0, r1, and r2 re-
spectively) incident rates logical regions allows for practical implementation of
data-driven strategies tailored to each region.



Fig. 4. State transition diagram

In addition, each area has a high probability of remaining in the same re-
gion for an extended period. For example, the PortHarcourt area is consistently
in r2 while the Gombe and Kaduna areas are in the region r0 and r1 80% of
the time, only changing in the year 2017 and 2019, respectively. Mosimi and
Warri represent areas with the most likely changes of approximately 40% of the
timeline. Accordingly, the probability of each area transitioning from one region
to another is low. Therefore, we depict such transition in a broad representation
of each area’s states as shown in Fig. 4. Each state will be discussed in more
detail in the next subsection.

Following the definition of the regions, we aim to provide efficient and fault-
tolerant data and service management using a two-stage approach. The first
stage is to find the best detection policies (a learning agent behaviour) in terms of
convergence and optimal detection accuracy using a data-based Markov Decision
Process (MDP). We build the second stage on the results of the first stage to find
the policy that minimises the processes’ energy consumption. Thus, we propose
our objective function summarised as follows:

min
(π∗,V ∗)

Ve(π
∗, V ∗) (2)

where π∗ is the optimal policy, V ∗ is a value function following the policy π∗.

The value function obtained in each region allows us to measure and compare
how good (reward and energy consumption) an applied policy is in that region.
The performance measure is constrained by the number of nodes (at least two
for fault tolerance in the monitoring system) that provide the accuracy within a
bound, to be defined later. In the following subsections, we present the details
of the two stages of the objective function.



3.3 The First Stage: Accuracy optimisation

As discussed in subsection 3.2, we model our work as an MDP- a reinforce-
ment learning formalisation in machine learning. Unlike other machine learning
techniques, i.e. supervised learning (training a set of labelled data) and unsuper-
vised learning (discovering structure in hidden collections of unlabelled data),
reinforcement learning is used to learn dynamically through continuous feedback
from its interaction in an environment to arrive at a goal [33].

Formalising the decision process in a stochastic environment using MDP
is done by the tuple < S,A, p, r >, where S represents the sets of states, A
the available actions, p the probability transition function, and r the reward
function [32]. Another essential variable is the discount factor β for emphasising
the importance of future rewards. Given these variables, an optimal policy that
maximises a model’s expected discounted cumulative reward can be determined
using the well-known Bellman optimality equation. This cumulative reward helps
us measure the goodness of a state, i.e. the maximum attainable reward in a
state.
Generally, the Bellman equation following an arbitrary policy π is defined as
follows:

∀s : V π(s) =
∑
s′

p(s′|π(s), s)[(r(s, π(s)) + βV π(s′))] (3)

where V π(s) is the value in state s based on a policy π, p(s′|π(s), s) is the
probability of going from state s to s′ with action following the policy, (r(s, π(s))
equals the immediate reward in state s, β is the discount factor for future rewards
and V π(s′) is the value in state s′ .

To maximise the accumulated reward, an agent should follow an optimal
policy -i.e. the policy that takes action with the maximum reward. This process
is represented by the Bellman optimality equation as follows:

∀s : V ∗(s) = max
a

∑
s′

p(s′|s, a)[(r(s, a) + βV ∗(s′)] (4)

Note how the Bellman optimality equation (Eqn. 4) differs from the Bellman
equation (Eqn. 3). In Eqn. 4, the action a taken always returns the optimal
reward, unlike the former with an arbitrary policy. The first part of Eqn. 4
represented by r(s, a) is the immediate reward, while the future reward for the
second part is embedded in the iterative part V ∗(s′). The hyperparameter β is
a vital part of the equation for avoiding infinite cycles and allowing solutions to
converge eventually. It also underscores the importance of future rewards, i.e.
higher β value implies a more critical long-term reward and vice versa.

In the first part of our work, we use Bellman’s optimality equation to evaluate
different policies and to determine the policies that maximise the reward in
terms of accurate leakage detection. Thus, we map the equation to the NNPC
environment as follows:



The States S: We define a state as the conditions based on which the
detection and localisation process is applied. So, S is represented as a set S =
{start, con, r0, r1, r2}, where start and con are the initial states i.e., the state
before any failure and the initialisation state, r0, r1, r2 denotes the states during
failure depending on the failure rate of the geographical area.

The Actions A: Actions are the mechanism of transitioning from one state
to another. In our work, we define the set of actions as A = {st, c, sa, rds,mds, rmds}.
Each element in the set denotes process start, connection initialisation, service
activation, replication of data and services, migration of data and services and
replication and migration of data and services, respectively.

st (start-action): st, as the name implies, is a switch-on action which sym-
bolises the beginning of the decision process.

c (connection initialisation): this action is used to realise the connectivity
between nodes as defined in our previous work [29].

sa (service activation): the sa action denotes the activation of services in
the nodes. Our work has two possible service deployment modes: service pre-
deployment and optimised/dynamic service deployment. In the case of the for-
mer, the sa action is used to reduce energy consumption by intermittently acti-
vating services as they are needed. It is, thus, applicable alongside other actions.

rds (data and service replication): rds denotes the replication of data and
services. It represents the creation of copies of data as they are being produced or
services in nearby nodes. In addition, it incorporates replication to the fog nodes
instead of the limitation to sensor nodes in our earlier work. This extension to
the fog nodes allows the implementation of other services, such as alarms, data
prioritisation and filtration in the monitoring system. The amount of replication
might change over time relative to changes in the experienced failure in the
region.

mds (data and service migration): involves the migration of data and services.
Although it is quite similar to rds, whereas rds is taken to counter failures, mds in
addition to that is also used for specific needs. For example, we use this action to
reassign services to other nodes in case of full storage. Increased latency between
a service and its required data is another reason we migrate a service.
Both rds and mds have several, but different, communication requirements, as
discussed in the following subsection.

rmds (data and service and replication/migration): this action allows the
combination of replication and migration in a region where the failure rate is
exceptionally high.

The States Transition Function p: The state transition function p utilises
the information from the data presented in Fig. 3. It shows that some geograph-
ical areas are likely to transition from one region to another. Based on that, we
determine the transition probability of each geographical area within the logical
regions. In addition, Fig. 3 allows us to make a trend analysis on the failure
pattern from one year to another and to specify the value and confidence level
for future rewards using the hyperparameter β.



The Reward Function r: We define the reward function as r ∈ [0, 100] per
node for detection and localisation accuracy of leakages. For every action taken,
the reward attainable is equivalent to the accuracy of leakage localisation. We
also consider the number of nodes that falls within the allowance threshold for
an acceptable accuracy level to represent the aspect of fault tolerance, as we will
see later in the results section.

3.4 The Second Stage: Optimising the energy consumption

In the second stage of our work, the policy that minimises energy consumption
for each region is selected based on the results obtained in the first stage. To
determine the energy consumption of the policies, we first represent the environ-
ment described in subsection 3.1 as follows.

Let us define a set of nodes N = {n1, n2, ...., nu}, where u equals the total
number of sensor nodes and gateways. Each node ni ∈ N produces a set of
data it also stores and is used by the services deployed in the system. If G is
a matrix for the use of data by each service, then gij = 1 represents service in
node ni requiring data produced by node nj . Hence, we propose hij to equate
the number of hops between these nodes.

The modes of communication between sensor nodes and gateways is rep-
resented by lij ∈ {0, 1, 2} where lij = 0 means no communication, lij = 1 a
connection via LoRaWAN and lij = 2 a connection via 3G/4G communication
networks. Each communication link varies in its capacity and will influence the
kind of actions (or communication) between the nodes.

The service activation is a direct action depending only on the predefined
neighbourhood connection, i.e. the implementation of state con.
To replicate, the communication between originating and destination nodes must
be l = 1 for both data and services.
Migration of services necessitates higher bandwidth than data migration; there-
fore, their communication requirement is set as l ∈ {1, 2} for data and service,
respectively. For each action, the energy consumption is calculated using the
following relation:

costij = lc ∗ hij (5)

where lc is the cost per packet, and per link of the service or data, hij is
the number of hops between the origin and destination nodes. Note that service
deployment mode results in changes to cost, i.e., the cost of service migrations is
not included in the case of pre-deployed services. In such a scenario, the service
activation action is used in place of the service migration action.

A good service placement is on nodes at most one hop away from the leakage
point. Therefore, we can minimise energy consumption by reducing the distance
(in the number of hops) between services and the needed data to run the service.
We define the objective of the second stage as follows:



min
(π∗,V ∗)

Ve(π
∗, V ∗) = min

(π∗,V ∗)

[

u∑
i=1

u∑
j=1

costij .
∑
s′

φπ(s′)

∑
s

gij(s
′|π(s), s).V ∗(s′)] (6)

where φπ(s′) = p(s′|s, π) is the steady state defined by the probability of
moving to the next state following a policy (π) in the current state, costij is the
energy consumed defined in Eqn. 5, gij(s

′|π(s), s) represents if data/service is
resident in different nodes when we follow a policy from one state to another.
This equation presents our objective function, i.e. to find and ensure convergence
to the optimal reward with minimum energy consumption through the various
placement strategies in the network nodes.

In the following section, we discuss the implementation of the objective func-
tion and the results.

4 Implementation and Results

The implementation of the model was carried out using the Gym library, an
open-source toolkit for developing and approximating reinforcement learning
algorithms. Furthermore, we simulated the pipeline environment shown in Fig. 2
using the NS3 network simulator. However, the realisation of the communication
between OpenAI Gym and NS3 is based on the work conducted in [34] named
ns3-gym. The ns3-gym enables seamless interaction between the NS3 network
simulator and OpenAI Gym framework using an environment proxy in the Gym
environment and an instantiated gateway in the network.

Figure 5 illustrates our implementation of the interface between the simulated
pipeline network and OpenAI Gym in NS3. For comparative analysis, we used
multiple agents on the gym side. Each agent interacts with a gateway through
the dedicated proxy to implement the region placement strategies while carrying
out the reinforcement learning using Alg. 1.

We present the simulation parameters in Table 1. Other information ex-
changed between an agent and a gateway in each episode are (i) observation
space, (ii) the action space, (iii) the reward and (iv) the game over conditions,
defined in our work as follows:

The observation space: Failures, i.e. leakages, network or communication
failures.

The action space: Actions include start, connection, service activation, data
and service replication and data and service migration.

Reward: The reward is based on the localisation accuracy of the leakage
and the number of nodes that localises the leakages.

Game over: A game is considered over at the end of the episodes.



Fig. 5. Simulated pipeline network and OpenAI Gym interaction

Algorithm 1 ε−greedy Q-learning
1: Reset Environment
2: ε ∈ (0, 1], α = 1, β = 0.99
3: Initialise Q(s,a), E(s,a) for all s ∈ S+, a ∈ A(s) arbitrarily except Q(terminal,.)=0
4: for each timestep in each episode do
5: Initialise s
6: for each region do
7: Choose a from S using policy (ε−greedy) derived from Q
8: Perform action a
9: Observe r, s’

10: Q(s, a)← Q(s, a) + α[R+ βmaxaQ(s′, a)−Q(s, a)]
11: s ← s’
12: Get corresponding energy consumption using 5 {Update E}
13: end for
14: Until s is terminal
15: end for
16: Reset Environment
17: For each region, choose the policy with the least energy consumption and optimal

reward



Timestep 1000
Areas 5
Region 3
Proxy 1
Alpha 1
Beta 0.99

Number of episodes 1000
Reward per node [0,100]

Error Type Rate error model, list error model
epsilon [0, 1]

Table 1. Simulation Parameters

The Q-learning algorithm is a well-known reinforcement learning algorithm
for solving the Bellman Optimality Equation for MDPs by estimating the action-
value function. It enables an early convergence to the optimal action-value func-
tion. Given the nature of the problem we are solving, we used the epsilon-greedy
version of the Q-learning algorithm shown in Alg. 1 and extracted from [33] to
ensure a well-balanced exploration and exploitative steps.
Whereas the convergence to a global optimal value function is assured, the in-
cident rate across the pipeline environment differs significantly, increasing the
overall cost, i.e. the energy consumption. Thus, we regionalised the environment
to solve the MDP and determine the policy that minimises global energy con-
sumption without affecting the optimal reward. In Alg. 1, we begin by defining
the region of each area in the NNPC pipeline network. We set the corresponding
failure rate for each region for both failure types (rate and list error types). The
state-action values are stored using a matrix - Q; then, we find the best policy
that minimises the energy consumption by keeping track of the corresponding
energy consumption using another matrix - E. We chose the optimal policy for
each region at the end of all episodes.

In the subsequent subsections, we discuss the result obtained from the sim-
ulations.

4.1 Accuracy in Detection and Fault Tolerance

The fault tolerance, accuracy in each region (r0, r1 and r2) and the correspond-
ing obtainable reward using the detection and localisation algorithm from our
previous work [29] is evaluated in this subsection. To achieve this, we used two
different types of communication failures, i.e. Rate error type and List error type
in NS3. The Rate error type involves random packet drop, out-of-order delivery
and delayed packet. In contrast, the list error type involves a pre-selected list of
packet drops. We made a uniformly distributed selection for the list error type
from all the packets shared among the nodes. Also, the simulation was carried
out across several randomly selected leakage points. Obtained results are pre-
sented in Figures 6, 7, 8, 9, 10 and 11. We limit this evaluation to error rates
between the range of 0% to 20% as either detection or localisation beyond this
range is impossible.



In addition, we present each evaluation -i.e. the fault tolerance, accuracy, and
obtainable reward- with two figures each: the first figure represents all possible
observations. In contrast, the second figure represents observations from High
Performing Nodes (HPN), i.e. nodes with results greater than or equal to the
target accuracy level of 90%. The set threshold defines the benchmark based on
which we can ensure standardised performance. We choose this level of accuracy
as the minimum level based on the requirements of the oil and gas operators for
high localisation accuracy [35]. It also ensures that all regions have a standardised
performance level.

Fault tolerance One of our detection and localising algorithm’s strengths is
removing single point of failure associated with centralised systems. To maintain
this property, we ensure that there are at least two HPNs across all regions.
Figures 6 and 7 show the number of nodes that can detect and localise leakages.

Fig. 6. Total number of nodes detecting
leakage

Fig. 7. Total number of HPN

In Fig. 6, we capture the total number of nodes detecting and localising
leakage without considering the accuracy level, while Fig. 7 shows only the HPN,
i.e. with accuracy over 90%. Following the benchmark, we observe (from Fig. 7)
that areas with 5% failure rate for both rate and list error types maintain the
required number (at least two) of nodes for fault tolerance differing mostly in
the variance. This variance is observed from nodes located at the extremities of
the pipelines in the area(s), which can be addressed with increased node density
in such location(s). However, other areas, i.e. with a failure rate above 5%, do
not meet this requirement.

Accuracy We examine how the accuracy level changes based on the failure
rate. Results are presented in Figures 8 and 9.

Figure 8 shows that the list error type provides a higher accuracy level than
the rate error type, with both presenting similar trends in error. Nonetheless,



Fig. 8. Accuracy of leakage detection in
all nodes

Fig. 9. Accuracy of leakage detection in
HPN

when we consider results from HPN shown in Fig. 9, the rate error type presents
much variance in changes in the accuracy of localisation compared to the list
error type. Hence, we can conclude that while the lower error rates favour a
higher number of nodes in leakage detection, it does not have such an impact on
the accuracy of localisation.

Rewards The reward function is defined based on the minimal accuracy re-
quirement and fault-tolerance results from the two previous subsections. The
total reward is the sum of the level of accuracy obtained by each detecting node
in the defined region. This is represented in Figures 10, and 11 also separated
as all nodes and high-performance nodes. In both cases, we observe a similar
pattern of decrements with increasing failure rate.

Fig. 10. Total obtainable reward across
the error rates

Fig. 11. Total obtainable reward with
HPN

Following the benchmarks discussed in subsection 4.1, we present the ex-
pected reward across all regions in Fig. 11. We expect to have two HPNs at all
times for all failure rates, thus putting the target at the level shown in the figure.



4.2 Optimised Accuracy and Energy Consumption

This subsection discusses the rewards obtained based on our implemented algo-
rithms (learning-based, heuristic and pessimistic).

We used a uniform-random policy and our proposed regionalised ε-greedy
Q-learning (R-MDP) for the learning-based algorithms. The uniform-random
policy has a uniform distribution over the space from which actions are taken.
Given the objective function, the ε-greedy Q-learning algorithm lets the agent
exploit (dependent on what the agent has learnt) and explore (take a random
action with a probability of ε), thus evading local optimum in each region.
Also implemented is a heuristic approach based on weighted set cover service
placement (WSC) from the work [36] to provide a baseline for comparison. The
goal of the WSC in our context is also to maximise detection accuracy with
minimum cost (i.e. energy consumption) in a globalised manner. The pessimistic
approach deals with the worst-case scenario from the environmental data. Fol-
lowing is the performance evaluation of each algorithm.

Fig. 12. Total reward by algorithm

Figure 12 reveals the optimal rewards following the three implemented al-
gorithms. As expected, the random policy has the lowest total reward. Results
from the ε-greedy algorithm for each region satisfy the optimality conditions
defined in the objective function (equation 6). The WSC-based algorithm shows
about a 6% increase in the obtained total value attributed to the dynamics of
the environment.

To study the exploration effect, i.e. the value of ε on the results, we present
the total energy consumption in Fig. 13. Results show less energy consumption
for the average epsilon values less than 0.4 and much higher consumption as ε



Fig. 13. Regional reward vs energy con-
sumption

Fig. 14. Total energy consumption by al-
gorithm

approaches the maximum average value of 1. We observe that the exploration’s
effect differs considerably for each region. For example, regions r0 and r2 perform
much better with a near absolutely greedy policy. While the reward of r0 slightly
varies as the exploration increases, the reward of r2 is inversely proportional to
the epsilon value. However, region r1 presents optimal results with an epsilon
value of approximately 0.3. Thus, partitioning the environment into distinct
regions ensures an optimal solution for each region with minimised total global
energy consumption.

Presented in Fig. 14 is the energy consumption by algorithms. For this anal-
ysis, we considered the total energy consumed in three different cases, i.e. a
regionalised learning approach (R-MDP), a globalised heuristic approach (G-
WSC) and a pessimistic approach. From the result, the pessimistic approach
has the highest energy consumption, as expected, given that we considered the
worst-case scenario. Compared to the total energy (sum of energy consumption
in all the regions) by R-MDP, we achieved about a 77% reduction in energy
consumption. However, when we correlate R-MDP to G-WSC, the reduction in
the energy consumption is about 26%, much lesser than the worst-case scenario,
nevertheless, a significant improvement in the energy consumed by the globalised
solution.

5 Conclusion and future work

This paper presented our work on fault-tolerant and energy-efficient data and ser-
vice management modelled as an MDP. Our work is based on the NNPC pipeline
network and the associated failures. We implemented a regionalised MDP that
ensures optimal reward with a detection accuracy threshold above 90% in an
energy-efficient manner. Results show that the total energy consumption is min-
imised by a significant reduction of nearly 77% compared to the pessimistic
method and approximately 26% compared to a globalised heuristic technique.
In future works, we will consider other forms of failures and constraints, such as
latency issues, and dynamic topologies, such as mobile sensors/gateways - e.g.
UAVs - for dynamic communication coverage.
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