
HAL Id: hal-04090204
https://hal.science/hal-04090204v2

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RSC to the ReSCu: Automated Verification of Systems
of Communicating Automata

Loïc Desgeorges, Loïc Germerie Guizouarn

To cite this version:
Loïc Desgeorges, Loïc Germerie Guizouarn. RSC to the ReSCu: Automated Verification of Systems
of Communicating Automata. Université côte d’azur. 2023. �hal-04090204v2�

https://hal.science/hal-04090204v2
https://hal.archives-ouvertes.fr

RSC to the ReSCu: Automated Verification of
Systems of Communicating Automata⋆

Löıc Desgeorges and Löıc Germerie Guizouarn

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{loic.desgeorges,loic.germerie-guizouarn}@univ-cotedazur.fr

Abstract We present ReSCu, a model-checking tool for RSC (Realis-
able with Synchronous Communication) systems of communicating auto-
mata. Communicating automata are a formalism used to model commu-
nication protocols: each participant is represented by a finite state auto-
maton, whose transitions are labelled by sending and receiving actions.
In the general case, such automata exchanging messages asynchronously
via FIFO or bag buffers are Turing-powerful, therefore most safety veri-
fication problems are undecidable. In RSC systems, the reception of a
message may happen right after its send action. A lot of verification
problems, e.g. reachability of a control state, are decidable for RSC sys-
tems. ReSCu checks whether a system is RSC, allowing to observe that
a significant portion of protocols from the literature is RSC. This tool
can also perform verification of safety properties for those systems, and
is competitive in terms of time compared to non–RSC specific tools.

1 Introduction

Ensuring safety of communication protocols is admittedly a very important task.
Systems of communicating automata (CA for short) are one of the formalisms
modelling such protocols: each participant of the communication is represented
by a finite state automaton, the transitions of which are labelled with actions,
either to send or receive messages. Model-checking a system consists in verify-
ing that it satisfies safety properties, e.g. whether an undesired configuration
of control states is reachable. In this model, communications are asynchronous:
messages are sent to unbounded buffers, waiting there to be received. The sender
may immediately proceed with its subsequent actions. The main semantics for
buffers are FIFO, for First In First Out, and bag. FIFO buffers behave like
queues, messages are received in the same order as they were sent, whereas
bag buffers allow receptions of messages in any order. Systems may be equipped
with different structures of buffers named communication architecture. The most
common ones being peer-to-peer, where there is one buffer per direction between
each pair of participants, and mailbox, were each participant receives its mes-
sages from a single buffer.

⋆ This work has been supported by the French government, through the EUR DS4H
Investments in the Future project managed by the National Research Agency (ANR)
with the reference number ANR-17-EURE-0004.

From its asynchrony, comes a limitation of this model: buffers can encode the
tape of a Turing Machine and therefore, deciding the reachability of a configura-
tion of control states is undecidable [8]. Different strategies arose to circumvent
this difficulty, the main ones being using semi-algorithms for verification, and
restricting systems to classes in which verification problems become decidable.

The latter approach is the one we used in [11] and developed in [12]. Intuit-
ively, a system is Realisable with Synchronous Communication (RSC for short)
if all its executions can be reorganised to mimic a synchronous behaviour, where
send and receive actions of the same message happen at the same time. Reach-
ability of a regular set of configurations was shown to be decidable for RSC
systems. Membership to the class of RSC systems is decidable as well, allowing
to select the protocols on which the reachability algorithms can be used.

We present ReSCu (for Realisable with Synchronous Communication), a
model-checking tool for RSC systems of CA. This tool can answer whether a
given system is RSC or not, and whether a specified bad configuration is reach-
able. ReSCu works on systems with any communication architecture (not re-
stricted to peer-to-peer or mailbox) and either with bag or FIFO buffers.

Outline. After a discussion about related works, we will begin with some in-
tuition about CA in Section 2. In Section 3, we present the tool itself, how it
is implemented and how it can be used. Before concluding (Section 5), we will
present some results and benchmarks we obtained with our tool in Section 4.

Related works. The closest tool to ReSCu is McScM [14]. It takes a descrip-
tion of a system and a set of bad configurations (defined as QDDs [5]), and
checks whether a bad configuration is reachable. This tool implements various
model-checking approaches, based on abstract interpretation. It is not limited
to systems of a specific class. Contrary to ReSCu, most of these approaches are
semi-algorithms and need a time-out to be set arbitrarily. However, the strength
of McScM is the multiplicity of model-checking engines it provides, increasing the
likelihood of a conclusive result for any system. We use its description language
as a way to input systems in ReSCu.

The notion of stability, introduced in [4], is close to RSC. A system is k-
stable if its behaviour with any bound k′ > k is equivalent (with several notions
of equivalence possible) to its behaviour with a bound k. Model-checking can be
performed with bounded buffers for stable systems. Stability was shown to be
undecidable for FIFO systems in [3], but decidable with bag buffers (for a specific
notion of equivalence) [2]. The authors of [2, 3] developed STABC: a tool using
semi-algorithms to check k-stability of systems. Contrary to ReSCu, it does not
perform verification of safety properties, but provides only membership results.

Lange and Yoshida proposed another tool: KMC [19], for k Multiparty Com-
patibility. It checks whether a system could have been obtained by projection of
a global type, relying on the theory of Multiparty Session Types [15] (another
way to model distributed systems). If a system is k-MC, various safety proper-
ties are ensured, and it is not necessary to specify them as it is for McScM or
ReSCu.

Client

0 1 2 0

Server

1 2 2 0

Database

s?req c!res s?ack

d!log

s!req c?res

s!ack
d?log

Figure 1: Protocol from Example 1

2 Communicating automata

We begin with a small example of protocol, borrowed from [3].

Example 1 (Communication protocol). We will consider a generic client/server
protocol, enhanced with a database logging activity. In this protocol, the client
may send a request to the server, and when it receives a result for this request,
it sends an acknowledgement back to the server. The server waits for a request,
and upon receiving it, it sends a result to the client. After that, it waits for an
acknowledgement from the client and sends a logging message to the database.
Those behaviours can be repeated indefinitely. ⊓⊔

Figure 1 is a graphical representation of the system of CA modelling the
protocol from Example 1. Each participant is represented by an automaton,
which can change states by executing the actions labelling its transitions. An
action i!v means that message v is sent in buffer i, and i?v that v is received from
buffer i. In this system each participant receives all its messages in a single FIFO
buffer (mailbox). Informally, a configuration is the product of the control states
of each participant, paired with the content of the buffers. A configuration is
reachable if a sequence of actions of the system can lead to it. We focus on safety
properties that can be expressed as a regular language of ‘bad’ configurations of
a system. We say that such a safety property is satisfied if no configuration of
the language is reachable in the system.

Example 2 (Safety specifications). In Example 1, the configuration where the
server is in state 1, and the client in state 0 is a bad configuration: it means
those two participants are not at the same step of the protocol any more. Both
the server and the client are not ready to receive the messages they are about to
send each other. In this tiny example, it is easy to see that such a configuration is
not reachable, but on bigger systems an automatic verification may be useful to
ensure such properties. Another example: a set of bad configurations is formed
by the ones where the server is in state 0, and the first message in buffer s is
not req, preventing any further reception to happen for this participant (indeed,
remember we use FIFO buffers, only the first message of a buffer may be re-
ceived). ⊓⊔

Intuitively, a system of CA is RSC if send actions and their respective re-
ception can happen at the same time: there is no need for another action to be
performed between sending a message and receiving it. The work in [12] provides
formal definitions of CA and RSC systems, as well as algorithms for deciding
membership to the class of RSC systems and reachability of a configuration.

scm client_server_database :

nb_channels = 3;
parameters: int req; int res;
int log; int ack;

automaton server:
initial: 0
state 0:
to 1: when true , 0 ? req;
state 1:
to 2: when true , 1 ! res;
state 2:
to 3: when true , 0 ? ack;
state 3:
to 0: when true , 2 ! log;

automaton database:
initial: 0
state 0:
to 0: when true , 2 ? log;

automaton client:
initial: 0
state 0:
to 1: when true , 0 ! req;
state 1:
to 2: when true , 1 ? res;
state 2:
to 0: when true , 0 ! ack;

bad_states:
(automaton client: in 0: true
automaton server: in 1: true)

(automaton server: in 0: true with
(log|res|ack).(req|res|log|ack)^*.#.
(req|res|log|ack)^*.#.
(req|res|log|ack)^*)

Figure 2: SCM representation of Example 1

3 ReSCu

ReSCu is a tool using the properties of RSC systems to perform model-checking.
It is an OCaml implementation of the algorithms in [12]. While working on this
implementation, we discovered a bug in the membership algorithm; we provide
in Appendix A the fixed algorithms, generalised to take into account bag buffers.
ReSCu provides a command line interface that takes a file describing a system
of CA and its safety specifications, and outputs whether this system is RSC, and
whether a bad configuration is reachable or not. If a bad configuration is reach-
able, ReSCu can display the execution leading to the safety counterexample.
Similarly, if non-RSC executions are possible, one of them may be displayed.
This tool is available at [10].

SCM description language. We chose, as an input format, the SCM language
used in [14]. This allowed to rely on the parser that was already available thanks
to the developers of McScM, and to compare easily ReSCu with this tool. Fig-
ure 2 shows the SCM description of the system in Example 1. The set of messages
is declared after the keyword parameters, and the number of buffers after the
keyword nb channels (‘channel’ is the name used for buffers in SCM). An auto-
maton is declared as a list of states, each of them containing a (possibly empty)
list of transitions. SCM allows specification of model features we did not take
into consideration, hence the ‘when true’ in the transitions, or the types of each
message. Bad configurations are declared after the keyword ‘bad states’, each
one of them being a list of control states and an optional regular expression
describing buffer contents. The bad states of this listing correspond to the ones
in Example 2.

Usage. The command line utility allows to check both membership and safety of
a system: rescu -isrsc <system> checks whether the system described in the

Protocol |P| S T RSC trsc k-MC tkmc

SMTP [16, 21] 2 64 108 Yes 17 Yes 34
HTTP [17, 21] 2 12 48 Yes 17 Yes 28
Elevator [6] 3 13 23 No 7 Yes 41
Commit protocol [6] 4 12 12 Yes 4 Yes 15
Travel agency [21] 3 17 20 Yes 8 Yes 15
SH [21] 3 22 30 Yes 18 Yes 33

(a) Comparison with KMC

Protocol |P| S T RSC trsc k tstabc
Estelle specification [18] 2 7 9 No 5 max 82,625
FTP transfer [7] 3 20 17 Yes 6 4 89,465
SQL server [22] 4 33 38 Yes 13 3 90,553
SSH [20] 4 27 28 Yes 7 2 43,855
Bug report repository [13] 4 11 11 Yes 4 max 134,796
Restaurant service [1] 3 16 16 No 5 2 52,793

(b) Comparison with STABC, using FIFO buffers
and ‘strong equivalence’. max means the arbitrary
limit for k, set at 10, was reached.

Table 1: Membership results of ReSCu compared with KMC and STABC. |P| is the
number of participants, S the number of states, and T the number of transitions. trsc,
tkmc and tstabc denote the time (in ms) of computation of ReSCu, KMC and STABC.

SCM file <system> is RSC, and rescu -mc <system> checks that no bad con-
figuration is reachable. The two options can be combined in one call to ReSCu.
Option -bag specifies that all buffers should be considered as bag buffers. In
this case bad specifications including a description of the buffer contents are not
accepted. For convenience while testing, we included a feature allowing to output
a DOT representation of an SCM file. A video demonstrating the use of ReSCu
is available at [9].

Implementation choices. McScM was designed as a framework, allowing addi-
tion of model-checking engines as modules. We opted for a stand-alone tool as
the interface with McScM is way more involved than what is required for RSC
algorithms. In addition, McScM is no longer maintained, and in its current state
it is not possible to compile it with a modern version of OCaml.

4 Results

We used ReSCu on the set of examples provided with McScM, and we ported
examples of systems available with STABC [3] and KMC [19]. This allowed to
test our tool on a lot of systems, some of which modelling actual protocols.

Proportion of RSC systems in the wild. We used ReSCu to check the existence
of RSC systems among examples from the literature. Using FIFO buffers, 30%
of the systems from [14], 60% of those from [19] and 38% of those from [3]
are RSC. Using bag buffers, the results are respectively 12%, 41% and 11%.
These figures are to be interpreted carefully however, as the examples coming
from KMC and STABC are not all random examples. Examples of systems from
KMC are CSA, for communicating session automata, which is a class of systems
where there cannot be sending and receiving transitions leaving the same state.
Some systems where even (slightly) modified to become CSA. To provide a more
realistic overview of the importance of RSC systems in the literature, we show
in Table 1 some membership results for interesting protocols that were featured
in [19] and [3]. It shows a comparison of the results of ReSCu on one hand, and
the results we reproduced with their respective tools on the other hand. The k

value provided by STABC is a buffer bound that may be applied to the system
without restricting its behaviour. An extended version of those tables is available
in Appendix B.

Performance of our tool. We ran both our tool and McScM on several RSC
examples from McScM, KMC and STABC, and compared the model-checking
time. For the ported examples, we had to design some specifications, as the
tools those systems came from focused only on membership to a class. The bad
configurations we added are similar to the second one of Figure 2: they enforce
that, for a specific control state of a participant, no configuration where the first
message of the buffer cannot be received is reached. For reference, we ran our
testing on a laptop with an Intel Core i5-8250U CPU at 1.60GHz, equipped with
16Gb of RAM.

Protocol R
eS
C
u

ab
si
nt

ar
m
c

ce
ga
r

la
rt

ring 137 (19,708) Tmax 382 1,928
NonRegular 4 60 Tmax 13 10

pop3 33 719 2,143 6,759 Tmax

Nested 4 5 11 320 2045
con disc reg 4 (21) 7 9 4
tcp error∗ 4 (107) 26 66 10
http-fsm 7 44 Tmax Tmax Tmax

smtp 84 236 241 174 173
FTP 51 29 54 61 82
SSH 207 574 368 188 910

Table 2: Model-checking time
(in ms) of ReSCu and McScM.
Figures in brackets correspond
to inconclusive verification.

Table 2 presents the times of computation of
the different algorithms, averaged over 3 runs. The
shortest time for each protocol is highlighted. The
three horizontal sections of the table correspond
to the origin of the examples: McScM, KMC and
STABC, in that order. The runs that reached the
time limit of 2 minutes are marked Tmax. The
columns for cegar and lart present the best time
of the four variants of these algorithms.

As an example, we detail the results for a pro-
tocol: ring, a token passing protocol in a ring with
four peers. The first algorithm, absint, did not
provide a conclusive answer, and ran for about 19
seconds. The second one, armc, reached the time
limit we set at 2 minutes without finishing. The

next algorithms have four variants each, and even if cegar is the fastest in this
example, one of its variant times out. Two of the variants of lart time out as
well.

The protocol tcp error∗ is a simplified version of TCP, intentionally modi-
fied to be erroneous. It is not RSC, but we included it as ReSCu can still find one
of its bad configurations. Even though ReSCu cannot certify that a non-RSC
protocol is safe, it can still help finding bugs quickly.

The rightmost column in Tables 1a and 1b gives an overview of the perform-
ance of the membership algorithm, compared to KMC and STABC respectively.
Note that KMC checks the safety of a protocol, while knowing if a given system
is RSC merely allows to know if our model-checking algorithm is suitable for it.

5 Conclusion

We presented ReSCu, a tool relying on the properties of RSC systems of commu-
nicating automata to verify safety of communication protocols. Through extens-
ive testing and comparison with other tools, ReSCu proved to be performant,

and allowed to notice that a significant portion of actual protocols from the
literature are indeed RSC.

This tool has some limitations however: some systems are not RSC, and
ReSCu cannot certify safety of those. Another drawback is that while other
tools can check various safety properties taking only the description of the pro-
tocol, we need the users to define correctly the safety properties they want to
check. While our current setting allows for some flexibility, generating bad con-
figurations automatically for properties like unspecified reception, or progress
(see [12]), could be an interesting improvement of ReSCu, and is left as future
work.

Acknowledgements. We would like to thank all the COORDINATION reviewers
for their comments that greatly improved the present paper.

References

[1] Wil M. P. van der Aalst, Arjan J Mooij, Christian Stahl and Karsten Wolf.
‘Service interaction: Patterns, formalization, and analysis’. In: Formal Meth-
ods for Web Services, SFM, Advanced Lectures 9 (2009). Publisher: Springer,
pp. 42–88.

[2] Lakhdar Akroun and Gwen Salaün. ‘Automated verification of automata
communicating via FIFO and bag buffers’. In: Formal Methods Syst. Des.
52.3 (2018), pp. 260–276. doi: 10.1007/s10703-017-0285-8.

[3] Lakhdar Akroun, Gwen Salaün and Lina Ye. ‘Automated Analysis of Asyn-
chronously Communicating Systems’. In: Model Checking Software - 23rd
International Symposium, SPIN, Proceedings. Vol. 9641. Lecture Notes in
Computer Science. Springer, 2016, pp. 1–18. doi: 10.1007/978-3-319-
32582-8_1.

[4] Samik Basu and Tevfik Bultan. ‘Automatic verification of interactions in
asynchronous systems with unbounded buffers’. In: ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE. ACM, 2014,
pp. 743–754. doi: 10.1145/2642937.2643016.

[5] Bernard Boigelot and Patrice Godefroid. ‘Symbolic Verification of Com-
munication Protocols with Infinite State Spaces Using QDDs (Extended
Abstract)’. In: Computer Aided Verification, 8th International Conference,
CAV, Proceedings. Vol. 1102. Lecture Notes in Computer Science. Springer,
1996, pp. 1–12. doi: 10.1007/3-540-61474-5_53.

[6] Ahmed Bouajjani, Constantin Enea, Kailiang Ji and Shaz Qadeer. ‘On
the Completeness of Verifying Message Passing Programs Under Bounded
Asynchrony’. In: Computer Aided Verification - 30th International Con-
ference, CAV, Held as Part of the Federated Logic Conference, FloC, Pro-
ceedings, Part II. Vol. 10982. Lecture Notes in Computer Science. Springer,
2018, pp. 372–391. doi: 10.1007/978-3-319-96142-2_23.

[7] Andrea Bracciali, Antonio Brogi and Carlos Canal. ‘A formal approach to
component adaptation’. In: Journal of Systems and Software 74.1 (2005).
Publisher: Elsevier, pp. 45–54.

[8] Daniel Brand and Pitro Zafiropulo. ‘On Communicating Finite-State Ma-
chines’. In: Journal of the ACM 30.2 (1983), pp. 323–342. doi: 10.1145/
322374.322380.

[9] Löıc Desgeorges and Löıc Germerie Guizouarn. Demonstration video of
ReSCu. https://seafile.celazur.fr/f/bfa8e1380ce540f5bddb/?dl=
1.

[10] Löıc Desgeorges and Löıc Germerie Guizouarn. ReSCu archive. https://
archive.softwareheritage.org/browse/origin/directory/?origin_

url=https://src.koda.cnrs.fr/loic.germerie.guizouarn/rescu.
[11] Cinzia Di Giusto, Löıc Germerie Guizouarn and Étienne Lozes. ‘Towards

Generalised Half-Duplex Systems’. In: 14th Interaction and Concurrency
Experience, ICE, Proceedings. Vol. 347. EPTCS. 2021, pp. 22–37. doi:
10.4204/EPTCS.347.2.

[12] Cinzia Di Giusto, Löıc Germerie Guizouarn and Etienne Lozes. ‘Multi-
party half-duplex systems and synchronous communications’. In: Journal
of Logical and Algebraic Methods in Programming 131 (2023), p. 100843.
issn: 2352-2208. doi: 10.1016/j.jlamp.2022.100843.

[13] Gregor Gößler and Gwen Salaün. ‘Realizability of Choreographies for Ser-
vices Interacting Asynchronously’. In: Formal Aspects of Component Soft-
ware - 8th International Symposium, FACS, Revised Selected Papers. Vol. 7253.
Lecture Notes in Computer Science. Springer, 2011, pp. 151–167. doi:
10.1007/978-3-642-35743-5_10.

[14] Alexander Heußner, Tristan Le Gall and Grégoire Sutre. ‘McScM: A Gen-
eral Framework for the Verification of Communicating Machines’. In: Tools
and Algorithms for the Construction and Analysis of Systems, TACAS,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS, Proceedings. Vol. 7214. Lecture Notes in Computer
Science. Springer, 2012, pp. 478–484. doi: 10.1007/978-3-642-28756-
5_34.

[15] Kohei Honda, Nobuko Yoshida and Marco Carbone. ‘Multiparty asyn-
chronous session types’. In: 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL, Proceedings. ACM, 2008,
pp. 273–284. doi: 10.1145/1328438.1328472.

[16] Raymond Hu. ‘Distributed programming using Java APIs generated from
session types’. In: Behavioural Types: from Theory to Tools (2017). Pub-
lisher: River Publishers, pp. 287–308.

[17] Raymond Hu and Nobuko Yoshida. ‘Hybrid session verification through
endpoint API generation’. In: Fundamental Approaches to Software Engin-
eering, FASE, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS, Proceedings 19. Springer, 2016, pp. 401–
418.

[18] Thierry Jéron and Claude Jard. ‘Testing for unboundedness of fifo chan-
nels’. In: Theoretical Computer Science 113.1 (1993). Publisher: Elsevier,
pp. 93–117.

[19] Julien Lange and Nobuko Yoshida. ‘Verifying Asynchronous Interactions
via Communicating Session Automata’. In: Computer Aided Verification
- 31st International Conference, CAV, Proceedings, Part I. Vol. 11561.
Lecture Notes in Computer Science. Springer, 2019, pp. 97–117. doi: 10.
1007/978-3-030-25540-4_6.

[20] José Antonio Mart́ın and Ernesto Pimentel. ‘Contracts for security adapt-
ation’. In: The Journal of Logic and Algebraic Programming 80.3 (2011).
Publisher: Elsevier, pp. 154–179.

[21] Rumyana Neykova, Raymond Hu, Nobuko Yoshida and Fahd Abdeljallal.
‘A session type provider: compile-time API generation of distributed pro-
tocols with refinements in F#’. In: 27th International Conference on Com-
piler Construction, CC, Proceedings. ACM, 2018, pp. 128–138. doi: 10.
1145/3178372.3179495.

[22] Pascal Poizat and Gwen Salaün. ‘Adaptation of open component-based
systems’. In: Formal Methods for Open Object-Based Distributed Systems:
9th IFIP WG 6.1 International Conference, FMOODS, Proceedings 9.
Springer, 2007, pp. 141–156.

A Theoretical background

In this section, we present a condensed version of some theoretical of [12]. We
introduce two modifications: the first one is that we generalise our previous work
to systems of CA with bag buffers, and the second one is that we fix a small bug
that existed in the definition of Abv (defined in Section A.3).

A.1 Preliminaries

For a finite set S, S∗ denotes the set of finite words over S, w · w′ denotes the
concatenation of words w and w′, |w| denotes the length of word w, and ε denotes
the empty word. We write L (A) for the language accepted by automaton A. For
two sets S and I, we write b for an element of SI , and bi for the i-th component
of b = (bi)i∈I .

The set of all participants of a protocol is denoted P. For a participant p ∈ P,
the communicating automaton Ap is the tuple (Lp,Vp, I

F
p , IBp ,Actp, δp, l

0
p) where:

– Lp is a finite set of control states,
– Vp is a finite set of messages,
– Ip = IFp ∪ IBp with IBp ∩ IFp = ∅ is a finite set of buffer identifiers where IBp

(respectively IFp) is the subset of bag (respectively FIFO) buffer identifiers,
– Actp ⊆ Ip × {!p, ?p} × Vp is a finite set of actions,
– δp ⊆ Lp × Actp × Lp is a finite set of transitions, and
– l0p is the initial control state.

An action (denoted a) can be a send action: i!pv , meaning ‘process p sends
message v in buffer i’, or a reception: i?pv meaning ‘process p receives message
v from buffer i’. To ease readability, the process is omitted when the context
allows it. For a = i † v with † ∈ {!, ?}, buffer(a) = i.

A system, denoted by S, is a family of communicating automata, one per
participant p ∈ P. For a system S = (Ap)p∈P:

– LS =
∏

p∈P Lp is the set of global control states of the system: for l ∈ LS,
l = (lp)p∈P is a vector of control states, where for each participant p, lp is a
control state of the automaton representing p;

– VS = ∪p∈PVp is the set of messages;
– IS = IFS ∪ IBS is the set of buffer identifiers, where IFS = ∪p∈PI

F
p is the set of

FIFO buffers identifiers and IBS = ∪p∈PI
B
p is the set of bag buffers identifiers;

– ActS = ∪p∈PActp is the set of actions;
– δS =

{
(l, a, l′) | ∃p ∈ P, (lp, a, l′p) ∈ δp,∀q ̸= p, lq = l′q

}
.

For an action a ∈ ActS, process(a) is the unique p ∈ P such that a ∈ Actp. A
configuration (denoted γ) is a pair (l,b) where l is a global control states and
b = (bi)i∈IS is a vector of buffers, each bi being the concatenation of the messages
contained in the buffer i. The initial configuration of a system is γ0 = (l0,b0),
with l0 = (l0p)p∈P and b0 = (ε)i∈IS .

A transition of S is a tuple (γ, a, γ′), often written γ
a−→
S

γ′, where γ = (l,b)

and γ′ = (l′,b′) are two configurations, a is an action, and the following holds:

– (l, a, l′) ∈ δS
– if a = i!pv , then b′i = v · bi, and for all j ∈ IS, j ̸= i, bj = b′j
– if a = i?pv , then for all j ∈ IS, j ̸= i, bj = b′j and

• if i ∈ IFS then bi = v · b′i
• if i ∈ IBS then ∃w,w′ ∈ V∗

S, bi = w · v · w′, and b′i = w · w′.

An execution of a system S is a word on Act∗S. We say that an execution
e = a1 · a2 · . . . · an is feasible in S if there exists a sequence of configurations
γ1, γ2, . . . , γn such that for all i ∈ {1, . . . , n}, γi−1

ai−→
S

γi. We write γ0
e
=⇒
S

γn

for γ0
a1−→
S

γ1
a2−→
S

· · · an−−→
S

γn, and by abuse of notation we write a ∈ e if ∃i ∈
{1, . . . , n}, a = ai. The set of all feasible executions ofS is denoted executions(S).
A configuration γ of S is reachable if there exists an execution e ∈ Act∗S such

that γ0
e
=⇒
S

γ. The set of all reachable configurations of S is denoted RS(S).

Given an execution e = a1 · . . . · an, we say that {aj , aj′} ⊆ {a1, . . . , an} with
j < j′ is a matching pair if there exist i, v, such that:

– aj = i!v ,
– aj′ = i?v ,
– and

• if i ∈ IFS then ∃k such that aj (respectively aj′) is the k-th send action
(respectively reception) on i in e,

• else ∃k such that aj (respectively aj′) is the k-th send action (respectively
reception) of message v on i in e.

For bag buffers, we say that when the same message is sent several times to a
buffer, receptions of this message match the send actions in their order. A send
action aj is unmatched in e if there is no j′ such that {aj , aj′} is a matching
pair. A communication (denoted c) is either a matching pair, or {a} with a an
unmatched send.

We say that two actions commute if they do not form a matching pair,
and if they are not actions of the same type on a FIFO buffer. For an execution
e = a1·. . .·an, we say that aj ≺e aj′ , with {j, j′} ⊆ {1, . . . , n} if j < j′ and aj does
not commute with aj′ . Intuitively, ≺e represents causal dependencies between
actions of an execution. Two executions e = a1 · . . . · an and e′ = a′1 · . . . · a′n are
causally equivalent (denoted by e ∼ e′) if there is a permutation σ of {1, . . . , n}
such that:

– for all i ∈ {1, . . . , n}, a′σ(i) = ai, and

– for all j, j′ ∈ {1, . . . , n}, aj ≺e aj′ if and only if a′σ(j) ≺e′ a
′
σ(j′).

A property P is a function from a system to a set of configurations. For
a system S, P (S) is the set of configurations of S satisfying the property. A
system is P safe if P (S)∩RS(S) = ∅. The idea behind P safety of a system is
to describe the configurations that should not be reached, and to check whether
all of them are indeed unreachable. We say that a property P is regular if, for all
S, there exists a finite state automaton recognising a set of words that encodes
configurations in P (S).

A.2 RSC systems

An execution is RSC if all its receptions are immediately preceded by the match-
ing send action. Such an execution is a sequence of unmatched send actions and
matching pairs. A system is RSC if all its executions are causally equivalent to
an RSC execution.

The set of RSC executions of a system is regular. For a systemS, we can com-
pute an automatonArsc(S) accepting all RSC executions feasible inS. Formally,
for S a system, let ΣS = {i!?v | i!v ∈ ActS, i?v ∈ ActS}∪{i!v | i!v ∈ ActS} the
set of all communications, where i!?v stands for the communication grouping the
send and reception of v in buffer i. Let Arsc(S) = (Lrsc, δrsc, l

0
rsc, L

f
rsc) be the

non-deterministic finite state automaton over ΣS with Lrsc = LS × 2I
F
S its set

of control states, l0rsc = (l0,∅) its initial state, and Lf
rsc = Lrsc its set of accept-

ing states (all states are accepting). For c ∈ ΣS, (l, S) ∈ Lrsc, (l
′, S′) ∈ Lrsc,

((l, S) , c, (l′, S′)) ∈ δrsc if:

– (l,b)
c
=⇒
S

(l′,b′) for some b,b′ such that for all i ∈ IFS, bi ̸= ε iff i ∈ S, and

b′i ̸= ε iff i ∈ S′, and
– if c = i!?v , i /∈ S.

A.3 Membership

A bordeline violation is a minimal non-RSC execution. An execution e is a bor-
derline violation if it is not causally equivalent to an RSC execution, and it is
of the form e = e′ · i?v with e′ RSC. By [12, Lemma 9], a system S is RSC if
and only if executions(S) contains no borderline violation. The set of borderline
violations of a system is regular: we define now Abv, an automaton recognising
all borderline violations of a system.

Formally, for a system S, let Σ?
S = {i?v | i ∈ IS, v ∈ VS} the alphabet

of all possible receptions of S, and Abv =
(
Lbv, δbv,

(
l0bv,∅

)
, {l1bv}

)
the non-

deterministic finite state automaton over ΣS ∪Σ?
S such that

Lbv =
{
l0bv × 2|I

F
S|, l1bv

}
∪ (IS × VS ×ΣS × {0, 1}), and for all c, c′ ∈ ΣS, and

for all i ∈ IS, v ∈ VS:

1. ((l0bv, S), i!?v , (l
0
bv, S)) ∈ δbv if i /∈ S

2. ((l0bv, S), i!v , (l
0
bv, S

′)) ∈ δbv if i ∈ IFS and S′ = S ∪ {i}, or S = S′

3. ((l0bv, S), i!v , (i, v, i!v , 0) ∈ δbv if i /∈ S or i ∈ IBS
4. ((i, v, c, 0), c′, (i, v, c, 0)) ∈ δbv if i ∈ IFS or c′ ̸= i!v
5. ((i, v, c, 0), c′, (i, v, c′, 1)) ∈ δbv if either process(c′) ∩ process(c) ̸= ∅, or

buffer(c) ∈ IFS and buffer(c) = buffer(c′)
6. ((i, v, c, 1), c′, (i, v, c, 1)) ∈ δbv if i ∈ IFS or c′ ̸= i!v
7. ((i, v, c, 1), c′, (i, v, c′, 1)) ∈ δbv if either process(c′) ∩ process(c) ̸= ∅, or

buffer(c) ∈ IFS and buffer(c) = buffer(c′)
8. ((i, v, c, 1), i?v , l1bv) ∈ δbv if process(c) = process(i?v), or c is a matching pair

and buffer(c) ∈ IFS and buffer(c) = i.

Theorem 1. Whether a system of communicating automata is RSC is decid-
able.

Proof. Let S be a system of communicating automata, and let L be the inter-
section of L (Abv(S)) on one hand, and L (Arsc(S)) · Σ?

S on the other hand,
then L = ∅ iff S is RSC. ⊓⊔

A.4 Reachability

Regular properties describe a set of control states, and a content for the different
buffers. The contents of the buffers are described as set of words, specifying
an order for the messages. We opted for properties that do not describe the
content of bag buffers, which are out of order. We encode configurations γ =
(l, b1, . . . , b|IS|) with [γ] = l·#·bσ(1) ·#·. . .·#·bσ(|IF

S|), with σ : |IFS| → |IS| being
a function defined such that σ(i) is the buffer index of the i-th FIFO buffer. This
encoding is close to QDDs [5].

For a regular property P , and a system S, let A(S) the automaton recog-
nising the encoding of configurations S satisfying P . We will define an auto-
maton AP (S) recognising executions leading to configurations satisfying P (con-
figurations that are in P (S)). Intuitively, it works by recognising the content
of each buffer independently. It does so by encoding in its states the state of
A(S) corresponding to the accepting encoding of each buffer. A ‘pebble’ per
buffer is placed non-deterministically on a state of A(S) and an unmatched
send action i!v (contributing to the content of bi) is accepted only if there is a
transition accepting v from the state marked by the i-th pebble. Let AP (S) =(
LP (S), δP (S), L

0
P (S), FP (S)

)
be a non-deterministic finite state automaton over

the alphabet ΣS of communications where the set of control states is LP (S) =

LS ×LS ×L
|IF

S|
A ×L

|IF
S|

A , each control state (lS, lf , lA, lI) corresponds to a situ-
ation where:

– the current control state of S is lS,
– the target control state is lf ,
– the i-th pebble is currently on state lA,i of A(S),
– lI is a copy of the initial positions of the pebbles.

A state (lS, lf , lA, lI) is initial if:

– lA = lI ,
– lA,1 ∈ δ∗A(S)(lA,0, lF ·#),

– lS = l0S.

A control state is accepting if:

– lS = lF ,
– for all i ∈ {1, . . . , |IFS| − 1},

(
lA(S),i,#, lA(S),i+1

)
∈ δA(S), and

– lA,|IF
S| ∈ FA(S).

Finally, a transition
((

lS, lf , lA, lI
)
, c,

(
l′S, l′f , l

′
A, l

′
I

))
∈ δP (S) if:

– lF = l′F
– lI = l′I
– ∃b,b′ such that (lS,b)

c
=⇒
S

(l′S,b′),

– if c = i!v and i ∈ IFS, then
(
lA,σ(i), v, l

′
A,σ(i)

)
∈ δA and for all j ∈ IFS, j ̸= i,

lA,σ(j) = l′A,σ(j) ; else, lA = l′A.

Theorem 2. Let S be an RSC system, and P a regular property, it is decidable
whether S is P safe.

Proof. Let S be an RSC system, Arsc(S) recognises all RSC executions of S,
and AP (S) recognises all executions of S leading to a configuration γ ∈ P (S);

therefore L
(
Arsc(S) ∩ AP (S)

)
= ∅ iff S is P safe. ⊓⊔

Section 4.2 of [12] provides a non exhaustive list of regular safety properties.

B Extended benchmark results

Tables 3 and 4 show more results of membership testing. We can see that a
majority the examples showcased in [19] and [3] is RSC.

Protocol |P| S T RSC trsc k-MC tkmc

Client-Server-Logger [19] 3 11 12 No 3 Yes 17
4 players game [36] 4 13 16 Yes 13 Yes 20
Bargain [36] 3 9 8 Yes 4 Yes 35
Filter collaboration [47] 2 6 10 Yes 4 Yes 33
Alternating bit [35] 2 12 15 Yes 9 Yes 24
TPMContract v2 [34] 2 10 14 Yes 4 Yes 31
Sanitary agency [44] 4 25 30 Yes 15 Yes 39
Logistic [40] 4 26 26 Yes 8 Yes 32
Cloud system v4 [33] 4 14 16 Yes 6 Yes 22
Commit protocol [6] 4 12 12 Yes 4 Yes 15
Elevator [6] 3 13 23 No 7 Yes 41
Dev system [42] 4 22 23 Yes 7 Yes 17
Fibonacci [21] 2 6 6 Yes 3 Yes 17
SH [21] 3 22 30 Yes 18 Yes 33
Travel agency [21] 3 17 20 Yes 8 Yes 15
SMTP [16, 21] 2 64 108 Yes 17 Yes 34
HTTP [17] 2 12 48 Yes 17 Yes 28

Table 3: Comparison between the membership results of ReSCu and KMC. |P|
is the number of participants, S the number of states, and T the number of
transitions. trsc and tkmc are the time (in ms) of execution of ReSCu and KMC
respectively.

Protocol |P| S T RSC trsc k tstabc
Estelle specification [18] 2 7 9 No 5 max 82,625
News server [41] 2 10 10 No 5 3 54,507
Client/Server [8] 2 6 10 Yes 4 1 26,130
CFSM system [18] 2 6 7 No 4 max 81,911
Promela program (1) [37] 2 6 6 No 4 2 39,905
Promela program (2) [38] 2 6 7 Yes 4 max 81,555
Web services [31] 3 13 12 Yes 5 2 53,084
Trade system [30] 3 12 12 Yes 5 1 34,726
FTP transfer [7] 3 20 17 Yes 6 4 89,465
Client/Server [28] 3 15 15 Yes 5 2 53,040
Mars explorer [24] 3 36 34 Yes 9 3 73,517
Online computer sale [29] 3 26 26 Yes 8 2 53,112
E-museum [27] 4 19 24 Yes 8 3 89,561
Client/supplier [26] 3 31 33 Yes 9 2 53,094
Restaurant service [1] 3 16 16 No 5 2 52,793
Travel agency [46] 3 34 38 Yes 10 4 102,494
Vending machine [32] 3 15 14 Yes 5 2 53,062
Travel agency [23] 3 43 56 No 13 3 71,339
Train station [45] 4 20 18 Yes 8 2 66,030
Factory job manager [25] 4 20 20 Yes 7 2 65,774
Bug report repository [13] 4 11 11 Yes 4 max 134,796
Cloud application [33] 4 8 10 No 6 max 134,655
Sanitary agency [43] 4 35 42 Yes 30 3 88,927
SQL server [22] 4 33 38 Yes 13 3 90,553
SSH [20] 4 27 28 Yes 7 2 43,855
Booking system [39] 5 45 50 Yes 48 2 78,625

Table 4: Comparison between the membership results of ReSCu and STABC,
using FIFO buffers and ‘strong equivalence’. |P| is the number of participants, S
the number of states, and T the number of transitions. max means the arbitrary
limit for k, set at 10, was reached. trsc and tstabc are the time (in ms) of execution
of ReSCu and STABC respectively.

Additional References

[23] Amel Bennaceur, Chris Chilton, Malte Isberner and Bengt Jonsson. ‘Auto-
mated Mediator Synthesis: Combining Behavioural and Ontological Reas-
oning’. In: Software Engineering and Formal Methods - 11th International
Conference, SEFM, Proceedings. Vol. 8137. Lecture Notes in Computer
Science. Springer, 2013, pp. 274–288. doi: 10.1007/978-3-642-40561-
7_19.

[24] Antonio Brogi and Razvan Popescu. ‘Automated Generation of BPEL Ad-
apters’. In: Service-Oriented Computing, ICSOC, 4th International Con-
ference, Proceedings. Vol. 4294. Lecture Notes in Computer Science. Springer,
2006, pp. 27–39. doi: 10.1007/11948148_3.

[25] Tevfik Bultan, Chris Ferguson and Xiang Fu. ‘A Tool for Choreography
Analysis Using Collaboration Diagrams’. In: IEEE International Confer-
ence on Web Services, ICWS. IEEE Computer Society, 2009, pp. 856–863.
doi: 10.1109/ICWS.2009.100.

[26] Javier Cámara, José Antonio Mart́ın, Gwen Salaün, Carlos Canal and Ern-
esto Pimentel. ‘Semi-Automatic Specification of Behavioural Service Ad-
aptation Contracts’. In: Electron. Notes Theor. Comput. Sci. 264.1 (2010),
pp. 19–34. doi: 10.1016/j.entcs.2010.07.003.

[27] Carlos Canal, Pascal Poizat and Gwen Salaün. ‘Model-Based Adaptation
of Behavioral Mismatching Components’. In: IEEE Transactions on Soft-
ware Engineering, TSE 34.4 (2008), pp. 546–563. doi: 10.1109/TSE.
2008.31.

[28] Carlos Canal, Pascal Poizat and Gwen Salaün. ‘Synchronizing Behavioural
Mismatch in Software Composition’. In: Formal Methods for Open Object-
Based Distributed Systems, 8th IFIP WG 6.1 International Conference,
FMOODS, Proceedings. Vol. 4037. Lecture Notes in Computer Science.
Springer, 2006, pp. 63–77. doi: 10.1007/11768869_7.

[29] Javier Cubo, Gwen Salaün, Carlos Canal, Ernesto Pimentel and Pascal
Poizat. ‘A Model-Based Approach to the Verification and Adaptation of
WF/.NET Components’. In: 4th International Workshop on Formal As-
pects of Component Software, FACS, Proceedings. Vol. 215. Electronic
Notes in Theoretical Computer Science. Elsevier, 2007, pp. 39–55. doi:
10.1016/j.entcs.2008.06.020.

[30] Pierre-Malo Deniélou and Nobuko Yoshida. ‘Multiparty Session Types
Meet Communicating Automata’. In: Programming Languages and Sys-
tems - 21st European Symposium on Programming, ESOP, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS, Proceedings. Vol. 7211. Lecture Notes in Computer Science. Springer,
2012, pp. 194–213. doi: 10.1007/978-3-642-28869-2_10.

[31] Xiang Fu, Tevfik Bultan and Jianwen Su. ‘Analysis of interacting BPEL
web services’. In: 13th international conference on World Wide Web, WWW,
Proceedings. ACM, 2004, pp. 621–630. doi: 10.1145/988672.988756.

[32] Christian Gierds, Arjan J. Mooij and Karsten Wolf. ‘Reducing Adapter
Synthesis to Controller Synthesis’. In: IEEE Transasctions on Services
Computing 5.1 (2012), pp. 72–85. doi: 10.1109/TSC.2010.57.

[33] Matthias Güdemann, Gwen Salaün and Meriem Ouederni. ‘Counterexample
Guided Synthesis of Monitors for Realizability Enforcement’. In: Auto-
mated Technology for Verification and Analysis - 10th International Sym-
posium, ATVA, Proceedings. Vol. 7561. Lecture Notes in Computer Sci-
ence. Springer, 2012, pp. 238–253. doi: 10.1007/978- 3- 642- 33386-
6_20.

[34] Sylvain Hallé and Tevfik Bultan. ‘Realizability analysis for message-based
interactions using shared-state projections’. In: 18th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, Proceed-
ings. ACM, 2010, pp. 27–36. doi: 10.1145/1882291.1882298.

[35] Introduction to protocol egineering. 2006.
[36] Julien Lange, Emilio Tuosto and Nobuko Yoshida. ‘From Communicating

Machines to Graphical Choreographies’. In: 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL,
Proceedings. ACM, 2015, pp. 221–232. doi: 10.1145/2676726.2676964.

[37] Stefan Leue, Richard Mayr and Wei Wei. ‘A Scalable Incomplete Test for
Message Buffer Overflow in Promela Models’. In:Model Checking Software,
11th International SPIN Workshop, Proceedings. Vol. 2989. Lecture Notes
in Computer Science. Springer, 2004, pp. 216–233. doi: 10.1007/978-3-
540-24732-6_16.

[38] Stefan Leue, Alin Stefanescu and Wei Wei. ‘Dependency Analysis for Con-
trol Flow Cycles in Reactive Communicating Processes’. In: Model Check-
ing Software, 15th International SPIN Workshop, Proceedings. Vol. 5156.
Lecture Notes in Computer Science. Springer, 2008, pp. 176–195. doi:
10.1007/978-3-540-85114-1_14.

[39] Radu Mateescu, Pascal Poizat and Gwen Salaün. ‘Adaptation of Service
Protocols Using Process Algebra and On-the-Fly Reduction Techniques’.
In: Service-Oriented Computing, ICSOC, 6th International Conference,
Proceedings. Vol. 5364. Lecture Notes in Computer Science. 2008, pp. 84–
99. doi: 10.1007/978-3-540-89652-4_10.

[40] OMG. Business Process Model and Notation. 2018.
[41] Meriem Ouederni, Gwen Salaün and Tevfik Bultan. ‘Compatibility Check-

ing for Asynchronously Communicating Software’. In: Formal Aspects of
Component Software - 10th International Symposium, FACS, Revised Se-
lected Papers. Vol. 8348. Lecture Notes in Computer Science. Springer,
2013, pp. 310–328. doi: 10.1007/978-3-319-07602-7_19.

[42] Roly Perera, Julien Lange and Simon J. Gay. ‘Multiparty Compatibility for
Concurrent Objects’. In: Ninth workshop on Programming Language Ap-
proaches to Concurrency and Communication-cEntric Software, PLACES,
Proceedings. Vol. 211. EPTCS. 2016, pp. 73–82. doi: 10.4204/EPTCS.211.
8.

[43] Gwen Salaün, Lucas Bordeaux and Marco Schaerf. ‘Describing and Reas-
oning on Web Services using Process Algebra’. In: IEEE International
Conference on Web Services, ICWS, Proceedings. IEEE Computer Soci-
ety, 2004, p. 43. doi: 10.1109/ICWS.2004.1314722.

[44] Gwen Salaün, Lucas Bordeaux and Marco Schaerf. ‘Describing and reas-
oning on Web Services using Process Algebra’. In: International Journal
of Business Process Integration and Management 1.2 (2006), pp. 116–128.
doi: 10.1504/IJBPIM.2006.010025.

[45] Gwen Salaün, Tevfik Bultan and Nima Roohi. ‘Realizability of Choreo-
graphies Using Process Algebra Encodings’. In: IEEE Transactions on
Services Computing 5.3 (2012), pp. 290–304. doi: 10.1109/TSC.2011.9.

[46] Ricardo Seguel, Rik Eshuis and Paul W. P. J. Grefen. ‘Generating Min-
imal Protocol Adaptors for Loosely Coupled Services’. In: IEEE Interna-
tional Conference on Web Services, ICWS. IEEE Computer Society, 2010,
pp. 417–424. doi: 10.1109/ICWS.2010.14.

[47] Daniel M. Yellin and Robert E. Strom. ‘Protocol Specifications and Com-
ponent Adaptors’. In: ACM Transactions on Programming Languages and
Systems, TOPLAS 19.2 (1997), pp. 292–333. doi: 10 . 1145 / 244795 .

244801.

