
MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR

SWARM PROGRAMMING

GIANLUCA AGUZZI , ROBERTO CASADEI , AND MIRKO VIROLI

Alma Mater Studiorum—Università di Bologna, Cesena, Italy
e-mail address: {gianluca.aguzzi, roby.casadei, mirko.viroli}@unibo.it

Abstract. Swarm behaviour engineering is an area of research that seeks to investigate
methods and techniques for coordinating computation and action within groups of simple
agents to achieve complex global goals like pattern formation, collective movement, clustering,
and distributed sensing. Despite recent progress in the analysis and engineering of swarms
(of drones, robots, vehicles), there is still a need for general design and implementation
methods and tools that can be used to define complex swarm behaviour in a principled way.
To contribute to this quest, this article proposes a new field-based coordination approach,
called MacroSwarm, to design and program swarm behaviour in terms of reusable and
fully composable functional blocks embedding collective computation and coordination.
Based on the macroprogramming paradigm of aggregate computing, MacroSwarm builds
on the idea of expressing each swarm behaviour block as a pure function mapping sensing
fields into actuation goal fields, e.g. including movement vectors. In order to demonstrate
the expressiveness, compositionality, and practicality of MacroSwarm as a framework for
collective intelligence, we perform a variety of simulations covering common patterns of
flocking, morphogenesis, and collective decision-making.

1. Introduction

Recent technological advances foster a vision of swarms of mobile cyber-physical agents
able to compute, coordinate with neighbours, and interact with the environment according
to increasingly complex patterns, plans, and goals. Notable examples include swarms of
drones and robots [SUSE20], fleets of vehicles [TBH+19], and crowds of wearable-augmented
people [GMH+18]. In these domains, a prominent research problem is how to effectively en-
gineer swarm behaviour [BFBD13], i.e., how to promote the emergence of desired global-level
outcomes with inherent robustness and resiliency to changes and faults in the swarm or the en-
vironment. Complex patterns can emerge through the interaction of simple agents [BDT99],
and centralised approaches can suffer from scalability and dependability issues: as such, we
seek for an approach based on suitable distributed coordination models and languages to steer
the micro-level activity of a possibly large set of agents. This direction has been explored
by various research threads related to coordination like macroprogramming [Cas23, NW04],
spatial computing [BDU+13], ensemble languages [DNLPT14, AADNL20], field-based coor-
dination [LLM17, MZL04], and aggregate computing [VBD+19].

Though a number of approaches and languages have been proposed for specifying
or programming swarm behaviour [AGL+07, CNS21, DK18, KHB+20, KL16, LMPS18,

© MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING
CC⃝ Creative Commons

ar
X

iv
:2

40
1.

10
96

9v
1

 [
cs

.A
I]

 1
9

Ja
n

20
24

https://orcid.org/0000-0002-1553-4561
https://orcid.org/0000-0001-9149-949X
https://orcid.org/0000-0003-2702-5702
http://creativecommons.org/about/licenses

2 MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

MMWG14, PB16, YDL+20], a key feature that is generally missing or provided only to a
limited extent is compositionality, namely the ability of combining blocks of simple swarm
behaviour to construct swarm systems of increasing complexity in a controlled/engineered
way. Additionally, most of existing approaches tend to be pragmatic, not formally-founded
and quite ad-hoc: they enable construction of certain types of swarm applications but with
limited support for analysis and principled design of complex applications (e.g. [LMPS18,
DK18, PB16, CNS21]). Exceptions that provide a formal approach exist, but they are
typically overly abstract, requiring additional effort to actually code and execute swarm
control programs [LFD+19].

The goal of this work is to introduce a formally-grounded Application Program Interface
(API), expressive and practical enough to concisely and elegantly encode a wide array of
swarm behaviours. This is based on the field-based coordination paradigm [VBD+19] and the
field calculus [AVD+19]: each block of swarm behaviour is captured by a purely functional
transformation of sensing fields into actuation fields including movement vectors, and such
a transformation declaratively captures the state/computation/interaction mechanisms
necessary to achieve that behaviour. Practically, such specifications can be programmed as
Scala scripts in the ScaFi framework [CVAP22, ACDV23], a reference implementation for
field-based coordination and aggregate computing. Accordingly, we present MacroSwarm,
a ScaFi-based framework to help programming with swarm behaviours by providing a set
of blocks covering key swarming patterns as identified in literature [BFBD13]: flocking,
leader-follower behaviours, morphogenesis, and team formation. To evaluate MacroSwarm,
we show a use case that leverage our API in a simulated environment based on the Alchemist
multi-agent system simulator [PMV13].

Therefore, the main contribution of this work is the design and implementation of
MacroSwarm, and the development of simulations for assessing the correctness of its
functionality. The MacroSwarm library1 is available at https://zenodo.org/doi/10.

5281/zenodo.10363375 and it is released on Maven Central. This article is a significant
extension of conference paper [ACV23]. Specifically, the extension consists of the following:
(i) a largely extended experimental evaluation, covering a more comprehensive set of collective
behaviour blocks; (ii) new functionality, i.e., based on a new block for achieving collective
consensus towards a target value; (iii) a broader discussion of related work; and (iv) additional
clarifications and descriptions regarding important aspects of the framework like its overall
architecture, execution model, and assumptions.

The remainder of this paper is organised as follows. Section 2 provides context and
motivation. Section 3 reviews background on aggregate computing. Section 4 presents the
main contribution of the paper, MacroSwarm. Section 5 provides a simulation-based
evaluation of the approach. Section 6 reviews related work on swarm engineering. Finally,
Section 7 provides a conclusion and future work.

2. Context and Motivation

Engineering the collective behaviour of swarms is a significant research challenge [BFBD13].
Two main kinds of design methods can be identified [BFBD13]: automatic design methods
like evolutionary robotics [Tri08] or multi-agent reinforcement learning [BBS08], also called

1The documentation is public available at https://scafi.github.io/macro-swarm/

https://zenodo.org/doi/10.5281/zenodo.10363375
https://zenodo.org/doi/10.5281/zenodo.10363375
https://scafi.github.io/macro-swarm/

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 3

behaviour-based design, involving manually-implemented algorithms expressed via general-
purpose or domain-specific languages (DSLs). Our focus is on the latter category of methods
and especially on DSLs for expressing swarm behaviour (which are reviewed in Section 6).

Another main distinction is between centralised (orchestration-based) and decentralised
(choreographical) approaches. In the former category, programs generally specify tasks
and relationships between tasks, and these descriptions are used by a centralised entity to
command the behaviour of the individual entities of the swarm. By contrast, decentralised
approaches do not rely on any centralised entity: each robot is driven by a control program
and the resulting execution is decentralised (e.g., based on interaction with neighbours, like
in Meld [AGL+07]). In this work, we focus on decentralised solutions, for they support
resilience and scalability by avoiding single-points-of-failure and bottlenecks.

In the general context of behaviour-based swarm design, researchers have pointed
out various issues [BFBD13, DTT20] like a general lack of top-down design methods
of collective behaviours (cf. the scientific issue of “emergence programming” [VCPD15]
and “self-organisation steering” [GTWS20]), the problem of formal verification and valida-
tion [LFD+19], heterogeneity, and operational/maintenance issues (e.g., scalability, adapta-
tion, and security). Specific challenges can also be found in the context of specific kinds
of swarm systems, such as (micro) aerial swarms [AGJS21, CMWdC20], specific domains,
like agriculture [AGUdP22], or specific kinds of tasks, like simultaneous localisation and
mapping (SLAM) [KGB21]. This work looks for a general-purpose support for collective
behaviours in swarms.

To address top-down swarm programming, an approach should provide the means to
define and compose blocks of high-level swarm behaviours. Regarding the kinds of blocks
that can be provided, it is helpful to look at proposed taxonomies of collective/swarm
behaviour. In a prominent survey on swarm engineering [BFBD13], collective behaviours are
classified into (i) spatially-organising behaviours (e.g., pattern formation, morphogenesis),
(ii) navigation behaviours (e.g., collective exploration, transport, and coordinated motion),
(iii) collective decision-making (e.g., consensus achievement and task allocation), and (iv)
others (e.g., human-swarm interaction and group size regulation).

Last but not least, the current literature displays a quite sharp demarcation between
techniques based on formal specification methods for swarm behaviour [LFD+19], which also
promote verification, and more pragmatic approaches based on concrete and generally more
usable DSLs. In a recent review on formal methods for swarm robotics engineering [LFD+19],
it is mentioned that two main shortcomings include (i) the toolchain and (i) the formalisation
of the “last step” of turning the formal model into executable code. Therefore, there is a
need for approaches that suitably combine the value of formal methods and the practicality
of programming approaches and DSLs.

In a nutshell, the possibility and opportunity of an approach for formal-yet-practical
general-purpose top-down behaviour-based design of decentralised swarm behaviour provide
the motivation for this work.

3. Background: Aggregate Computing

Aggregate computing [VBD+19] is a field-based coordination [MZL04] and macroprogram-
ming [Cas23] approach especially suitable to express the collective adaptive [NJW20] and

4 MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

self-organising behaviour of large groups of situated agents. To properly introduce the essen-
tials of aggregate computing, we first present its system and execution models (Section 3.1),
and then its programming model and constructs (Section 3.2).

3.1. System and execution model. In aggregate computing, a system (also called an
aggregate system) is modelled as a set of logical computing nodes (also called devices),
where each node is equipped with sensors and actuators, and is connected with other nodes
according to some neighbouring relationships. This abstract logical model does not prescribe
particular technological solutions; instead, it uses minimal assumptions on the capabilities
of devices (e.g., regarding synchrony, connectivity, and computing power).

The approach is generally used to program long-running control tasks that need several
sensing, communication, computation, and actuation steps to be carried out. Accordingly,
the execution model is based on (or can be understood as) a repeated execution, by each
device, of asynchronous sense–compute–interact rounds—fundamentally mimicking self-
organisation in biological systems [BDT99]. For simplicity, we can consider each round to
atomically consist of three steps:

• Sense – the node’s local context is assessed, by sampling sensors and gathering the most
recent (and not expired) message from any neighbour;

• Compute – the so-called aggregate program is evaluated against the local context,
producing an output (which can be used to describe actuations) and an internal output
(invisible to programmers), called an export, that contains the message to be sent to
neighbours for coordination purposes;

• Interact – the export is sent to neighbours (logically, as a broadcast), and potential
actuations can be performed.

Details such as scheduling policy, thresholds for message expiration, neighbouring relationship,
and communication are not fixed by the model and may be tuned on a per-application basis.

As covered in the following, the execution model is intimately related to programming.
In general, programs define the logic by which information gathered from the local context
spreads from neighbourhood to neighbourhood, and progressively gets integrated and
transformed as it moves, eventually converging towards proper local results that are globally
coherent (e.g., of distributed sensing and actuation) once environmental changes perturbing
the system are incorporated. Interestingly, device failure, message loss, and the like are
automatically tolerated as assessed by context updates at the beginning of rounds. In
order to understand how an aggregate program executed in this fashion promotes collective
adaptive behaviour, we briefly present the programming model.

3.2. Programming model. Aggregate computing is based on the (computational) field
abstraction [MZL04]. A field is basically a function or map from devices to computational
values. For instance, having a collection of devices query their temperature sensor would
yield a field of real numbers denoting temperature readings, whereas a field of speed vectors
could be used to denote the desired actuations to make a swarm move.

The field calculus [AVD+19] is the minimal core language at the basis of aggregate
computing, which defines the primitives for expressing “space-time universal” [ABDV18]
distributed computations in terms of field manipulations. Then, concrete languages like
the Scala-internal DSL ScaFi (Scala Fields) [CVAP22, ACDV23] can be used to actually
develop aggregate programs.

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 5

The reader can refer to [ACDV23] for a full presentation of programming with ScaFi.
Here, we briefly introduce its main language constructs and library building blocks: these
will be the basis for encoding higher-level blocks swarm behaviour.

3.2.1. Basic constructs. The minimal set of basic constructs covers state management,
neighbourhood interaction, and functional application (also supporting behaviour branching).

Simple values and expressions. Simple values and expressions can be interpreted both
locally to one device, and globally as a field. For instance:

val threshold = 10

val deviceId = mid()

val random = scala.util.Random.nextInt(100)

Local value threshold also denotes a static, uniform field holding 10 in every device. Value
deviceId provides, locally, the identifier of the running device (as provided by built-in
function mid), and, globally, the static field of device identifiers (since devices are assumed
not to change their identifiers during execution). Finally, value random will locally change
in each round, and so it denotes a generally non-static, non-uniform field of integers. Notice
that since ScaFi is a Scala DSL, standard Scala constructs, values, and library functions
can be used.

Construct rep: stateful field evolution. Consider the following example.

// def rep[T](init: T)(f: T => T): T

rep(0)(x => x+1) // type T=Int inferred

This purely local computation, when considered executed by all the devices in the system,
yields a field of integers denoting the number of rounds executed by each device. This
is obtained by applying function f to the value computed the previous round (or init,
initially).

Construct foldhood/nbr: interaction with neighbours. Consider:

// def foldhood[A](init: => A)(acc: (A, A) => A)(expr: => A): A

// def nbr[A](expr: => A): A

foldhood[Set[ID]](Set.empty)(_++_){ Set(nbr(mid())) }

It yields, in each device, the set of identifiers of all its neighbours. This is achieved by
a purely functional fold over the collection of the singleton sets of neighbour identifiers,
starting from the empty set, and aggregating using the set union operator (++). Notice that
by-name type =>A means the argument is passed unevaluated to the function. Therefore,
the third argument to foldhood (notice that, in Scala, singleton parameter lists can be
denoted with braces as well as with parentheses) is not evaluated at the caller side but rather
internally to the function. Within the foldhood, a nbr(e) expression has the twofold role
of sending and gathering the local value of e to/from neighbours. Technically, argument
expr is evaluated fully for the running device, where the value of the expression within nbr

is kept for sharing, and once per each neighbour, where the nbr expressions are substituted
by the values shared by that neighbour. Note that constructs rep and foldhood/nbr can
be combined to support the diffusion of information beyond direct neighbours.

6 MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

Functional abstraction. New blocks can be defined with standard Scala functions:

def neighbouringField[T](f: => T): Set[T] =

foldhood[Set[T]](Set.empty)(_++_){ Set(nbr(f)) }

def neighbourIDs(): Set[ID] =

neighbouringField{ mid() }

def gradient(source: Boolean): Double =

rep(Double.PositiveInfinity){ distance =>

mux(source) {

0.0

} {

foldhoodPlus(Double.PositiveInfinity)(Math.min)(nbr{distance} + nbrRange)

}

}

The latter block is called a gradient [VAB+18] and implements the self-healing field
of minimum distances from the source devices identified by Boolean field source. It
works as follows: rep keeps track of the current gradient value distance (initially, it is
Double.PositiveInfinity); with a mux(c)(t)(e), a purely functional selector that evalu-
ates t and e and returns the former when c is true and the latter otherwise, sources are given
null distance (0.0), and the other devices take as gradient value the minimum of the sum of
a neighbour’s gradient with the corresponding distance to the running device (as provided
by neighbouring sensor nbrRange). The gradient is a basic pattern for implementing several
self-organising behaviours [VAB+18]; for instance, information can spread or converge along
the adaptive structure denoted by the gradient [WH07], or limited areas of influence may be
obtained by truncating a gradient up to a certain distance threshold [PCVN21].

One important thing to note is that each function can potentially encapsulate both the
computation and the communication of data (cf. nbr expressions) needed to fully support a
certain collective behaviour. The other key aspect is the inherent adaptiveness that emerges
by the combination of the execution model (based on repeated sensing, computation, and
interaction) and the program specification (which dictates how to algorithmically transform
the input context into output decisions). For instance, the gradient will progressively adapt
in response to changes in the source set, topology (neighbourhoods and distance between
neighbours), and current gradient values of neighbours, up to convergence once inputs cease
to change (see Section 3.2.2 for more on this).

Construct branch: splitting computation domains. Consider:

// def branch[A](cond: => Boolean)(th: => A)(el: => A)

branch(sense[Boolean]("hasTemperatureSensor")){

val nearbyTemperatures: Set[Double] =

neighbouringField{ sense[Double]("temperature") }

// ...

}{ noOp }

Here, computation is split into separate subsets of devices. Notice that neighbourhoods are
restricted in each computation branch. So, in the first branch, it is ensured that only the
neighbours with a temperature sensor are folded over.

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 7

3.2.2. Main library constructs: general resilient operators. The ScaFi library includes some
general high-level operators implementing common self-organisation patterns [VAB+18].
These will be leveraged in Section 4 and hence are briefly described.

• Sparse choice (leader election) [PCV22]. Block S(grain:Double):Boolean can be used
to yield a self-stabilising Boolean field which is true in a sparse set of devices located at
a mean distance grain.

• Gradient-cast (distributed propagation) [VAB+18]. Block G[T](source:Boolean,value

:T,acc:T=>T):T is used to propagate value from source devices outwards along the

gradient [VAB+18] of increasing distances from them, transforming the value through acc

along the way.
• Collect-cast (distributed collection) [ACD+21]. Block C[T](sink:Boolean,value:T,acc

(T,T)=>T):T is used to summarise distributed information into sink devices, the values
provided by devices around the system, while aggregating information through acc along
the gradient directed towards the sinks.

It has been proved [VAB+18, PCV22] that these field-based operators are self-stabilising [Dol00],
meaning that their output is guaranteed to eventually converge to a stable field that only
depends on the inputs once their input fields get stable. For instance, the leader election
block S is guaranteed to eventually produce the same stable set of leaders for a given stable
environment; upon changes, of course, a proper adaptation will be triggered (and, obviously,
sensitivity to changes can be programmed).

Examples further showing the compositionality of the approach are in Section 4.

3.2.3. Aggregate computing for swarm programming. As covered in the following sections,
we develop MacroSwarm on top of aggregate computing. This choice is motivated by
peculiar features of aggregate computing (and its toolchain including ScaFi) that make it
particularly suitable for swarm programming. We substantiate this statement by briefly
explaining, while synthesising from previous work, how such features help to address the
challenges identified in Section 2.

• Top-down behaviour-based design. It is promoted by the functional paradigm and the field
abstraction [AVD+19, ACD+22], which together enable compositionality and collective
stance in aggregate programming.

• Scalability. Since execution is fully decentralised and asynchronous, the approach is
scalable to hundreds, thousands, and even more devices [CVA+21].

• Formal approach. Aggregate computing and ScaFi are based on the field calculus [ACDV23,
AVD+19], which enables formal analysis of programs and proofs of interesting properties
like self-stabilisation [VAB+18], universality [ABDV18], and others [VBD+19].

• Pragmatism. Promoted by layers of abstractions, this is witnessed by open-source, main-
tained, concrete software artefacts like the ScaFi DSL [CVAP22], simulation platforms like
Alchemist [PMV13] and ScaFi-Web [ACM+21]2, and the possibility to devise libraries
of high-level functions [CVA+21].

• Operational flexibility. Concrete aggregate computing systems can be deployed and
operated using different architectural styles [CPP+20] and execution policies [PCV+21],
supporting different technological and resource requirements.

2https://scafi.github.io/web/

https://scafi.github.io/web/

8 MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

Aggregate Computing Platform

runs on

ScaFi

uses

MacroSwarm

Field Calculus

Standard Library

SensorsActuatorsScheduler

Network Neighborhood
Policy

(a) MacroSwarm external architecture.

Macro Swarm

Base Movement

FlockingLeader Based

Team Formation Pattern Formation Swarm
Planning

Resilient
Coordination
Operators

C G S
Field-Coordination

Constructs
rep nbr branch

vShape line centeredCircle

plan

separation

execute

cohesion alignsinkAt alignWith

isTeamFormed teamFormation

goTo

explore

brownian

maintainUntil

Consensus

consensusOn

(b) API structure: The white boxes contained in the green rectangle represent the main
modules of the library.

Figure 1. Overall architecture of MacroSwarm

4. MacroSwarm

This section presents the MacroSwarm approach, architecture, and API.

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 9

4.1. Architecture. The overall architecture of MacroSwarm is shown in Figure 1. In
particular, Figure 1a shows the “external architecture”, namely how MacroSwarm in-
tegrates and depends on other tools of the aggregate computing ecosystem. Specifically,
MacroSwarm has been implemented as an extension of the ScaFi aggregate programming
language [CVAP22, ACDV23] (cf. Section 3.2), based on a library or API of building blocks
of swarm behaviour. So, a MacroSwarm program is essentially a ScaFi program which in
turn runs on an aggregate computing platform or middleware (i.e., an implementation of
the execution model discussed in Section 3.1).

In Figure 1b, it is shown the organisation of the MacroSwarm API, namely its “internal
architecture”. The API is organised into multiple modules, each one encapsulating a logically
related set of behavioural blocks. The API comprises both general and highly reusable sets
of coordination blocks (e.g., supporting information streams and leader election) and more
swarm-specific sets of blocks (e.g., covering pattern formation or mobility patterns).

The key idea in the design of MacroSwarm lies in the representation of a swarm
behavioural unit as a function mapping sensing and parameter fields to actuation fields
(often, velocity vectors).

4.2. Actuation model. A main aspect that has been addressed revolves around the
definition of an actuation model for an aggregate computing system. As explained in
Section 3.1, the devices of an aggregate computing system undergo execution in rounds of
sense–compute–act steps. Therefore, we use the output of the MacroSwarm program to
denote what actuation has to be performed. Then, it is responsibility of the underlying
platform to map actuation commands to actions for the raw (virtual or physical) actuators.
Moreover, to properly support actuation, coherently with modern robotic programming
practice [Bih24], in the MacroSwarm API, we separate the actuation intention (i.e., the
acting) from the actual actuation (i.e., the control of raw actuators).

Therefore, the idea is that the output of each round sets, unsets, or revises (i.e. changes
one or more parameters of) the actuation goal(s). There are two modalities of actuation
that an actuation goal has to choose from:

• round-based : the actuation goal is valid only until the end of the next round (at which
point it has to be explicitly provided again to keep it valid);

• long-standing : the actuation goal is valid until revised or retracted.

According to the provided indication, the actual actuations are performed as needed under-
the-hood, possibly concurrently to the computation. Unless explicitly indicated, the actuation
goals use the round-based modality by default.

Notice that this actuation model is purely functional and does not allow for side effects.
Also, we generally assume that a round evaluation is non-blocking and short in time. For
certain applications, proper control of actuators may require multiple commands to be sent
with low delay; in those cases, the application designer may interface directly with the
platform and leave to the MacroSwarm program only delay-tolerant actuation planning.
Indeed, being MacroSwarm an extension of ScaFi, which is a Scala-internal DSL, then
normal Scala code can be used for ad-hoc and integration logic.

4.3. Movement blocks. These blocks control the movement of individual agents within
the swarm. The simplest movement expressible with MacroSwarm is a collective constant

10MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

movement (Figure 2a), described through a tuple like Vector(x,y,z) that devises the
velocity vector of the swarm. For instance,

Vector(2.5, 0, 0) // a constant field which is the same for all the agents

is a vector interpreted relatively to each device; the result is that all the devices will move
to their right at a speed of 2.5 m/s. This vector must then be appropriately mapped the
right electrical stimulus for the underlying engine platform of the mobile robot of interest.

On top of this, this module exposes several blocks to explore an environment.
In particular, the brownian block produces a random velocity vector for each evaluation

of the program. In addition to that simple logic, there are movements based on absolute
positioning systems like GPS. For instance, goTo yields a velocity vector that moves the
system to eventually converge to a single location, and explore returns a velocity vector
that let the system explore a rectangle area defined through minBound and maxBound. The
last one is based on temporal blocks, like maintainTrajectory and maintainUntil. The
former allows the systems to maintain a certain velocity for the time specified. At that
moment, a new velocity is generated according to the given strategy. The latter, instead, is
used to maintain a certain velocity until a condition is met (e.g., a target position is reached).
This module also exposes an obstacleAvoidance block (Figure 2d), which creates a vector
pointing away from obstacles.

Even if these blocks are quite simple, it is still possible to combine them to create
interesting behaviours. For instance, program

(maintainVelocity(browian()) + obstacleAvoidance(sense("obs"))).normalize

expresses a collective behaviour in which the nodes will explore the environment, while
avoiding any obstacles perceived through a sensor. Notice how the composition is achieved
by simply summing the computational fields produced by the sub-blocks. Expression
v.normalize yields v as a unit vector (of length 1), while keeping the same direction—useful
when combining several vectors together. A summary of the blocks exposed by this module
is reported in the following listing:

// Movement library

def brownian(scale: Double): Vector

// GPS Based

def goTo(target: Point3D): Vector

def explore(minBound: Point3D, maxBound: Point3D): Vector

// Temporal Based

def maintainTrajectory(trajectory: => Vector)(time: FiniteDuration):Vector

def maintainUntil(direction: Vector)(condition: Boolean): Vector

// Obstacle Avoidance

def obstacleAvoidance(obstacles: List[Vector]): Vector

4.4. Flocking blocks. In a swarm-like system, it is often necessary to coordinate the
movement of the entire swarm, rather than just individual agents, to achieve emergent
behaviours, and ensure that the nodes move cohesively, avoid collisions, and strive to be
aligned in a common direction. Therefore, in this module, we have implemented the main
blocks to support the flocking of agents. Several models are available in the literature for this
purpose. Particularly, MacroSwarm exposes the Vicsek [VCBJ+95], Cucker-Smale [CS07],
and Reynolds (Figure 2e) [Rey87] models. We have also exposed the individual blocks to
implement Reynolds, which are cohesion, separation, and alignment. These blocks can

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 11

be used individually by higher-level blocks to implement specific behaviours (e.g., following
a leader while avoiding collisions).

Another essential aspect that emerges at this level is the concept of a variable neigh-
bourhood. Indeed, it may happen that the logical neighbourhood model used by aggregate
computing does not match the one used to coordinate the agents. Thus, the node’s visibility
can be more restrictive or extensive according to the neighbourhood model applied. In
particular, in the case of Reynolds, it is typical for the separation range to be different
from that of alignment. Therefore, the flocking blocks accept a “query” strategy towards a
variable neighbourhood. The main implementation of these queries are:

• OneHopNeighborhood: the same as the aggregate computing model;
• OneHopNeighborhoodWithinRange(radius: Double): it takes all the nodes in the neigh-
bourhood within the given range.

The flocking models are typically described by an iterated function in which the velocity
at time t+ 1 depends on the velocity at time t. Taking as an example the Vicsek rule, it

is described as: vi(t + 1) =
∑

j∈N vj(t)

|N | + ηi(t) where N is the neighbourhood of the node

i at time t, vi(t) is the velocity of the node i at time t, and ηi(t) is a random vector that
models the noise of the model. For this reason, each block receives the previous velocity
field as a parameter, rather than encoding it internally within each block. This is because
the previous velocities may be influenced by other factors, such as constant movements or a
target position. Typical usage of this operator follows the following schema:

rep(initialVelocity) { oldVelocity => flockingOperator(oldVelocity, ..) }

For example, the following program describes a collective movement in which the nodes try
to reach the position (x,y) while maintaining a distance of k meters from one another:

rep(Point2D.Zero) {

v => (goTo(Point2D(x, y)) +

separation(v, OneHopNeighbourhoodWithinRange(k))).normalize

}

4.5. Leader-based blocks. These blocks allow agents to follow a designated leader. The
idea behind leadership in swarm systems is that a leader can act as a coordinator, influencing
the followers that recognise it as such. In the context of aggregate computing, leaders
are typically defined as Boolean fields holding true for leaders and false for non-leaders.
Leaders can be predetermined (i.e., nodes with certain characteristics), virtual (i.e., nodes
that do not actually exist in the system but are simulated for collective movement steering),
or chosen in space (e.g., using the S block—see Section 3). A leader can be thought of as
creating an area of influence, affecting the actions of its followers.

Currently, we have identified alignWithLeader and sinkAt (Figure 2b) as essential
blocks. The former propagates the leader’s velocity throughout its area of influence (e.g.,
via G—see Section 3), with followers adjusting their velocity to it. However, sometimes it
may also be desirable to create a sort of attraction towards the leader, so that the nodes
remain cohesive with it. For this reason, the sinkAt block creates a computational field in
which nodes tend to move towards the leader. These blocks are useful for higher-level blocks,
such as those associated with the creation of teams or spatial formations.

12MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

4.6. Team formation blocks. These blocks allow agents to form teams or sub-groups
within the swarm, useful e.g. for work division or situations requiring intervention by few
agents. In general, the formation of a team creates a “split” in the swarm logic, conceptually
creating multiple swarms with potentially different goals (cf. Figure 2c). One way to create
teams is by using the branch construct (see Section 3). For example, the following program,

def alignVelocity(id: Int) =

alighWithLeader(id == mid(), rep(browian())(x => x)

branch(mid() < 50) { alignVelocity(0) } { alignVelocity(50) }

creates two groups, each of which follows a certain velocity dictated by the leaders (0 and
50).

Other times, one needs to create teams based on the spatial structure of the network
or when certain conditions are met. The teamFormation block supports this scenario. By
internally using S, it allows for the creation of teams based on certain spatial constraints
expressed through parameters intraDistance (i.e., the distance between team members) and
targetExtraDistance (i.e., the size of the leader’s area of influence). It is also possible to
create teams based on predetermined leaders, denoted explicitly by Boolean fields. Moreover,
since team formation may take time to complete, or require conditions to be met (e.g., that
at least N members are present, or that the minimum distance between all nodes is less
than a certain threshold), we also parameterise teamFormation by a condition predicate.
An example of built-in predicate is isTeamFormed, which verifies that each node under the
influence of the leader has a necessary a number of neighbours within a targetDistance

radius. An example is as follows.

teamFormation(targetIntraDistance = 30, // separation

targetExtraDistance = 300, // influence of the leader

condition = leader => isTeamFormed(leader, targetDistance = 40)

).velocity // use the velocity vector to create the Team

Each team must refer to a single leader, who can coordinate the associated nodes (using the
APIs exposed by the Leader Based Block). In particular, to execute a certain behaviour
within a team, the insideTeam method must be used. Given the ID of the leader to which
a node belongs, this method can define the movement logic relative to that leader. For
instance, this code aligns the followers with a velocity generated by a leader,

team.insideTeam{leader => alignWithLeader(leader)(rep(brownian())(x => x))}

4.7. Pattern formation blocks. Team formation blocks can be used to create groups
of agents with certain characteristics. However, sometimes we are also interested in the
spatial structure of the group. In swarm behaviours, the spatial structures of the teams can
be instrumental for performing certain tasks (e.g., coverage or transportation tasks). In
MacroSwarm some of the most idiomatic spatial structures are available.

The implementation is as follows. First of all, the formation of structures is based on
the presence of a leader that collects the hop-by-hop distances of their followers (leveraging
G and C) and sends them a direction in which they should go to form the required structure
(using G).

The structures currently supported (Figure 3) are v-like shapes (vShape), lines (line),
and circular formations (centeredCircle). These structures are self-healing : if there is a
disturbance of the structure, the group tends to reconstruct itself and return to a stable

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 13

(a) (b) (c)

(d) (e)

Figure 2. Overview of swarm behaviours expressible with MacroSwarm.

Figure 3. Examples of the supported patterns. From left to right: line
formation, v-like formation, and circular formation.

structure. Additionally, it is assumed that the leader has his own speed logic. In this way,
the group will follow the leader maintaining the chosen structure.

4.8. Swarm Planning blocks. With the previous blocks available, there is a need for a
handy mechanism to express a series of plans that change over time and move the swarm
towards different targets. For this reason, MacroSwarm also exposes the concept of swarm
planning. The idea is to express a series of plans (or missions) defined by a behaviour (i.e.,
the logic of production of a velocity vector) and a goal (defined as a boolean predicate

14MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

condition). At any given time, the swarm will be executing a certain sub-plan, which will be
considered complete only when the boolean condition is satisfied. At this point, the swarm
will follow the next objective described by the overall plan. The exposed API allows for the
creation of these collective plans in the following way:

execute.once {

plan(goTo(goalOne).endWhen(isClose(goalOne)),

plan(goTo(goalTwo).endWhen(isClose(goalTwo)),

}.run() // will trigger the execution of the plan

This snippet creates a plan in which the nodes will first go to goalOne, and once reached
(isClose verifies that the node is close enough to the point passed), it will move on to the
next objective goalTwo. Since it is specified that the mission is executed once, after the
completion of the last plan, the group will stop moving. To make the group repeat the plan,
the repeat method can be used instead of once. Note that there is no coordination between
agents in the above code, but you can enforce it using lower-level blocks (e.g., flocking or
team-based behaviours). For example, MacroSwarm enables describing a swarm behaviour
where: (i) a group of nodes gathers around a leader, (ii) the leader brings the entire group
towards the goalOne, (iii) the leader brings the entire group towards the goalTwo. This can
be described using the following code:

execute.once(// if it is repeated, you can use ‘repeat’

plan{sinkAt(leaderX)}.endWhen{isTeamFormed(leaderX, targetDistance=100)},

plan(goTo(goalOne)).endWhen{ G(leaderX, isClose(goalOne), x => x)},

plan(goTo(goalTwo)).endWhen{ G(leaderX, isClose(goalTwo), x => x)},

).run()

The use of G in this way is a recurrent pattern, and in ScaFi it is exposed through the
broadcast[T](center: Boolean, value: T): T block.

4.9. Consensus. In several swarm applications, it is necessary to reach a consensus on a
certain value, e.g., a target position or a certain behaviour. For this reason, MacroSwarm
exposes the consensus block, which allows the nodes to converge to a certain value, based
on local and neighbourhood preferences.

Among the possible consensus algorithms, we have implemented the swarm consen-
sus [ZL23], which is a simple and effective algorithm for this purpose. The algorithm is
based on the following idea: each node has a preference for a certain value, and it tries
to converge to that value by computing the entropy of the neighbourhood preferences and
trying to minimize it. The algorithm is described in the following listing:

def consensus(preferences: List[Double], neighbourhoodWeight: ID => Double): Int

Where preferences is the list of preferences of the node, and neighbourhoodWeight is a
function that returns the weight of the neighbour with the given ID. It returns the index of
the preference that the node has converged to.

5. Evaluation

To validate the proposed approach and API we extensively verify the main block proposed
and then define a simulated find-and-rescue case study, to show the ability of MacroSwarm
to express complex swarm behaviours (Section 5.2). Then, we discuss the results of the case

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 15

study and the applicability of the proposed approach in real-world scenarios (Section 5.3).
The simulations are public available at https://doi.org/10.5281/zenodo.10529068.

5.1. Block verification.

5.1.1. Evaluation Goal. In this section, we describe the validation of the main components of
the MacroSwarm API, with a specific emphasis on formation and consensus mechanisms.
This evaluation focusses on the accuracy of these components. For each component, multiple
simulation runs are carried out to assess proper convergence to expected values across
different dynamical histories deforming the lattice topology (i.e., different initial positions
of the drones). Given the “emergent” nature of these computations, it is possible that
nodes display, during transient phases, invalid output configurations; therefore we let the
simulations run for a sufficiently long time to ensure that the system eventually converges
to the expected configuration.

5.1.2. Simulation Setup and Scenario. Our simulation toolchain is based on the Alchemist
simulator [PMV13] and its Alchemist-ScaFi integration [CVAP22].

Each simulation displays a network of drones configured in a partially deformed 2D
lattice composed of 6 rows and 7 columns, covering an area of 1000x1000 meters. Each drone
within this network had a communication range of 200 meters. A central leader drone is
designated within the lattice to test the drones’ capacity for pattern formation around this
leader and to ensure the reproducibility of the resultant formations. Each simulation run
lasts for 2700 seconds, during which the drones operated at a maximum velocity of 20km/h.
To ensure the statistical robustness of our findings, we replicated each experiment 32 times.
These repetitions were conducted with the drones starting from randomized positions relative
to the lattice to eliminate any biases.

5.1.3. Results. The outcomes of these simulations are presented in Figure 4, Figure 5, and
Figure 6. Notably, Figure 4 illustrates graphically the effectiveness of the pattern formation
components, with each drone’s trajectory marked by a coloured trail. The intensities of these
colours diminish along the trail, indicating earlier positions of the drones. In the following,
we elucidate the findings depicted in these charts.

V-shape formation. The study of the V-shape pattern involved adjusting the angle values
to examine their effect on the formation’s stability and integrity. The analysis of the results
in Figure 4 reveals that the drones successfully establish a V-shape formation centred around
a leader drone. The angle parameter was found to be a critical factor influencing the
formation’s effectiveness.

Further examination is presented in Figure 5a, where the average angular alignment
of the lead drone in relation to the others over time is graphically represented. This data
indicates that the drones consistently achieve the targeted angle in various scenarios, with a
noticeable decline in error as the simulation progresses. Formations with tighter angular
settings, such as 60 degrees, resulted in quicker and more stable configurations. Conversely,
more relaxed angles, like 30 degrees, led to slower formation times and reduced stability.

https://doi.org/10.5281/zenodo.10529068

16MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

Separation formation. For the separation pattern, the distance parameter was adjusted to
examine the effect on the different shapes that it is possible to obtain. Also in this case the
drones successfully establish a separation formation centred around a leader drone (Figure 4).
In particular, Figure 5b graphically represents the average distance of the nearest 4 drones
to the other drones over time: we see that the drones consistently achieve the targeted
distance in various scenarios, and they can maintain it over time.

Line formation. The line formation was tested by adjusting the distance parameter among
the nodes. This regulates the length of the segment that the drones have to form. The
results, as shown in Figure 4, indicate that the drones successfully establish a line formation
centred around a leader drone. In this case, to verify that the drones are really in a line, we
computed the average vertical variation of the lead drone in relation to the others over time
(Figure 5c). The data indicates that the variation is always close to zero at the convergence
time, meaning that the drones are in a line (as also shown in Figure 4).

Circle formation. For the circle formation, the distance parameter with respect to the
central leader was adjusted to examine its effect on the formation’s stability and integrity.
This regulates the size of the circle since it corresponds to its radius. The results, as shown
in Figure 4, indicate that the drones successfully establish a circle formation centred around
a leader drone. In this case, to verify that the drones are really in a circle, we computed the
average distance of the lead drone in relation to the others over time (Figure 5d). Observing
the data, we can see that the distance is related to the radius of the circle, meaning that the
drones successfully form the desired shape (as also shown in Figure 4).

Consensus. For the consensus, we create random preferences for each drone but the leader,
and we let them converge to a single value. Particularly, the leader has a preference to
go diagonally to the right. The results, as shown in Figure 6a, indicate that the drones
successfully establish a consensus on a single value, since all the drone goes in the same
direction. More details can be found in Figure 6b, in which we case see that the system
always converges to a single choice (the one of the leader).

5.2. Case Study: Find and Rescue. In our scenario, we want a fleet of drones to patrol
a spatial area. In the area, dangerous situations may arise (e.g., a fire breaks out, a person
gets injured, etc.). In response to these, a drone designated as a healer must approach and
resolve them. Exploration must be carried out in groups composed of at least one healer
and several explorers, who will help the healer identify alarm situations.

5.2.1. Goal. The goal of the proposed case study is to demonstrate the effectiveness of the
proposed API in terms of expressiveness (i.e., the ability to describe complex behaviours
easily) and correctness (i.e., the described behaviour collectively does what is expressed). For
the first point, since it is a qualitative metric, we will show the development process that led
to the implementation of the produced code, demonstrating its ease of understanding. For
the second point, since deploying a swarm of drones is costly, we will make use of simulations
to verify that the program is functioning correctly both qualitatively (e.g., observing the
graphical simulation) and quantitatively (i.e., extracting the necessary data and computing
metrics that allow us to understand if the system behaves as it should).

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 17

0 250 500 750
X Coordinate

200

0

200

400

600

800

Y
Co

or
di

na
te

v shape (radius=60°)

0 500 1000
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

v shape (radius=45°)

0 500 1000
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

v shape (radius=30°)

0 200 400 600 800
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

separation (distance=30m)

0 200 400 600 800
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

separation (distance=60m)

0 200 400 600 800
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

separation (distance=120m)

0 200 400 600 800
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

line (distance=10m)

0 250 500 750
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

line (distance=20m)

0 1000
X Coordinate

0

200

400

600

800
Y

Co
or

di
na

te

line (distance=40m)

0 200 400 600 800
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

circle (distance=80m)

0 200 400 600 800
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

circle (distance=80m)

0 200 400 600 800
X Coordinate

0

200

400

600

800

Y
Co

or
di

na
te

circle (distance=160m)

Figure 4. Pattern formation evaluation, each row represents a different
pattern formation block.

18MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

250 500 750 1000 1250
Time

25
50
75

100
125
150
175

Av
er

ag
e

an
gl

e
V-shape

v shape=45°
v shape=30°
v shape=60°

(a) V-shape formation

250 500 750 1000 1250
Time

40

60

80

100

120

Av
er

ag
e

di
st

an
ce

Separation

separation=60m
separation=30m
separation=120m

(b) Separation formation

250 500 750 1000 1250
Time

0

50

100

150

200

Av
er

ag
e

ve
rti

ca
l d

ev
ia

tio
n

Line
line 20m
line 10m
line 40m

(c) Line formation

250 500 750 1000 1250
Time

100

150

200

250

300
Av

er
ag

e
di

st
an

ce

Circle
circle[120m]
circle[160m]
circle[80m]

(d) Circle formation

Figure 5. Convergence analysis of the pattern formation blocks. Each of
them, after an initial transient, converges to the desired value.

5.2.2. Setup. Initially, 50 explorers and 5 healers are randomly positioned in an area of
1km2. Each drone has a maximum speed of approximately 20 km/h and a communication
range of 100 meters. The alarm situations are randomly generated at different times within
the spatial area in a [0, 50] minutes time-frame. Each simulation run lasts 90 minutes, during
which we expect the number of alarm situations to reach a minimum value. The node should
form teams of at least one healer and several explorers, maintaining a distance of at least 50
meters between the node and the leader

5.2.3. Implementation details. To structure the desired swarm behaviour, we break the
problem into parts:

(1) the swarm must split into teams regulated by a healer, who works as a leader (Figure 7a);
(2) teams must assume a spatial formation promoting the efficiency of the exploration

(Figure 7b);
(3) the teams must explore the overall area (Figure 7c);
(4) when any node detects an alarm zone, it must point that to the healer;
(5) the healer node approaches the dangerous situation to fix it;
(6) then, the team should return to the exploration phase.

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 19

0 500 1000
X Coordinate

0

250

500

750

1000

1250

Y
Co

or
di

na
te

consensus

(a) Traces

0 250 500 750 1000 1250
Time

2

4

6

8

10

un

iq
ue

 c
ho

ice
s

Choices over time
choices

(b) Selected choices

Figure 6. Consensus block evaluation. The first chart shows the trace of
the drones, the second one shows the number of unique choices over the time.

(a) Team formation (b) Circle formation (c) Explore

Figure 7. The first phases of the scenario described in Section 5. At the
beginning, the system is split into teams; afterwards, the teams assume a
spatial formation (circular, in this case); finally, the teams start exploring
the overall area.

We now describe the implementation of each part, leveraging the MacroSwarm API. First
of all, for creating teams, we can use the Team Formation blocks:

val teamFormedLogic =

(leader: ID) => isTeamFormed(leader, minimumDistance + confidence)

def createTeam() =

teamFormation(sense("healer"), minimumDistance, teamFormedLogic)

where minimumDistance is the minimum distance between nodes during the team formation
phases and confidence is the confidence interval used to check if the team is formed

20MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

through the isTeamFormed method. Each team then should follow the aforementioned steps,
expressible using the Swarm Planning API:

def insideTeamPlanning(team: Team): Vector =

team.insideTeam {

healerId =>

val leading = healerId == mid() // team leader

execute.repeat(

plan(formation(leading)).endWhen(circleIsFormed), // shape formation

plan(wanderInFormation(leading)).endWhen(dangerFound), // exploration

plan(goToHealInFormation(leading, inDanger)).endWhen(dangerReached),

plan(heal(healerId, inDanger)).endWhen(healed(dangerFound)) // healing

).run() // repeat the plan

}

The first step is the formation of the teams, based on method formation which internally
uses centeredCircle to place the nodes in a circle around the leader node. Function
circleIsFormed verifies whether the nodes are in a circle formation, i.e., that the distance
between any node and the leader is less than radius (set to 50 meters in this scenario). The
second step is the exploration phase, implemented by method wanderInFormation, which
uses the explore function to move the nodes to a random direction within given bounds
while keeping the circle formation. This leverages centeredCircle, passing the movement
logic of the healer (leader) to the block. Exploration will go on until someone finds a danger
node, denoted by predicate dangerFound. This internally uses C and G to collect the danger
nodes’ psitions and share them within the team:

def dangerFound(healer: Boolean): Boolean = {

val dangerNodes =

C(sense("healer"), combinePosition, List(sense("danger")), List.empty)

broadcast(healer, dangerNodes.nonEmpty)

}

The third step is the movement towards the danger node, which is implemented by the
goToHealInFormation method, which uses again the centeredCircle function with a delta
vector that moves the leader node towards the danger node. inDanger is computed similarly
to dangerFound, but, in this case, the position will be shared instead. dangerReached is
a Boolean field indicating if the healer node is close enough to the danger node. The last
step is the healing of the danger node, which is modelled as an actuation of the healer. The
rescue ends when the danger node is healed. As a final note, we also want the nodes to be
able to avoid each other when they are too close, even if they are not in the same team. For
this, we leverage the Flocking API the separation block outside the team logic. Then,
the main program is as follows:

val team = createTeam()

rep(Vector.Zero) { v =>

insideTeamPlanning(team) +

separation(v, OneHopNeighbourhoodWithinRange(avoidDistance))

}.normalize

This program shows that the API is flexible enough to create complex behaviours handling
various coordination aspects.

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 21

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (minutes)

25

30

35

40

45

50

te
am

 a
ve

ra
ge

 d
ist

an
ce

 (m
et

er
)

(a)

0 20 40 60 80
time (minutes)

5

10

15

20

25

m
in

 d
ist

an
ce

 (m
et

er
)

(b)

0 20 40 60 80
time (minutes)

0

1

2

3

4

5

6

da
ng

er
 (n

od
es

 c
ou

nt
)

(c)

Figure 8. Quantitative plots of the simulated scenario. Figure 8a shows
the average team distance in the first two minutes. Figure 8b shows the
minimum distance between nodes. Figure 8c shows the nodes in danger
through time. Since we run several simulations, the lines show the average
values, whereas the area around the lines shows the confidence interval
throughout the simulations.

5.2.4. Results. We validated the results by effectively running Alchemist simulations. We
launched 64 simulation runs with different random seeds: Figure 8 shows the average results
obtained. We extracted the following data:

• intra-team distance: after an initial adjustment phase, the system should converge to an
average distance of 50 meters (Figure 8a);

• minimum distance between each node: as we want to avoid collisions, the minimum distance
between two nodes should always be greater than zero (Figure 8b);

• number of nodes in danger : we expect the nodes in danger to increase up to 50 minutes
and then decrease, tending towards zero (Figure 8c).

The results (Figure 8) show that the system can achieve the expected outcomes.

22MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

5.3. Discussion. Despite its simplicity, this use case allowed us to demonstrate the capa-
bility of MacroSwarm, both in qualitative terms (i.e., the produced code is simple and
understandable) and quantitative terms (i.e., the data show that the swarm follows the given
instructions correctly).

That being said, there are several things to consider when using the library in real-
world contexts. Ours is a top-down approach, in which we have defined an evaluation and
implementation system that is general enough to be executed in various multi-robot systems.
Specifically, we require that at least: i) nodes can perceive and interact with neighbours and
approximate a direction vector to each of them; ii) they can move in a specific direction with
a certain velocity; and iii) they can perceive distance and direction for certain obstacles.
As for point i), this can be developed using specific local sensors (e.g., range and bearing
systems [BSA+22]), by using GPS, by approximating distances using cameras mounted on
each drone, or by using Bluetooth direction finding [SW22]. Concerning the point ii) the
velocity vector can be mapped to the motors of the UAVs, or the motor’s wheels of the ground
robots [KB91], so it can be easily implemented in real case scenarios. Finally, concerning
iii), there are several solutions for perceiving the direction of obstacles by leveraging various
sensors, like Laser Imaging Detection And Ranging (LIDAR) systems [PQZ+15].

That being said, we know that the reality gap for real-world scenarios could introduce
divergences from the behaviours shown, as the used simulator, although general, does
not simulate many aspects of reality, such as communication delay, friction, and possible
perception errors. We aim to test the API in more realistic simulators (like Gazebo [KH04])
or real systems as a future work.

6. Related Work

In this section, we review related work on swarm engineering. First, to properly position this
work, we cover related swarm engineering methods (Section 6.1); then, we consider languages
and DSLs for swarm programming, first on those resulting in decentralised behaviour
(Section 6.3), which are the most related to MacroSwarm, and finally on task orchestration
languages (Section 6.2).

6.1. Swarm engineering methods. Brambilla et al. [BFBD13] provide a comprehensive
review on engineering swarm robotic systems. They distinguish between (i) automatic
design methods, which do not require explicit intervention by the developer, such as those
based on learning, and (ii) behaviour-based design methods, where swarm behaviours are
iteratively developed using languages, often taking inspiration by social animals [BDT99].
Classes of automatic methods include multi-agent reinforcement learning [BBS08] and
evolutionary robotics [Tri08]. Classes of behaviour-based methods include probabilistic finite
state machines [SS05], virtual physics-based techniques, such as those based on artificial
potential fields [Kha90], and other design methods like aggregate computing [VBD+19]
(reviewed in Section 3). In particular, term macroprogramming [Cas23, NW04] refers
to languages and approaches aiming to simplify the design of collective or macroscopic
behaviours, often leveraging macro-level abstractions such as computational fields [MZL04,
VBD+19], ensembles [AGL+07, DNLPT14], collective communication interfaces [DNLPT14],
and spatial abstractions [NKSI05]. Behaviour-based design is also supported by a literature
of patterns of collective and self-organising behaviour [FSM+13, OSSJ17, VAB+18, BFBD13,
PCVN21].

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 23

6.2. Decentralised swarm programming approaches. Buzz [PB16] is a mixed imperative-
functional language for programming swarms. In Buzz, swarms are first-class abstractions:
they can be explicitly created, manipulated, joined (e.g., based on local conditions), and
used as a way to address individual members (e.g., for tasking them). For individual robots,
the language provides access to local features and the local set of neighbours, for interaction.
For swarm-wide consensus, a notion of virtual stigmergy is leveraged, based on distributed
tuple spaces. Buzz is designed to be an extensible language, since new primitives can be
added. Indeed, Buzz is based on a set of quite effective but ad-hoc mechanisms. By contrast,
MacroSwarm uses few general and expressive primitives, and supports swarm programming
through a library of reusable, composable blocks. Additionally, MacroSwarm can leverage
theoretical results from field calculi [VBD+19, VAB+18], making programs amenable for
formal analysis.

Voltron [MMWG14] is a programming model for team-level design of drone systems. It
represents a group of individual drones through a team abstraction, which is responsible
for the overall task. The details of individual drone actions and their timing are delegated
to the platform system during runtime. The programmer issues action commands to the
drone team, along with spatiotemporal constraints. The tasks in Voltron are associated with
spatial locations, and the team self-organises to populate multisets of future values that
represent the task’s eventual result at a specific location. However, Voltron is imperative in
nature, limiting the compositionality of team-level behaviours.

Meld [AGL+07] is a logic-based language for programming modular ensembles, for
systems where communication is limited to immediate neighbours. It leverages facts with
side-effects to handle actuation, production rules to generate new facts from existing facts,
and aggregate rules to combine multiple facts into one fact by folding (e.g., maximisation or
summation). The runtime deals with communication of facts and removal of invalidated
facts. The declarativity and logical foundation make Meld an interesting macroprogramming
system; however, it is not clear how it can scale with the complexity of general swarm
behaviour. Indeed, it is mainly adopted for shape formation and self-reconfiguring ensembles.

Finally, we mention that there exist several calculi and languages that may support swarm
programming (e.g. attribute-based communication languages [DNLPT14, AADNL20]), but
we do not relate them in detail since they may not come with full-fledged implementa-
tions, libraries of reusable behaviours, or support top-down design through macroscopic
abstractions.

6.3. Centralised orchestration approaches. Finally, we mention another category of
related works, which are task orchestration languages for swarms (e.g., TeCoLa [KL16],
Dolphin [LMPS18], Maple-Swarm [KHB+20], PARoS [DK18], Resh [CNS21], and [YDL+20]):
they adopt quite a different approach that leverages centralised entities to control the activity
of the swarm members based on the provided task descriptions.

In MacroSwarm, a program provides a description of the collective tasks, but also
acts as a control program for the individual agents, and is hence executed in a decentralised
fashion. In the following, we review task orchestration languages for swarms, which adopt
a quite different approach that leverages centralised entities to control the activity of the
swarm members based on the provided task descriptions.

TeCoLa [KL16] is a programming framework that is designed to coordinate robotic
teams and is implemented in Python. It provides abstractions for controlling individual
robots and teams of robots, with most of the team management activities being handled

24MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

automatically in the background. The framework uses the concept of nodes, which possess
resources and services consisting of methods and properties that can be remotely invoked
using proxies. TeCoLa leverages the notion of a mission group, i.e., a dynamic set of nodes
that participate in a mission, controlled and monitored by a coordinator entity like a leader
node or command control center. A mission group can also be split into teams whose shape
is managed automatically, based on a membership rule that specifies the set of services that
team members should support. When all team members provide a particular service, that
service is said to be promoted at the team-level, allowing it to be requested on the team
itself, triggering a corresponding service request on all team members and returning a vector
of results.

PARoS [DK18] is a Java framework for programming swarms that, similarly to the other
reviewed approaches, provides an abstract swarm abstraction, to support orchestration and
spatial organisation of multiple robots. The API provides various functions that include
path planning, declaration of points of interest (e.g., spatial locations that need to be
inspected), enumeration swarm members, and event handling (e.g., to respond to robot
failure). The PARoS language combines elements from imperative, declarative, and event-
driven programming. At the execution level, PARoS uses a centralised coordinator, limiting
the scalability of the approach.

Maple-Swarm [KHB+20] (“Multi-Agent script Programming Language for multipotent
Ensembles”) is an approach to swarm programming that is based on concepts like agent
groups (for addressing subsets of agents), virtual swarm capabilities, and hierarchical task
plans. Maple supports the orchestration of individual agents through tasks that are derived
from a composition of context-oriented partial plans. In Maple, compositionality is obtained
by connecting partial plans, which are defined in terms of swarm capabilities–the analogue of
collective behaviours inMacroSwarm. InMacroSwarm, we directly support programming
swarm capabilities by leveraging the field-based framework.

Dolphin [LMPS18] is a Groovy DSL designed specifically for task-oriented programming
for autonomous vehicle networks. In Dolphin, the main abstraction is the vehicle set,
which is a dynamic group of vehicles that can be manipulated using set operations and
pick/release operators—similarly to swarms in Buzz. In Dolphin, the macro-level program
defines how groups of vehicles are formed and tasked, essentially supporting the orchestration
of individual behaviours, which are specified separately.

In [YDL+20], a mixed decentralised-centralised actor-based framework is proposed
for programming swarms. The authors propose a collective actor mechanism to centrally
manage a swarm and provide primitives for high-level coordination (e.g., barrier synchroni-
sation, branching and aggregation of swarms). Though interesting, the approach – unlike
MacroSwarm – does not provide a well-defined programming model: instead, it is based
on XML dialects to define actor configurations and task scripts.

Resh [CNS21] is a DSL for orchestration of multi-robot systems. It leverages the notion
of a task as a compositional block, robot capabilities (which are to be advertised by the
robots), and spatiotemporal primitives (e.g., for waiting for events, specifying the location
where a task is to be executed, etc.). However, Resh is not Turing-complete, to simplify
synthesis of task orchestration programs.

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 25

7. Conclusion and Future Work

In this article, we presented MacroSwarm, a framework for top-down behaviour-based
swarm programming that offers a library of composable blocks capturing common patterns of
decentralised swarm behaviours. MacroSwarm has been designed in aggregate computing,
a paradigm formally founded on field-based coordination, and implemented as an extension
of the ScaFi toolkit/DSL. We describe MacroSwarm through examples and case studies,
evaluating by simulation that the proposed approach is expressive, compositional, and
practical.

In the future, we aim to more comprehensively extend the MacroSwarm library, by
implementing more algorithms while drawing inspiration from surveys and classifications of
swarm and collective behaviour [BFBD13]. Also, interesting directions to be explored include
the synthesis of MacroSwarm programs, e.g., by following the approach in [ACV22] based
on reinforcement learning and sketching, and the support for low-code [Hir23] aggregate
programming, e.g., building on previous work on ScaFi-Web [ACM+21]. Finally, we plan
to deploy and test MacroSwarm on physical robotic systems, for real-world scenario
assessment, by leveraging on-going work on aggregate computing middlewares [ACP+21].

Acknowledgements

This work was supported by the Italian PRIN project “CommonWears” (2020HCWWLP).

References

[AADNL20] Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. Programming interactions in
collective adaptive systems by relying on attribute-based communication. Science of Computer
Programming, 192, 2020.

[ABDV18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. Space-time universality
of field calculus. In Giovanna Di Marzo Serugendo and Michele Loreti, editors, Coordination
Models and Languages - 20th IFIP WG 6.1 International Conference, COORDINATION
2018, Held as Part of the 13th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018. Proceedings, volume 10852 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2018. URL: https://doi.org/10.
1007/978-3-319-92408-3_1.

[ACD+21] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Danilo Pianini, and Mirko Viroli.
Optimal resilient distributed data collection in mobile edge environments. Comput. Electr. Eng.,
96(Part):107580, 2021. URL: https://doi.org/10.1016/j.compeleceng.2021.107580.

[ACD+22] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and Mirko Viroli.
Functional programming for distributed systems with XC. In Karim Ali and Jan Vitek, editors,
36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022,
Berlin, Germany, volume 222 of LIPIcs, pages 20:1–20:28. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ECOOP.2022.20.

[ACDV23] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. Computation Against a
Neighbour: Addressing Large-Scale Distribution and Adaptivity with Functional Programming
and Scala. Logical Methods in Computer Science, Volume 19, Issue 1, January 2023. URL:
https://lmcs.episciences.org/10826.

[ACM+21] Gianluca Aguzzi, Roberto Casadei, Niccolò Maltoni, Danilo Pianini, and Mirko Viroli. Scafi-web:
A web-based application for field-based coordination programming. In Ferruccio Damiani and
Ornela Dardha, editors, Coordination Models and Languages - 23rd IFIP WG 6.1 International
Conference, COORDINATION 2021, Held as Part of the 16th International Federated Confer-
ence on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021,

https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://lmcs.episciences.org/10826

26MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

Proceedings, volume 12717 of Lecture Notes in Computer Science, pages 285–299. Springer,
2021. URL: https://doi.org/10.1007/978-3-030-78142-2_18.

[ACP+21] Gianluca Aguzzi, Roberto Casadei, Danilo Pianini, Guido Salvaneschi, and Mirko Viroli.
Towards pulverised architectures for collective adaptive systems through multi-tier programming.
In IEEE International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2021, Companion Volume, Washington, DC, USA, September 27 - Oct. 1, 2021, pages
99–104. IEEE, 2021. doi:10.1109/ACSOS-C52956.2021.00033.

[ACV22] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. Towards reinforcement learning-based
aggregate computing. In Maurice H. ter Beek and Marjan Sirjani, editors, Coordination
Models and Languages - 24th IFIP WG 6.1 International Conference, COORDINATION
2022, Held as Part of the 17th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceedings, volume 13271 of
Lecture Notes in Computer Science, pages 72–91. Springer, 2022. URL: https://doi.org/10.
1007/978-3-031-08143-9_5.

[ACV23] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. Macroswarm: A field-based compositional
framework for swarm programming. In Coordination Models and Languages - 25th IFIP WG
6.1 International Conference, COORDINATION 2023, Held as Part of the 18th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2023, Lisbon, Portugal,
June 19-23, 2023, Proceedings, volume 13908 of Lecture Notes in Computer Science, pages
31–51. Springer, 2023. doi:10.1007/978-3-031-35361-1_2.

[AGJS21] Mohamed Abdelkader, Samet Güler, Hassan Jaleel, and Jeff S. Shamma. Aerial swarms:
Recent applications and challenges. Current Robotics Reports, 2(3):309–320, July 2021. URL:
https://doi.org/10.1007/s43154-021-00063-4.

[AGL+07] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padman-
abhan Pillai. Meld: A declarative approach to programming ensembles. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2794–2800. IEEE, 2007.
URL: https://doi.org/10.1109/IROS.2007.4399480.

[AGUdP22] Daniel Albiero, Angel Pontin Garcia, Claudio Kiyoshi Umezu, and Rodrigo Leme de Paulo.
Swarm robots in mechanized agricultural operations: A review about challenges for research.
Comput. Electron. Agric., 193:106608, 2022. URL: https://doi.org/10.1016/j.compag.2021.
106608.

[AVD+19] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob Beal. A higher-
order calculus of computational fields. ACM Transactions on Computational Logic, 20(1):5:1–
5:55, January 2019. URL: http://doi.acm.org/10.1145/3285956.

[BBS08] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C, 38(2):156–172, 2008. URL:
https://doi.org/10.1109/TSMCC.2007.913919.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Théraulaz. Swarm intelligence: from natural to artificial
systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford university press, 1999.

[BDU+13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. Organizing
the aggregate: Languages for spatial computing. In Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, chapter 16, pages 436–501. IGI Global, 2013. doi:
10.4018/978-1-4666-2092-6.ch016.

[BFBD13] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intell., 7(1):1–41, 2013. URL: https:
//doi.org/10.1007/s11721-012-0075-2.

[Bih24] Andreas Bihlmaier. Robotics for Programmers. Manning, 2024. In publication.
[BSA+22] Cem Bilaloglu, Mehmet Sahin, Farshad Arvin, Erol Sahin, and Ali Emre Turgut. A novel time-

of-flight range and bearing sensor system for micro air vehicle swarms. In Marco Dorigo, Heiko
Hamann, Manuel López-Ibáñez, José Garćıa-Nieto, Andries P. Engelbrecht, Carlo Pinciroli,
Volker Strobel, and Christian Leonardo Camacho-Villalón, editors, Swarm Intelligence - 13th
International Conference, ANTS 2022, Málaga, Spain, November 2-4, 2022, Proceedings,
volume 13491 of Lecture Notes in Computer Science, pages 248–256. Springer, 2022. doi:
10.1007/978-3-031-20176-9_20.

https://doi.org/10.1007/978-3-030-78142-2_18
https://doi.org/10.1109/ACSOS-C52956.2021.00033
https://doi.org/10.1007/978-3-031-08143-9_5
https://doi.org/10.1007/978-3-031-08143-9_5
https://doi.org/10.1007/978-3-031-35361-1_2
https://doi.org/10.1007/s43154-021-00063-4
https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1016/j.compag.2021.106608
https://doi.org/10.1016/j.compag.2021.106608
http://doi.acm.org/10.1145/3285956
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/978-3-031-20176-9_20
https://doi.org/10.1007/978-3-031-20176-9_20

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 27

[Cas23] Roberto Casadei. Macroprogramming: Concepts, state of the art, and opportunities of
macroscopic behaviour modelling. ACM Computing Surveys, January 2023. URL: https:

//doi.org/10.1145/3579353.
[CMWdC20] Mario Coppola, Kimberly N. McGuire, Christophe De Wagter, and Guido C. H. E. de Croon. A

survey on swarming with micro air vehicles: Fundamental challenges and constraints. Frontiers
in Robotics and AI, 7, February 2020. URL: https://doi.org/10.3389/frobt.2020.00018.

[CNS21] Martin Carroll, Kedar S. Namjoshi, and Itai Segall. The Resh programming language for
multirobot orchestration. In IEEE International Conference on Robotics and Automation,
ICRA 2021, Xi’an, China, May 30 - June 5, 2021, pages 4026–4032. IEEE, 2021. URL:
https://doi.org/10.1109/ICRA48506.2021.9561133.

[CPP+20] Roberto Casadei, Danilo Pianini, Andrea Placuzzi, Mirko Viroli, and Danny Weyns. Pulveriza-
tion in cyber-physical systems: Engineering the self-organizing logic separated from deployment.
Future Internet, 12(11):203, 2020. URL: https://doi.org/10.3390/fi12110203.

[CS07] Felipe Cucker and Steve Smale. Emergent behavior in flocks. IEEE Transactions on Automatic
Control, 52(5):852–862, 2007. doi:10.1109/TAC.2007.895842.

[CVA+21] Roberto Casadei, Mirko Viroli, Giorgio Audrito, Danilo Pianini, and Ferruccio Damiani.
Engineering collective intelligence at the edge with aggregate processes. Eng. Appl. Artif. Intell.,
97:104081, 2021. URL: https://doi.org/10.1016/j.engappai.2020.104081.

[CVAP22] Roberto Casadei, Mirko Viroli, Gianluca Aguzzi, and Danilo Pianini. ScaFi: A Scala DSL and
toolkit for aggregate programming. SoftwareX, 20:101248, 2022. URL: https://doi.org/10.
1016/j.softx.2022.101248.

[DK18] Dimitris Dedousis and Vana Kalogeraki. A framework for programming a swarm of UAVs.
In 11th PErvasive Technologies Related to Assistive Environments Conference (PETRA’18),
Proceedings, pages 5–12. ACM, 2018. URL: https://doi.org/10.1145/3197768.3197772.

[DNLPT14] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A formal approach
to autonomic systems programming: The SCEL language. ACM Trans. Auton. Adapt. Syst.,
9(2):7:1–7:29, 2014.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
[DTT20] Marco Dorigo, Guy Theraulaz, and Vito Trianni. Reflections on the future of swarm robotics.

Sci. Robotics, 5(49):4385, 2020. URL: https://doi.org/10.1126/scirobotics.abe4385.
[FSM+13] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna, Mirko Viroli,

and Josep Llúıs Arcos. Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput., 12(1):43–67, 2013. doi:10.1007/S11047-012-9324-Y.

[GMH+18] Olga Galinina, Konstantin Mikhaylov, Kaibin Huang, Sergey Andreev, and Yevgeni Koucheryavy.
Wirelessly powered urban crowd sensing over wearables: Trading energy for data. IEEE Wirel.
Commun., 25(2):140–149, 2018. URL: https://doi.org/10.1109/MWC.2018.1600468.

[GTWS20] Carlos Gershenson, Vito Trianni, Justin Werfel, and Hiroki Sayama. Self-organization and
artificial life. Artif. Life, 26(3):391–408, 2020. URL: https://doi.org/10.1162/artl_a_00324.

[Hir23] Martin Hirzel. Low-code programming models. Commun. ACM, 66(10):76–85, 2023. doi:
10.1145/3587691.

[KB91] Yoram Koren and Johann Borenstein. Potential field methods and their inherent limitations for
mobile robot navigation. In Proceedings of the 1991 IEEE International Conference on Robotics
and Automation, Sacramento, CA, USA, 9-11 April 1991, pages 1398–1404. IEEE Computer
Society, 1991. doi:10.1109/ROBOT.1991.131810.

[KGB21] Miquel Kegeleirs, Giorgio Grisetti, and Mauro Birattari. Swarm SLAM: Challenges and perspec-
tives. Frontiers in Robotics and AI, 8, March 2021. URL: https://doi.org/10.3389/frobt.
2021.618268.

[KH04] Nathan P. Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Sendai, Japan, September 28 - October 2, 2004, pages 2149–2154. IEEE, 2004.
doi:10.1109/IROS.2004.1389727.

[Kha90] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Ingemar J.
Cox and Gordon T. Wilfong, editors, Autonomous Robot Vehicles, pages 396–404. Springer,
1990. doi:10.1007/978-1-4613-8997-2_29.

https://doi.org/10.1145/3579353
https://doi.org/10.1145/3579353
https://doi.org/10.3389/frobt.2020.00018
https://doi.org/10.1109/ICRA48506.2021.9561133
https://doi.org/10.3390/fi12110203
https://doi.org/10.1109/TAC.2007.895842
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1145/3197768.3197772
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1007/S11047-012-9324-Y
https://doi.org/10.1109/MWC.2018.1600468
https://doi.org/10.1162/artl_a_00324
https://doi.org/10.1145/3587691
https://doi.org/10.1145/3587691
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.3389/frobt.2021.618268
https://doi.org/10.3389/frobt.2021.618268
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/978-1-4613-8997-2_29

28MACROSWARM: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING

[KHB+20] Oliver Kosak, Lukas Huhn, Felix Bohn, Constantin Wanninger, Alwin Hoffmann, and Wolfgang
Reif. Maple-swarm: Programming collective behavior for ensembles by extending HTN-planning.
In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation: Engineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part II, volume 12477 of Lecture Notes in Computer Science, pages 507–524. Springer, 2020.
URL: https://doi.org/10.1007/978-3-030-61470-6_30.

[KL16] Manos Koutsoubelias and Spyros Lalis. Tecola: A programming framework for dynamic and
heterogeneous robotic teams. In Proceedings of the 13th International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2016), pages 115–124.
ACM, 2016. URL: https://doi.org/10.1145/2994374.2994397.

[LFD+19] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon, and Michael Fisher. Formal
specification and verification of autonomous robotic systems: A survey. ACM Comput. Surv.,
52(5):100:1–100:41, 2019. URL: https://doi.org/10.1145/3342355.

[LLM17] Alberto Lluch-Lafuente, Michele Loreti, and Ugo Montanari. Asynchronous distributed execu-
tion of fixpoint-based computational fields. Log. Methods Comput. Sci., 13(1), 2017.

[LMPS18] Keila Lima, Eduardo R. B. Marques, José Pinto, and João B. Sousa. Dolphin: A task orchestra-
tion language for autonomous vehicle networks. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2018, Madrid, Spain, October 1-5, 2018, pages 603–610.
IEEE, 2018. URL: https://doi.org/10.1109/IROS.2018.8594059.

[MMWG14] Luca Mottola, Mattia Moretta, Kamin Whitehouse, and Carlo Ghezzi. Team-level programming
of drone sensor networks. In Proceedings of the 12th ACM Conference on Embedded Network
Sensor Systems (SenSys’14), pages 177–190. ACM, 2014. URL: https://doi.org/10.1145/
2668332.2668353.

[MZL04] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Co-fields: A physically inspired
approach to motion coordination. IEEE Pervasive Comput., 3(2):52–61, 2004. doi:10.1109/
MPRV.2004.1316820.

[NJW20] Rocco De Nicola, Stefan Jähnichen, and Martin Wirsing. Rigorous engineering of collective
adaptive systems: special section. Int. J. Softw. Tools Technol. Transf., 22(4):389–397, 2020.
URL: https://doi.org/10.1007/s10009-020-00565-0.

[NKSI05] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. Programming ad-hoc networks of
mobile and resource-constrained devices. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI05. ACM, June 2005. URL: http:
//dx.doi.org/10.1145/1065010.1065040, doi:10.1145/1065010.1065040.

[NW04] Ryan Newton and Matt Welsh. Region streams: Functional macroprogramming for sensor
networks. In Workshop on Data Management for Sensor Networks, pages 78–87, 2004.

[OSSJ17] Hyondong Oh, Ataollah Ramezan Shirazi, Chaoli Sun, and Yaochu Jin. Bio-inspired self-
organising multi-robot pattern formation: A review. Robotics Auton. Syst., 91:83–100, 2017.
doi:10.1016/J.ROBOT.2016.12.006.

[PB16] Carlo Pinciroli and Giovanni Beltrame. Buzz: An extensible programming language for hetero-
geneous swarm robotics. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2016, Daejeon, South Korea, October 9-14, 2016, pages 3794–3800. IEEE,
2016. URL: https://doi.org/10.1109/IROS.2016.7759558.

[PCV+21] Danilo Pianini, Roberto Casadei, Mirko Viroli, Stefano Mariani, and Franco Zambonelli. Time-
fluid field-based coordination through programmable distributed schedulers. Log. Methods
Comput. Sci., 17(4), 2021. URL: https://doi.org/10.46298/lmcs-17(4:13)2021.

[PCV22] Danilo Pianini, Roberto Casadei, and Mirko Viroli. Self-stabilising priority-based multi-
leader election and network partitioning. In Roberto Casadei, Elisabetta Di Nitto, Ilias
Gerostathopoulos, Danilo Pianini, Ivana Dusparic, Timothy Wood, Phyllis R. Nelson, Evan-
gelos Pournaras, Nelly Bencomo, Sebastian Götz, Christian Krupitzer, and Claudia Raibulet,
editors, IEEE International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2022, Virtual, CA, USA, September 19-23, 2022, pages 81–90. IEEE, 2022. URL:
https://doi.org/10.1109/ACSOS55765.2022.00026.

https://doi.org/10.1007/978-3-030-61470-6_30
https://doi.org/10.1145/2994374.2994397
https://doi.org/10.1145/3342355
https://doi.org/10.1109/IROS.2018.8594059
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1007/s10009-020-00565-0
http://dx.doi.org/10.1145/1065010.1065040
http://dx.doi.org/10.1145/1065010.1065040
https://doi.org/10.1145/1065010.1065040
https://doi.org/10.1016/J.ROBOT.2016.12.006
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1109/ACSOS55765.2022.00026

MacroSwarm: A FIELD-BASED COMPOSITIONAL FRAMEWORK FOR SWARM PROGRAMMING 29

[PCVN21] Danilo Pianini, Roberto Casadei, Mirko Viroli, and Antonio Natali. Partitioned integration
and coordination via the self-organising coordination regions pattern. Future Gener. Comput.
Syst., 114:44–68, 2021. URL: https://doi.org/10.1016/j.future.2020.07.032.

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation of computational
systems with ALCHEMIST. J. Simulation, 7(3):202–215, 2013. URL: https://doi.org/10.
1057/jos.2012.27.

[PQZ+15] Yan Peng, Dong Qu, Yuxuan Zhong, Shaorong Xie, Jun Luo, and Jason Gu. The obstacle
detection and obstacle avoidance algorithm based on 2-d lidar. In IEEE International Conference
on Information and Automation, ICIA 2015, Lijiang, China, August 8-10, 2015, pages 1648–
1653. IEEE, 2015. doi:10.1109/ICInfA.2015.7279550.

[Rey87] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In Maureen C.
Stone, editor, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1987, Anaheim, California, USA, July 27-31, 1987, pages 25–34.
ACM, 1987. URL: https://doi.org/10.1145/37401.37406.

[SS05] Onur Soysal and Erol Sahin. Probabilistic aggregation strategies in swarm robotic systems. In
2005 IEEE Swarm Intelligence Symposium, SIS 2005, Pasadena, California, USA, June 8-10,
2005, pages 325–332. IEEE, 2005. doi:10.1109/SIS.2005.1501639.

[SUSE20] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm robotic
behaviors and current applications. Frontiers Robotics AI, 7:36, 2020. URL: https://doi.org/
10.3389/frobt.2020.00036.

[SW22] Pradeep Sambu and Myounggyu Won. An experimental study on direction finding of bluetooth
5.1: Indoor vs outdoor. In IEEE Wireless Communications and Networking Conference, WCNC
2022, Austin, TX, USA, April 10-13, 2022, pages 1934–1939. IEEE, 2022. doi:10.1109/
WCNC51071.2022.9771930.

[TBH+19] Anam Tahir, Jari Böling, Mohammad Hashem Haghbayan, Hannu T. Toivonen, and Juha
Plosila. Swarms of unmanned aerial vehicles - A survey. J. Ind. Inf. Integr., 16:100106, 2019.
URL: https://doi.org/10.1016/j.jii.2019.100106.

[Tri08] Vito Trianni. Evolutionary Swarm Robotics - Evolving Self-Organising Behaviours in Groups of
Autonomous Robots, volume 108 of Studies in Computational Intelligence. Springer, 2008. URL:
https://doi.org/10.1007/978-3-540-77612-3.

[VAB+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. Engineering
resilient collective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.,
28(2):16:1–16:28, 2018. URL: https://doi.org/10.1145/3177774.

[VBD+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo
Pianini. From distributed coordination to field calculus and aggregate computing. J. Log.
Algebraic Methods Program., 109, 2019.

[VCBJ+95] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet. Novel type of
phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226–1229, Aug 1995.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.75.1226.

[VCPD15] Franck Varenne, Pierre Chaigneau, Jean Petitot, and René Doursat. Programming the emergence
in morphogenetically architected complex systems. Acta biotheoretica, 63(3):295–308, 2015.
doi:10.1007/s10441-015-9262-z.

[WH07] Tom DeWolf and Tom Holvoet. Designing self-organising emergent systems based on information
flows and feedback-loops. In Proceedings of the First International Conference on Self-Adaptive
and Self-Organizing Systems, SASO 2007, Boston, MA, USA, July 9-11, 2007, pages 295–298.
IEEE Computer Society, 2007. doi:10.1109/SASO.2007.16.

[YDL+20] Wei Yi, Bin Di, Ruihao Li, Huadong Dai, Xiaodong Yi, Yanzhen Wang, and Xuejun Yang. An
actor-based programming framework for swarm robotic systems. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24,
2020 - January 24, 2021, pages 8012–8019. IEEE, 2020. URL: https://doi.org/10.1109/
IROS45743.2020.9341198.

[ZL23] Chuanqi Zheng and Kiju Lee. Consensus decision-making in artificial swarms via entropy-
based local negotiation and preference updating. Swarm Intell., 17(4):283–303, 2023. URL:
https://doi.org/10.1007/s11721-023-00226-3, doi:10.1007/S11721-023-00226-3.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1109/ICInfA.2015.7279550
https://doi.org/10.1145/37401.37406
https://doi.org/10.1109/SIS.2005.1501639
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1109/WCNC51071.2022.9771930
https://doi.org/10.1109/WCNC51071.2022.9771930
https://doi.org/10.1016/j.jii.2019.100106
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1145/3177774
https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
https://doi.org/10.1007/s10441-015-9262-z
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1109/IROS45743.2020.9341198
https://doi.org/10.1109/IROS45743.2020.9341198
https://doi.org/10.1007/s11721-023-00226-3
https://doi.org/10.1007/S11721-023-00226-3

	1. Introduction
	2. Context and Motivation
	3. Background: Aggregate Computing
	3.1. System and execution model
	3.2. Programming model

	4. MacroSwarm
	4.1. Architecture
	4.2. Actuation model
	4.3. Movement blocks
	4.4. Flocking blocks
	4.5. Leader-based blocks
	4.6. Team formation blocks
	4.7. Pattern formation blocks
	4.8. Swarm Planning blocks
	4.9. Consensus

	5. Evaluation
	5.1. Block verification
	5.2. Case Study: Find and Rescue
	5.3. Discussion

	6. Related Work
	6.1. Swarm engineering methods
	6.2. Decentralised swarm programming approaches
	6.3. Centralised orchestration approaches

	7. Conclusion and Future Work
	Acknowledgements
	References

