
ar
X

iv
:2

30
4.

14
53

9v
1

 [
cs

.P
L

]
 2

7
A

pr
 2

02
3

Reasoning about Choreographic Programs

Lúıs Cruz-Filipe , Eva Graversen , Fabrizio Montesi , and Marco Peressotti

Department of Mathematics and Computer Science, University of Southern Denmark

Abstract. Choreographic programming is a paradigm where a concur-
rent or distributed system is developed in a top-down fashion. Programs,
called choreographies, detail the desired interactions between processes,
and can be compiled to distributed implementations based on message
passing. Choreographic languages usually guarantee deadlock-freedom
and provide an operational correspondence between choreographies and
their compiled implementations, but until now little work has been done
on verifying other properties.

This paper presents a Hoare-style logic for reasoning about the behaviour
of choreographies, and illustrate its usage in representative examples. We
show that this logic is sound and complete, and discuss decidability of its
judgements. Using existing results from choreographic programming, we
show that any functional correctness property proven for a choreography
also holds for its compiled implementation.

1 Introduction

Programming communicating systems is hard, because of the challenge of ensur-
ing that separate communication actions (like sending or receiving a message)
executed by independent programs match each other correctly at runtime [21].

In the paradigm of choreographic programming [26], this challenge is tackled
by providing high-level abstractions that allow programmers to express the de-
sired flow of communications safely from a ‘global’ viewpoint [6,8,9,13,17,18,20,
23,27]. In a choreography program, or choreography, communication is expressed
in some variation of the communication term from security protocol notation,
Alice ->Bob : M , which reads “Alice communicates the message M to Bob” [29].
These terms can be composed in structured choreographies using common pro-
gramming language constructs. Then, a compiler can automatically generate an
executable distributed implementation [6, 13, 16], as depicted in Fig. 1.

So far, research on choreographic programming has mostly focused on im-
proving the expressivity of choreographic programming languages, their imple-
mentation, and the formalisation of general properties about compilation. The-
ory of choreographic programming typically comes with proofs of correctness of
the accompanying compilation procedure. A hallmark result is deadlock-freedom
by design: since mismatched communication actions cannot be syntactically ex-
pressed in choreographies, the compiled code cannot incur deadlocks [6].

http://arxiv.org/abs/2304.14539v1
https://orcid.org/0000-0002-7866-7484
https://orcid.org/0000-0002-9430-4907
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480

A ->B : x;
A -> C : y;
C computes z;
C -> B : z;
. . .

Choreography with n participants

Projection

send x to B;
send y to C;
. . .

Code for participant A

. . . projected behaviour

Code for participant n

Fig. 1. Choreographic programming: the communication and computation behaviour
of a system is defined in a choreography, which is then projected (compiled) to deadlock-
free distributed code (adapted from [17]).

By contrast, little research has been done on general methods for proving
functional correctness properties about choreographies. Yet choreographies cod-
ify distributed protocols, and reasoning about the effect that these protocols
have on the states of participants is usually important.

This work. In this work, we present a Hoare logic for reasoning about chore-
ographies. Hoare logic [2, 19] is a common way of reasoning about programs. A
Hoare assertion is a triple, {ϕ}P{ψ}, where ϕ and ψ are formulas (respectively
called the precondition and postcondition) and P is a program. This triple states
that if P is executed from a state that satisfies ϕ and terminates, then the final
state satisfies ψ. We develop a Hoare logic where programs are choreographies
and formulas can talk about the states of multiple processes jointly.

Our framework is based on well-studied theories of choreographic program-
ming [10,27], in particular on properties that have been formalised in Coq [11,12].
This helps with the generality and elegance of our development. For example,
we leverage the property of confluence in metatheoretical proofs, and we rely on
the compiler correctness results proven previously to transfer properties proven
with our logic to distributed implementations compiled from choreographies.

Contribution. We define a Hoare logic for reasoning about choreographic pro-
grams expressed in standard ways, thanks to a modular design parametrised on
the language of state formulas. We prove that our logic has the expected prop-
erties of a Hoare logic (soundness and partial completeness), and illustrate how
it can be used to prove important properties of specific protocols encoded as
choreographies.

Structure. We review the choreographic language from [10] in Section 2. In
Section 3 we describe our logic and prove its soundness. Section 4 introduces
weakest liberal preconditions, and uses them to show completeness and decid-
ability results. Section 5 discusses additional related work. Illustrative examples
are included throughout the text.

2 Language

In this section we recall the choreographic language from [10], which we will be
reasoning about. This language models systems of independent processes (net-
works), which interact by means of synchronous communication. Each process
is uniquely identified by a name, which is known by all other processes in the
network, and can store values locally in memory referenced by variables. The
set of variable names is assumed to be the same for all processes. The set of all
processes is denoted by P .

There are two kinds of messages that can be exchanged: values are results of
evaluating expressions locally; and selection labels are special constants used to
implement agreement on choices about alternative distributed behaviour.

The actual sets of expressions and labels are left unspecified, but we make
some assumptions. Labels are taken from a (small) finite set. Expressions are
freely generated from a (typed) signature Ξ and the set of process variables.
Expressions that evaluate to a Boolean value are also called Boolean expressions.

2.1 Syntax

Formally, the syntax of choreographies is defined by the grammar

C ::= I;C | if p.b thenC1 elseC2 | X | ⌈~q, X⌋C | 0

I ::= p.x := e | p.e→ q.x | p→ q[l]

where C is a choreography, I is an instruction, p and q are processes names, e
is an expression, v is a value, x is a variable, b is a Boolean expression, l is a
selection label, and X is a procedure name.

Choreographies can be built as: an instruction I followed by a choreography;
alternative composition of two choreographies C1 and C2; procedure calls; or
the terminated choreography 0. There are two terms for procedure calls, corre-
sponding to: (a) a procedure that has yet to be entered by any processes (X) or
(b) one which has already started, annotated with the set of processes that still
have to enter it (⌈~q, X⌋C).

There are three types of instructions: local assignment (p.x := e), where p

evaluates expression e and stores the result in its local variable x; value commu-
nication, where p evaluates e and sends the result to q, who stores it in variable
x; and label selection, where p sends a label l to q (typically to communicate
the result of a local choice – see below).

In a conditional, if p.b thenC1 elseC2, process p evaluates the expression b

to decide whether the choreography should continue as C1 or C2. Since only p

knows the result of the evaluation, the remaining processes need to be informed
of how they should behave – this knowledge is typically propagated to other
participants by means of label selections.1

Repetitive and iterative behaviour in this language is achieved by means of
procedure calls. Calling a procedure X simply invokes the choreography corre-
sponding to X , given in a separate mapping of procedure definitions C . Since
choreography execution is distributed, processes do not need to synchronise when
entering a procedure. This requires a runtime term, ⌈~q, X⌋C, to denote a proce-
dure call that only some processes have entered. This term keeps track of both
the set of processes ~q that still need to enter X and the execution state of the
choreography, C. As we show below, the semantics of choreographies allows for
out-of-order execution, and consequently some processes may start executing
their part of the procedure before others have entered it.

Example 1 (Diffie-Hellman). Consider the Diffie-Hellman key exchange proto-
col [14] which allows two parties, p and q, to establish a shared secret, s, that
they can later use for symmetric encryption. To implement this protocol in our
choreographic language we need only communication, local computation, and a
language of expressions with modular exponentiation (be mod m) [16, 27]. The
protocol assumes that participants have a private key each (a, b) and that they
share a prime number m and a primitive root modulo m, g.

DH = p.(ga modm)→ q.a; p computes its public key and sends it to q

q.(gb modm)→ p.b; q computes its public key and sends it to p

p.s := ba modm; p generates the shared secret

q.s := ab modm; q generates the shared secret

0 ⊳

Example 2 (Zeros). Searching for a zero of a function is a common textbook
example for program verification using Hoare-style logics [3]. In this example,
we consider a version of the problem where p and q coordinate to find a zero of
a function f over natural numbers: p is responsible for selecting the values to
test and q for evaluating f and choosing whether to stop or continue searching.
We capture this iterative protocol with the following recursive procedure.

C (Z) = p.x→ q.x;

if q.f(x) = 0 then (q→ p[L];0)

else (q→ p[R]; p.x := 1 + x;Z)

Then, to search the domain of f , we run the choreography p.x := 0;Z. ⊳

We define a function pn that returns the set of processes involved in an
instruction or choreography. This function is defined inductively in the natural

1 For this reason, the set of labels is often fixed to be a two-element set, one for each
branch of a choice.

way.

pn(p.x := e) = {p} pn(p.e→ q.x) = pn(p→ q[l]) = {p, q}

pn(I;C) = pn(I) ∪ pn(C) pn(if p.b thenC1 elseC2) = {p} ∪ pn(C1) ∪ pn(C2)

pn(X) = P pn(⌈~q, X⌋C) = ~q ∪ pn(C)

For simplicity we assume that all processes are involved in all procedures; an
alternative is to annotate procedure names with the set of processes they use,
see [12]. This does not affect the behaviour of any processes actually involved
in the procedure, and semantically only means that a process which would oth-
erwise be considered terminated may first have to enter some number of empty
procedure calls.

2.2 Semantics

The semantics of choreographies uses a notion of state, which maps each variable
at each process to the value it currently stores. It is convenient to define a local
state as a mapping from variables to values (representing the memory state at
one process), and a global state as a function Σ such that Σ(p) is the local state
at p.

To evaluate expressions, we assume that there is an evaluation function that
takes a local state as parameter, evaluates variables to their value according to
the state, and proceeds homeomorphically. In other words, evaluation maps each
symbol in Ξ to a function from values to values. We assume that all choreogra-
phies and functions are well-typed, in the sense that the values stored in each
variable match the types expected in the expressions in which they occur. Fur-
thermore, we assume that evaluation always terminates, and write e ↓Σ(p) v to
denote that e evaluates to v according to state Σ(p) (local at p).

The formal semantics of choreographies is defined by means of a labelled
transition system capturing the intuitions given above, whose rules are given
in Fig. 2. Transitions are labelled by transition labels, which abstract from the
possible choreography actions that can be observed: communications of values
(p.v → q) and labels (p → q[l]), or internal actions (τ@p). The function pn is
naturally extended to these.

pn(τ@p) = {p} pn(p.v→ q) = pn(p→ q[l]) = {p, q}

Rules C|Assign, C|Com, C|Sel, C|Then and C|Else capture the intuition
behind the different choreographic primitives given earlier. The next three rules
deal with procedure invocation: the procedure starts when one process decides
to enter it, and all remaining processes are put on a “waiting list” (rule C|Call);
whenever a new process enters it, it is removed from the set of waiting processes
(rule C|Enter); and when the last process enters the call the set is removed
(rule C|Finish).

The last three rules deal with out-of-order execution: processes can always
execute what for them is the next action, regardless of what other processes are

e ↓Σ(p) v

〈p.x := e;C,Σ〉
τ@p

−−→C 〈C,Σ[〈p, x〉 7→ v]〉
C|Assign

e ↓Σ(p) v

〈p.e→ q.x;C,Σ〉
p.v→q

−−−−→C 〈C,Σ[〈q, x〉 7→ v]〉
C|Com

〈p→ q[l];C,Σ〉
p→q[l]
−−−−→C 〈C,Σ〉

C|Sel
b ↓Σ(p) true

〈if p.b thenC1 elseC2, Σ〉
τ@p

−−→C 〈C1, Σ〉
C|Then

b ↓Σ(p) false

〈if p.b thenC1 elseC2, Σ〉
τ@p

−−→C 〈C2, Σ〉
C|Else

C (X) = C

〈X,Σ〉
τ@r

−−→C 〈⌈pn(C) \ r, X⌋C,Σ〉
C|Call

r ∈ ~q ~q \ r 6= ∅

〈⌈~q, X⌋C,Σ〉
τ@r

−−→C 〈⌈~q \ r, X⌋C,Σ〉
C|Enter

〈⌈q, X⌋C,Σ〉
τ@q

−−→C 〈C,Σ〉
C|Finish

〈C,Σ〉
µ
−→C 〈C′, Σ′〉 pn(I) # pn(µ)

〈I ;C,Σ〉
µ
−→C 〈I ;C′, Σ′〉

C|DelayI

〈C1, Σ〉
µ
−→C 〈C′

1, Σ
′〉 〈C2, Σ〉

µ
−→C 〈C′

2, Σ
′〉 p /∈ pn(µ)

〈if p.b thenC1 elseC2, Σ〉
µ
−→C 〈if p.b thenC′

1 elseC
′

2, Σ
′〉

C|DelayC

〈C,Σ〉
µ
−→C 〈C′, Σ′〉 ~q# pn(µ)

〈⌈~q, X⌋C,Σ〉
µ
−→C 〈⌈~q, X⌋C′, Σ′〉

C|DelayP

Fig. 2. Semantics

doing. This is modelled by rules C|DelayI, C|DelayC and C|DelayP, which allow
execution of an action that is not syntactically the first instruction, conditional
or procedure entering, respectively. The side conditions in these rules state that
the processes involved in the action being executed do not participate in the
actions being skipped (we write X # Y for X ∩ Y = ∅). Additionally, the action
being performed in C|DelayC must be an action that can be made regardless of
what p chooses.

The reflexive and transitive closure of transition is denoted by →∗
C
; we omit

the sequente of transition labels, as this is immaterial for the current presenta-
tion.

For our proofs we also need the concept of head transition, which is the
transition relation defined by the first 8 rules in Fig. 2 – that is, disallowing

out-of-order execution. We write 〈C,Σ〉
µ
=⇒C 〈C′, Σ′〉 to denote that C makes

a head transition to C′, and ⇒∗
C

for the reflexive and transitive closure of this
relation.

3 A Hoare calculus for choreographies

In this section we introduce our formal calculus for proving semantic properties
of choreographies based on Hoare logic. Our judgements are triples {ϕ}C{ψ},
interpreted as “if choreography C is executed from a state satisfying formula ϕ
and execution terminates, then the final state satisfies formula ψ”.

In this section we formally define the syntax and the semantics of this calcu-
lus, starting with the state logic – the language in which formulas ϕ and ψ are
written.

3.1 State logic

State logics in Hoare calculi typically express properties as “variable x stores a
value v”, which are easily expressible in equational logic. We follow this tradition,
and define our state logic to be an extension of equational logic. In order to
deal with assignments, we need to be able to update formulas in a way that
corresponds to the state update in rule C|Assign – but without computing values.
This can be achieved by substituting the expression communicated in the original
formula – but this means that expressions may suddenly refer to variables stored
in different processes, so that they are no longer evaluated locally.

To deal with these issues, our state logic is parameterised on a set of ex-
pressions that is freely generated from the same signature Ξ, but using localised
variables p.x. We denote these expressions as E , and extend evaluation to them
in the natural way.

State formulas are defined as

ϕ, ψ ::= (E = X) | δ | ϕ ∧ ϕ | ¬ϕ

where X is a (logical) variable and δ ∈ D, where D is a decidable theory whose
terms include the logical variables. Parameterising the language on D keeps the
syntax of formulas simpler, while giving the user flexibility to define additional
needed formulas. This is similar to our treatment of the local language. For
example, if D includes X > X ′, then the state logic is able to express constraints
such as p.x > q.y, assuming values are integers: this can be written as p.x =
X ∧ q.y = Y ∧ X > Y. Disjunction and implication are defined as abbreviations
in the usual way.

Given a state Σ, a formula ϕ and an assignment ρ from logical variables to
values, we define Σ ρ ϕ, read “Σ satisfies ϕ under ρ”, by the rules

E ↓Σ ρ(X)

Σ ρ E = X

δ ∈ D ϕ is true

Σ ρ δ

together with the usual rules for logical connectives.

As usual in Hoare logics, assignment is dealt with using substitution – for
example, we expect to be able to prove something like

{ϕ′}p.x := e;0{ϕ}

where ϕ′ is obtained by ϕ by substituting p.x with e. However, simply replacing
every occurrence of p.x with e yields in general an invalid formula (due to the dif-
ferent variables in choreographies and state formulas). We define the localisation
of e at p, L(p, e), as the (logical) expression obtained from e by replacing every
(choreography) variable x with p.x; and the localised substitution E [q.x := p.e]
as the expression obtained from E by replacing every occurrence of q.x with
L(p, e). (The rule for communication uses different values for p and q.) Observe
that these operations can both be defined by structural recursion on expressions.
Localised substitution extends to formulas in the natural way.

Example 3. Take ϕ to be the formula p.x > 3 and e to be the expression y − z.
Replacing p.x with y − z in ϕ would yield the ill-formed formula p.(y − z) >
3. Instead, replacing p.x with L(p, y − z) = p.y − p.z yields the right formula
p.y − p.z > 3, and the above judgement becomes

{p.y − p.z > 3}p.x := y − z;0{p.x > 3}

which is syntactically well-formed. ⊳

We now show that an expression that has been localised to p is interpreted
as its original evaluation in p.

Lemma 1. Let Σ be a state, v be a value, X be a logical variable and ρ be an
assignment such that ρ(X) = v. For any process p and expression e, e ↓Σ(p) v

iff Σ ρ L(p, e) = X .

Proof. Follows from induction on the structure of e. ⊓⊔

We then show that doing a localised substitution in a formula is equivalent
to changing the value of that variable in the environment.

Corollary 1. Let Σ be a state, p be a process, e be an expression and v be a value
such that e ↓Σ(p) v. For any formula ϕ and assignment ρ, Σ[〈p, x〉 7→ v] ρ ϕ iff
Σ ρ ϕ[q.x := p.e].

Proof. By structural induction on ϕ. One of the base cases is simply Lemma 1,
while the other is trivially empty (since formulas in D are not affected by sub-
stitution). The two inductive cases follow directly by induction hypothesis. ⊓⊔

⊢C {ϕ}0{ϕ}
H|Nil

⊢C {ϕ}C{ϕ′}

⊢C {ϕ[p.x := p.e]}p.x := e;C{ϕ′}
H|Assign

⊢C {ϕ}C{ϕ′}

⊢C {ϕ[q.x := p.e]}p.e→ q.x;C{ϕ′}
H|Com

⊢C {ϕ}C{ϕ′}

⊢C {ϕ}p→ q[l];C{ϕ′}
H|Sel

⊢C {ϕ ∧ L(p, b)
X

= true}C1{ψ} ⊢C {ϕ ∧ L(p, b)
X

= false}C2{ψ} X fresh

⊢C {ϕ}if p.b thenC1 elseC2{ψ}
H|Cond

C(X) = 〈ϕ, ψ〉

⊢C {ϕ}X{ψ}
H|Call

⊢C {ϕ}C{ψ}

⊢C {ϕ}⌈~q, X⌋C{ψ}
H|Call’

D |= ϕ → ϕ′ ⊢C {ϕ′}C{ψ′} D |= ψ′ → ψ

⊢C {ϕ}C{ψ}
H|Weak

Fig. 3. Inference rules

3.2 Hoare logic

We are now ready to introduce the rules for our calculus, which are depicted
in Fig. 3. To deal with procedure definitions, we need additional information
about their effect on states. This is achieved by the procedure specification map
C, which maps each procedure name to a pair 〈ϕ, ψ〉 with intended meaning that
the judgement {ϕ}C{ψ} should hold, where C is the definition of X .

The rule for assignment H|Assign has already been motivated earlier, and is
similar to the rule in standard Hoare calculi for imperative programs; likewise,

rules H|Nil and H|Cond are also standard. The notation L(p, b)
X
= true in rule

H|Cond abbreviates the conjunction L(p, b) = X ∧ X = true.
Rule H|Weak is a weakening rule, which allows us to include reasoning in

the state logic. The notation D |= ϕ stands for “ϕ is a valid formula”.
Rules H|Com and H|Sel adapt the intuitions behind those rules to our chore-

ography actions — a communication is essentially an assignment of a variable
located at a different process, while selection does not affect the state.

Rule H|Call deals with unexpanded procedure calls by reading the corre-
sponding judgement from the specification map, while H|Call’ reflects the fact
that the current state of the expanded procedure is explicitly given and a process
entering a procedure does not affect the state.

These rules only make sense if the specification map is consistent with the
procedure definitions in the following sense.

Definition 1. A procedure specification map C is consistent with a set of pro-
cedure definitions C if ⊢C {fst(C(X))}C (X){snd(C(X))} for every X, where fst

and snd are the standard projection operators for pairs.

This notion plays a similar role to the more usual concept of “being a loop
invariant” in Hoare logics for languages with while-loops, stating that fst(C(X))
always holds whenever X is called.

Example 4 (Diffie-Hellman, functional correctness). Consider Example 1, and
assumeD is a theory for deciding equality of arithmetic expressions with modular
exponentiation. Functional correctness for the Diffie-Hellman protocol, states if
p and q have the same modulusm and base g then they will share the same secret
s once the protocol terminates. These pre- and postconditions are captured by

the following state formulas ϕ = (p.g
G
= q.g ∧ p.m

M
= q.m) and ψ = p.s

S
= q.s.

Thus, we can show the correctness of DH by deriving ⊢ {ϕ}DH{ψ}:

D |= ϕ→ ϕ1

⊢ {ψ}0{ψ}
H|Nil

⊢ {ϕ4}q.s := ab modm;0{ψ}
H|Assign

⊢ {ϕ3}p.s := ba modm; . . .{ψ}
H|Assign

⊢ {ϕ2}q.(gb modm)→ p.b; . . .{ψ}
H|Com

⊢ {ϕ1}p.(ga modm)→ q.a; . . .{ψ}
H|Com

⊢ {ϕ}DH{ψ}
H|Weak

where:

ϕ1 = ϕ2[q.a := p.ga modm]

= (q.gq.b mod q.m)
p.a

mod p.m
S
= (p.gp.a mod p.m)q.b mod q.m

ϕ2 = ϕ3[p.b := q.gb modm] = (q.bq.b mod q.m)
p.a

mod p.m
S
= q.aq.b mod q.m

ϕ3 = ϕ4[p.s := p.ba modm] = p.bp.a mod p.m
S
= q.aq.b mod q.m

ϕ4 = ψ[q.s := q.ab modm] = p.s
S
= q.aq.b mod q.m ⊳

We can now show that this calculus is sound, in the sense that it only derives
valid judgements. Given confluence of the transition system for the semantics
of choreographies [12], it suffices to show that this holds for head transitions: if
execution terminates, any path of execution must lead to the same final state.

Lemma 2. Assume that C is consistent with C and that ⊢C {ϕ}C{ψ}. For every
state Σ and assignment ρ, if Σ ρ ϕ and 〈C,Σ〉 ⇒∗

C
〈0, Σ′〉, then Σ′

ρ ψ.

Proof. The proof is by induction on the number of transitions from 〈C,Σ〉 to
〈0, Σ′〉. Within each case, we use induction on the size of the derivation of
⊢C {ϕ}C{ψ}. We include some representative cases.

– If the number of transitions is 0, then C = 0 and Σ = Σ′. The derivation
of ⊢C {ϕ}0{ψ} must then end with an application of H|Nil – which implies
that ψ = ϕ, establishing the thesis – or of H|Weak – and the induction
hypothesis together with soundness of D establishes the thesis.

– Assume that 〈C,Σ〉
τ@p

−−→C 〈C′, Σ′〉 →∗
C

〈C′′, Σ′′〉 and that the first transi-
tion is derived by rule C|Assign. Then C has the form p.x := e;C′, e ↓Σ(p) v,
and Σ′ = Σ[〈p, x〉 7→ v]. There are two cases, depending on the last rule
applied in the derivation of ⊢C {ϕ}C{ψ}.
If the derivation terminates with an application of H|Assign, then ϕ is
ϕ′[p.x := p.e] for some formula ϕ′ such that ⊢C {ϕ′}C′{ψ}. By Corollary 1 it
follows that Σ′

ρ ϕ
′, and the induction hypothesis applied to C′ establishes

the thesis.
If the derivation terminates with an application of H|Weak, then the thesis
is established by the induction hypothesis over the derivation, as in the base
case.

– Assume that 〈C,Σ〉
τ@p

−−→C 〈C′, Σ′〉 →∗
C

〈C′′, Σ′′〉 and that the first transi-
tion is derived by rule C|Call. Then C has the form X , ⌈pn(C) \ r, X⌋C (X)
and Σ′ = Σ. Again there are two cases, depending on the last rule applied
in the derivation of ⊢C {ϕ}C{ψ}.
If the derivation terminates with an application of H|Call, then by consis-
tency of C and C we know that ⊢C {ϕ}C (X){ψ}, from which we can infer
(using H|Call’) that also ⊢C {ϕ}⌈pn(C) \ r, X⌋C (X){ψ}. The induction hy-
pothesis applies to this choreography to establish the thesis.
If the derivation terminates with an application of H|Weak, then the thesis
is established as in the previous cases. ⊓⊔

Theorem 1 (Soundness). Assume that C is consistent with C and ⊢C {ϕ}C{ψ}.
For every state Σ and assignment ρ, if Σ ρ ϕ and 〈C,Σ〉 →∗

C
〈0, Σ′〉, then

Σ′
ρ ψ.

Proof. By the results in [12], if 〈C,Σ〉 →∗
C

〈0, Σ′〉 then also 〈C,Σ〉 ⇒∗
C

〈0, Σ′〉
(combining deadlock-freedom with confluence). Lemma 2 then establishes the
thesis. ⊓⊔

Example 5 (Zeros, functional correctness). Correctness for the program from
Example 2 requires that if f has a zero, the program terminates finding it or,

equivalently, that the postcondition ψ = ((f(p.x) = 0)
Z
= true) holds. Since there

are no hypothesis on the initial state, we can use as a precondition φ any tautol-
ogy (preferably one without occurrences of variables used in the program) e.g.,

ϕ = (true
T
= true). The following derivation shows that the procedure specifica-

tion map C(Z) = 〈ϕ, ψ〉 is consistent with C from Example 2:

D |= ϕ→ ϕ1

⊢C {ψ}0{ψ}
H|Nil

⊢C {ψ}q→ p[L];0{ψ}
H|Sel

C(Z) = 〈ϕ, ψ〉

⊢C {ϕ}Z{ψ}
H|Call

⊢C {ϕ}p.x := x+ 1;Z{ψ}
H|Assign

⊢C {ϕ}q→ p[R]; . . .{ψ}
H|Sel

⊢C {ϕ2}if q.f(x) = 0 then . . . else . . .{ψ}
H|Cond

⊢C {ϕ1}p.x→ q.x; . . .{ψ}
H|Com

⊢C {ϕ}C (Z){ψ}
H|Weak

where:

ϕ1 = ((f(p.x) = 0)
Z
= true → ψ) ∧ ((f(p.x) = 0)

Z
= false → ϕ)

ϕ2 = ((f(q.x) = 0)
Z
= true → ψ) ∧ ((f(q.x) = 0)

Z
= false → ϕ)

The same pre- and postconditions hold for the whole program:

C(Z) = 〈ϕ, ψ〉

⊢C {ϕ}Z{ψ}
H|Call

⊢C {ϕ}p.x := 0;Z{ψ}
H|Assign

If follows from soundness, that any terminating execution ends in a state Σ
s.t., f(x) = 0 ↓Σ(p) true. Termination follows by observing that p scans natural
numbers starting from 0 proceeding by single increments and thus, if f has any
zero, p will eventually send the first of them to q which in turn will choose to
terminate the search. ⊳

4 Completeness of the Hoare calculus

To establish a completeness result for our calculus, we follow standard techniques
from the literature, by using a notion of weakest liberal precondition – the weakest
assertion ϕ, given C, C and ψ, such that ⊢C {ϕ}C{ψ}.

4.1 Weakest liberal preconditions

In this section we define the weakest liberal precondition operator and show that
it satisfies the expected properties.

Definition 2. Let C be a choreography, ψ be a formula and C be a proce-
dure specification map. The weakest liberal precondition for C and ψ under
C, wlpC(C,ψ), is defined as follows.

wlpC((p.x := e;C), ψ) = wlpC(C,ψ)[p.x := p.e]

wlpC((p.e→ q.x;C), ψ) = wlpC(C,ψ)[q.x := p.e]

wlpC((p→ q[l];C), ψ) = wlpC(C,ψ)

wlpC(if p.b thenC1 elseC2, ψ) = (L(p, b)
X
= true → wlpC(C1, ψ))

∧ (L(p, b)
X
= false → wlpC(C2, ψ))

wlpC(X,ψ) = fst(C(X))

wlpC(⌈~q, X⌋C,ψ) = wlpC(C,ψ)

wlpC(0, ψ) = ψ

This operator is essentially mimicking the rules from Figure 3. In the clause
for conditionals, X is fresh. The only potentially surprising item is the definition

of wlp
C
(X,ψ), which ignores the actual formula ψ: this is again due to the fact

that our results require an additional condition on C (namely, that the conditions
given are compatible with the definition of wlpC), which indirectly ensures that
ψ is also considered.

Example 6 (Diffie-Hellman, WLP). Consider the choreography DH from Ex-

ample 1 and the postcondition ψ = (p.s
S
= q.s) from Example 4, wlp(DH,ψ) is

the formula ϕ1 from Example 4. ⊳

Definition 3. A procedure specification map C is adequate for ψ given a set
of procedure definitions C if, for any procedure name X, fst(C(X)) is logically
equivalent to wlp

C
(C (X), ψ) and snd(C(X)) = ψ.

In other words, for each ψ we are interested in a mapping C that, for each
procedure, includes the right precondition that ensures that ψ will hold if that
procedure terminates.

Example 7 (Zeros, WLP). The procedure specification map C from Example 5 is
adequate for the postcondition from the same example given the set of procedure

definitions C from Example 2. In fact, wlpC(C (Z), f(p.x) = 0
Z
= true) is the

formula ϕ1 from Example 5, which is logically equivalent to fst(C(Z)). ⊳

The next results show that wlpC(C,ψ) precisely characterises the set of states
from which execution of C guarantees ψ.

Lemma 3. Assume that C is adequate for ψ given C . Then, for every choreog-
raphy C, ⊢C {wlpC(C,ψ)}C{ψ}.

Proof. By structural induction on C. Most cases immediately follow from the
definition of wlp

C
together with the induction hypothesis. We detail the only

nontrivial ones.
– If C is if p.b thenC1 elseC2, we observe that ⊢C {wlp

C
(C1, ψ)}C1{ψ}. Since

(wlpC(if p.b thenC1 elseC2, ψ) ∧ L(p, b)
X
= true) → wlpC(C1, ψ)

is a valid propositional formula, we can apply rule H|Weak to derive ⊢C

{wlpC(if p.b thenC1 elseC2, ψ) ∧ L(p, b)
X
= true}C1{ψ}. A similar reasoning

applied to C2 derives the other hypothesis for rule H|Cond, and combining
them establishes the thesis.

– If C is X , then the thesis follows from the assumption that snd(C(X)) = ψ.
⊓⊔

Corollary 2. If C is adequate for ψ given C , then C is consistent with C .

Corollary 3. Assume that C is adequate for ψ given C . For every choreography
C, state Σ, and assignment ρ, if Σ ρ wlpC(C,ψ) and 〈C,Σ〉 →∗

C
〈0, Σ′〉 for

some state Σ′, then Σ′
ρ ψ.

Proof. By Lemma 3, ⊢C {wlp
C
(C,ψ)}C{ψ}. By Corollary 2, C is consistent with

C . The thesis then follows by Theorem 1. ⊓⊔

Lemma 4. Assume that C is adequate for ψ given C . Let C be a choreography,
Σ and Σ′ be states, and ρ be an assignment. If 〈C,Σ〉 ⇒∗

C
〈0, Σ′〉 and Σ′

ρ ψ,
then Σ ρ wlpC(C,ψ).

Proof. By induction on the number of transitions from C to 0. If this number
is 0, then C is 0 and the thesis trivially follows. Otherwise, we detail some
representative cases. We do case analysis on C to determine the first transition.

– If C is p.x := e;C′′, then 〈C,Σ〉
τ@p

==⇒C 〈C′′, Σ′′〉 ⇒∗
C

〈0, Σ′〉, and Σ′′
ρ

wlpC(C
′′, ψ) by induction hypothesis. But Σ′′ = Σ[〈p, x〉 7→ v] where e ↓Σ(p)

v, hence Σ ρ wlp
C
(C′′, ψ)[p.x := p.e] by Corollary 1, establishing the thesis.

– If C is if p.b thenC1 elseC2, then there are two cases. Assume wlog that

b ↓Σ(p) true. Then 〈if p.b thenC1 elseC2, Σ〉
τ@p

==⇒C 〈C1, Σ〉 ⇒∗
C

〈0, Σ′〉, and
Σ ρ wlpC(C1, ψ) by induction hypothesis. The only nontrivial case is when
ρ(X) = true – otherwise the antecedents of both implications in wlp

C
(C,ψ)

are false and the thesis trivially holds. If ρ(X) = true, then Σ ⊢ρ L(p, b) = X
by Lemma 1, and again both implications in wlpC(C,ψ) are true (the first
one has true premise and conclusion, while the premise in the second one is
false). The case where b ↓Σ(p) false is analogous.

– If C is X , then 〈X,Σ〉 ⇒∗
C
〈C (X), Σ〉 ⇒∗

C
〈0, Σ′〉 by applying rules C|Call,

C|Enter and C|Finish until all processes have entered X . By adequacy,
fst(C(X)) = wlpC(C (X), ψ), and the induction hypothesis establishes the
thesis. ⊓⊔

Corollary 4. Assume that C is adequate for ψ given C . Let C be a choreography,
Σ and Σ′ be states, and ρ be an assignment. If 〈C,Σ〉 →∗

C
〈0, Σ′〉 and Σ′

ρ ψ,
then Σ ρ wlpC(C,ψ).

Proof. Combining Lemma 4 with deadlock-freedom and confluence of the se-
mantics, as in the proof of Theorem 1. ⊓⊔

4.2 Completeness

Combining the results in the previous section, we obtain a completeness result
for our calculus.

Theorem 2 (Partial completeness). Let C be a choreography, ϕ and ψ be
formulas, and assume that C is adequate for ψ given C . Assume that, for all
states Σ and Σ′ and assignment ρ, if Σ ρ ϕ and 〈C,Σ〉 →∗

C
〈0, Σ′〉, then

Σ′
ρ ψ. Then ⊢C {ϕ}C{ψ}.

Proof. Let Σ be a state such that 〈C,Σ〉 →∗
C

〈0, Σ′〉, implies Σ′
ρ ψ. Then

Σ ρ wlpC(C,ψ) by Corollary 4. Since this is the case for all states Σ such that
Σ ρ ϕ, it follows that D ϕ → wlpC(C,ψ). But ⊢C {wlpC(C,ψ)}C{ψ} by
Lemma 3, whence by H|Weak the thesis holds. ⊓⊔

Theorems 1 and 2 can be combined with the EPP theorem from [12], which
relates the behaviour of choreographies with the behaviour of their projections,
to yield results on execution of distributed implementations generated by chore-
ographies. This means that properties of these implementations can be analysed
at the choreographic level, which is arguably simple, without the need for a
specialised Hoare calculus for process languages.

4.3 Decidability

Finally we establish some decidability results for the Hoare calculus. We start by
pointing out that we assume D is decidable; since propositional logic is decidable
and evaluation converges, the judgments of the form D |= ϕ that appear on the
premises of rule H|Weak are also decidable.

Lemma 5. The judgement ⊢C {ϕ}C{ψ} is decidable.

Proof. Assume that ⊢C {ϕ}C{ψ}. By Theorem 1, for every state Σ and as-
signment ρ such that Σ ρ ϕ it is the case that: if 〈C,Σ〉 →∗

C
〈0, Σ′〉, then

Σ′
ρ ψ. By Corollary 4, this means that Σ ρ wlpC(C,ψ), and therefore

D |= ϕ→ wlpC(C,ψ).
Conversely, if D |= ϕ→ wlpC(C,ψ), then for every state Σ and assignment ρ

such that Σ ρ ϕ it is the case that Σ ρ wlpC(C,ψ), and therefore if 〈C,Σ〉 →∗
C

〈0, Σ′〉 it must hold that Σ′
ρ by Corollary 3. By Theorem 2 this means that

⊢C {ϕ}C{ψ}.
This shows that ⊢C {ϕ}C{ψ} iff D |= ϕ → wlpC(C,ψ). Since wlpC is com-

putable and validity is decidable, it follows that ⊢C {ϕ}C{ψ} is decidable. ⊓⊔

Although the set of procedure names can in principle be infinite, most prac-
tical applications only use a finite subset of them.2 In this case, consistency and
adequacy also become decidable.

Corollary 5. If the set of procedure names is finite, then consistency between a
procedure specification map C and a set of procedure definitions C is decidable.

Lemma 6. If the set of procedure names is finite, then adequacy of a procedure
specification map for a formula and set of procedure definitions is decidable.

Proof. Immediate from the definition. ⊓⊔

We end this section with a negative result: it is not possible to compute an
adequate procedure specification map.

Lemma 7. There is no algorithm that, given a set of procedure definitions C

and a formula ψ, always returns a procedure specification map C that is adequate
for ψ given C .

2 This disallows choreographies where e.g. each procedure Xi calls procedure Xi+1,
which do not occur in practice.

Proof. Consider the formula ψ = ⊥, which never holds. For any choreography C
and satisfiable formula ϕ, the judgement {ϕ}C{⊥} holds iff C never terminates
from a state that satisfies ϕ.

This means that, if C is adequate for ⊥ given C , then wlpC(C,⊥) characterises
the set of states from which execution of C diverges. In particular, C never
terminates if wlpC(C,⊥) is logically equivalent to ⊤ – which is decidable in our
state logic. But Rice’s Theorem implies that the class of choreographies that
always diverge is undecidable, therefore C cannot be computable. ⊓⊔

Although this result states that adequate procedure specification maps are
in general not computable, there is still the possibility that they can be shown to
exist always. Such a result would entail that our calculus is strongly complete.
We plan to investigate this issue in future work.

5 Related Work

The work nearest to ours is [20], where the authors propose a system for func-
tional correctness of choreographies aimed at reasoning about distributed choices.
While they also propose a Hoare calculus for choreographies, there are some key
differences wrt our work.

Firstly, they introduce a new choreographic language with significant dif-
ferences from common practice in choreographic programming, e.g., they re-
quire every choice to involve every process regardless of their involvement in
the branches in the condition. By contrast, we used an existing language with
standard constructs.

Secondly, the logic used in [20] is fixed and used in the choreography language
for Boolean expressions. This coupling compromises the generality of the devel-
opment, because the logic and the syntax of choreographies are not standalone.
Instead, we follow the standard two-layered approach for Hoare logic [2,19], and
define a state logic that is parametric on both the language of expressions in the
choreographies and the theory for reasoning about them.

As a consequence, our development is more readily applicable and adaptable
to other existing choreographic languages.

The only other work combining choreographies and logic is Linear Composi-
tional Choreographies (LCC) [7], a proof theory based on linear logic for reason-
ing about programs that modularly combine compositional choreographies [28]
with processes. This was inspired by previous work on the correspondence be-
tween linear propositions and session types [5]. LCC, however, is not aimed at
functional correctness: propositions represent communication behaviour rather
than assertions about states.

Design-by-Contract [25] is a framework where each protocol or function is
given a contract specifying its allowed input and resulting output, similar to the
pre- and postconditions of Hoare logic, which has been used to reason about
distributed programs from a global level. The first work in this line [4] defined
a framework for specifying contracts for multiparty sessions. Being based on

session types, this work more focussed on specifying properties of communicated
values than ours, which lets them specify more properties than us, but also
requires adding annotations to the language being reasoned about. An extension
of this idea [24] describes chaperone contracts for higher-order binary sessions,
which lets contracts update dynamically at runtime. Design-by-Contract has
also been applied to microservices in the form of Whip [31]. Like our work,
Whip is language-agnostic with regard to the local language, though it uses
global contracts to reason directly on the local language; unlike our logic, Whip
is designed for monitoring communications at runtime.

Another way of reasoning about session types is combining them with de-
pendent types [30]. Like the work of [4], dependent types can be used to reason
about the values being communicated, but unlike our work they are not intended
to reason about pre- and postconditions.

Hoare logic has also been used to reason directly about systems of communi-
cating processes [1,22]. This is far more complex than reasoning about choreogra-
phies, as it requires independently considering properties of each participant’s
protocol and how they are combined in the global system.

6 Conclusions

We have presented a novel Hoare calculus for reasoning about choreographic
programs. Our logic allows for a great deal of flexibility, since it is parametric on
both the local language of the choreographic language and a decidable theory
defined by the user.

We have proven that the standard properties of Hoare logics hold for our
language. Using the operational correspondence theorems for choreographies and
their projections, we also showed that any properties that our logic can prove
for a choreography also hold for the distributed implementation automatically
generated from that choreography.

Our section on decidability left open the question of whether there always
exists an adequate procedure specification map for any target formula, which we
plan to investigate in future work. We also want to look further into the issue
of how our decidability results can be used to implement interesting algorithms,
e.g. for proof automation.

Our formalism only gives us guarantees for terminating execution paths,
which means that we cannot infer any properties of non-terminating choreogra-
phies. However, an inspection of the proofs of soundness and completeness (in
particular, Lemmas 2 and 3) shows that these results actually guarantee some-
thing stronger, namely that the invariants described in C must hold whenever
the choreography reaches a procedure call. We plan to use this observation as a
starting point for an investigation about how our calculus can be used to assert
properties of non-terminating executions of choreographies.

Acknowledgements. This work was partially supported by Villum Fonden, grant
nr 29518.

References

1. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating se-
quential processes. ACM Trans. Program. Lang. Syst. 2(3), 359—-385 (jul 1980).
https://doi.org/10.1145/357103.357110

2. Apt, K.R., Olderog, E.: Fifty years of Hoare’s logic. CoRR abs/1904.03917 (2019)
3. Apt, K.R., Olderog, E.R., Apt, K.: Verification of sequential and concurrent pro-

grams, vol. 2. Springer (2009)
4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for

distributed multiparty interactions. In: Gastin and Laroussinie [15], pp. 162–176.
https://doi.org/10.1007/978-3-642-15375-4_12

5. Caires, L., Pfenning, F.: Session types as intuitionistic lin-
ear propositions. In: Gastin and Laroussinie [15], pp. 222–236.
https://doi.org/10.1007/978-3-642-15375-4_16

6. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) Procs. POPL. pp. 263–
274. ACM (2013). https://doi.org/10.1145/2429069.2429101

7. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distributed
Comput. 31(1), 51–67 (2018). https://doi.org/10.1007/s00446-017-0295-1

8. Cruz-Filipe, L., Graversen, E., Lugovic, L., Montesi, F., Peressotti, M.: Functional
choreographic programming. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds.) Procs.
ICTAC. Lecture Notes in Computer Science, vol. 13572, pp. 212–237. Springer
(2022). https://doi.org/10.1007/978-3-031-17715-6_15

9. Cruz-Filipe, L., Montesi, F.: Procedural choreographic program-
ming. In: Bouajjani, A., Silva, A. (eds.) Procs. FORTE. Lecture
Notes in Computer Science, vol. 10321, pp. 92–107. Springer (2017).
https://doi.org/10.1007/978-3-319-60225-7_7

10. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. Theor.
Comput. Sci. 802, 38–66 (2020). https://doi.org/10.1016/j.tcs.2019.07.005

11. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Certifying choreography compilation.
In: Cerone, A., Ölveczky, P.C. (eds.) Procs. ICTAC. LNCS, vol. 12819, pp. 115–133.
Springer (2021). https://doi.org/10.1007/978-3-030-85315-0_8

12. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Formalising a Turing-complete chore-
ographic language in Coq. In: Cohen, L., Kaliszyk, C. (eds.) Procs. ITP. LIPIcs,
vol. 193, pp. 15:1–15:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.ITP.2021.15

13. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies: Theory and implementation. Log. Methods Comput. Sci. 13(2)
(2017). https://doi.org/10.23638/LMCS-13(2:1)2017

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

15. Gastin, P., Laroussinie, F. (eds.): CONCUR 2010 - Concurrency Theory, 21th
International Conference, CONCUR 2010, Paris, France, August 31-September 3,
2010. Proceedings, Lecture Notes in Computer Science, vol. 6269. Springer (2010)

16. Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects. CoRR
abs/2005.09520 (2020), https://arxiv.org/abs/2005.09520

17. Giallorenzo, S., Montesi, F., Peressotti, M., Richter, D., Salvaneschi, G.,
Weisenburger, P.: Multiparty languages: The choreographic and multitier cases
(pearl). In: Møller, A., Sridharan, M. (eds.) Procs. ECOOP. LIPIcs, vol. 194,
pp. 22:1–22:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22

https://doi.org/10.1145/357103.357110
https://doi.org/10.1145/357103.357110
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://arxiv.org/abs/2005.09520
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22

18. Hirsch, A.K., Garg, D.: Pirouette: higher-order typed functional
choreographies. Proc. ACM Program. Lang. 6(POPL), 1–27 (2022).
https://doi.org/10.1145/3498684

19. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969). https://doi.org/10.1145/363235.363259

20. Jongmans, S., van den Bos, P.: A predicate transformer for choreographies – com-
puting preconditions in choreographic programming. In: Sergey, I. (ed.) Procs.
ESOP. Lecture Notes in Computer Science, vol. 13240, pp. 520–547. Springer
(2022). https://doi.org/10.1007/978-3-030-99336-8_19

21. Leesatapornwongsa, T., Lukman, J.F., Lu, S., Gunawi, H.S.: Taxdc: A taxon-
omy of non-deterministic concurrency bugs in datacenter distributed systems.
In: Conte, T., Zhou, Y. (eds.) Procs. ASPLOS. pp. 517–530. ACM (2016).
https://doi.org/10.1145/2872362.2872374

22. Levin, G., Gries, D.: A proof technique for communicating sequential processes.
Acta Informatica 15, 281–302 (1981). https://doi.org/10.1007/BF00289266

23. López, H.A., Nielson, F., Nielson, H.R.: Enforcing availability in failure-aware
communicating systems. In: Albert, E., Lanese, I. (eds.) Procs. FORTE. Lec-
ture Notes in Computer Science, vol. 9688, pp. 195–211. Springer (2016).
https://doi.org/10.1007/978-3-319-39570-8_13

24. Melgratti, H.C., Padovani, L.: Chaperone contracts for higher-order
sessions. Proc. ACM Program. Lang. 1(ICFP), 35:1–35:29 (2017).
https://doi.org/10.1145/3110279

25. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

26. Montesi, F.: Choreographic Programming. Ph.D. Thesis, IT University of Copen-
hagen (2013)

27. Montesi, F.: Introduction to Choreographies. Cambridge University Press (2023)
28. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-

gratti, H.C. (eds.) Procs. CONCUR. Lecture Notes in Computer Science, vol. 8052,
pp. 425–439. Springer (2013). https://doi.org/10.1007/978-3-642-40184-8_30

29. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in
large networks of computers. Commun. ACM 21(12), 993–999 (1978).
https://doi.org/10.1145/359657.359659

30. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: Schneider-Kamp, P., Hanus, M. (eds.) Procs. PPDP. pp.
161–172. ACM (2011). https://doi.org/10.1145/2003476.2003499

31. Waye, L., Chong, S., Dimoulas, C.: Whip: higher-order contracts for mod-
ern services. Proc. ACM Program. Lang. 1(ICFP), 36:1–36:28 (2017).
https://doi.org/10.1145/3110280

https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1007/BF00289266
https://doi.org/10.1007/BF00289266
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1145/3110279
https://doi.org/10.1145/3110279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3110280

	Reasoning about Choreographic Programs

