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Abstract. Dynamics are one of the fundamental tools of expressivity in a perfor-
mance. While the usage of this tool is highly subjective, a systematic methodol-
ogy to derive loudness markings based on a performance can be highly beneficial.
With this goal in mind, this paper is a first step towards developing a methodol-
ogy to automatically transcribe dynamic markings from vocal rock and pop per-
formances. To this end, we make use of commercial recordings of some popular
songs followed by source separation and compare them to the karaoke versions
of the same songs. The dynamic variations in the original commercial recordings
are found to be structurally very similar to the aligned karaoke/multi-track ver-
sions of the same tracks. We compare and show the differences between tracks
using statistical analysis, with an eventual goal to use the transcribed markings
as guiding tools, to help students adapt with a specific interpretation of a given
piece of music. We perform a qualitative analysis of the proposed methodology
with the teachers in terms of informativeness and accuracy.

Keywords: Vocal Performance Assessment, Music Education, Loudness Mea-
surement, Dynamics Transcription

1 Introduction

Musical expression is an integral part of any performance. The subjective nature of this
term makes it difficult to identify “whether the expressive deviations measured are due
to deliberate expressive strategies, musical structure, motor noise, imprecision of the
performer, or even measurement errors” [1]. While the choice of expressions used may
vary from performer to performer and also from performance to performance, deriving
the expressions used in a specific interpretation of a performance can offer significant
advances in the realm of music education. Not only can it help students learn from a
specific musical piece, insights about the variations in expressions can add to possible
set of choices that one can employ during a performance.

With the advent of online practice tools like music minus one, audio accompani-
ments, users have a wide variety of mediums to chose to practice with [2]. However,
most of these tools are limited to pitch and rhythm correctness, offering little or no in-
sight about the expressive variations of the performance. In this work, we focus on de-
riving the dynamic variations of vocal rock and pop performances via loudness feature
extracted from the audio recordings. The goal of this paper is to develop a methodology
to extract and compare the dynamic variations of similar pieces of vocal performances
that can lay the foundation of transcribing dynamic markings of vocal performances.
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This overall idea can be broken down into a set of 2 questions that we intend to
address through our work.

(i) Given a mix, is it possible to transcribe dynamics using the source separated
voice signal with the same accuracy as would be achieved when the vocal stem of the
mix is available?

(ii) Can we analyze the similarities and differences between two loudness curves in
order to provide feedback on dynamics?

In order to address the first question, we use state of the art source separation al-
gorithms to extract vocal tracks from mixes followed by loudness computation, and
compare them to the loudness curves of the vocal stems available for the same mix. To
address the second question, we have conducted a preliminary experiment comparing
the loudness curves of the source separated commercial mixes with multi-track karaoke
versions with vocal stems. Overall the structure of the paper is as follows. Section 2
presents some fundamental information about the kind of loudness scales and the study
of dynamics in music information retrieval. In section 3, we describe a methodology
of the proposed approach followed by preliminary investigation of the comparison of
loudness curves in section 4. The influence of vocal source separation on loudness com-
putation is also presented in section 4.

In section 5, we conduct a case study where the dynamic variations of the two
versions (karaoke and commercial) have been analyzed by a teacher to give feedback
followed by section 6 with conclusions and future work.

2 Background and Related Work

Significant work has been done to model performance dynamics by measuring the loud-
ness variations [3] with a conclusion that the variations in dynamics are not linear. Sev-
eral measurement techniques have been defined to measure the loudness of signals.

2.1 Loudness Measurement Scales

Of the scales available for loudness measurement, some are inspired by the subjective
psychoacoustic phenomenon of human ear, while others are objective in terms of mea-
surement. The most commonly used measurement is the dBFS scale, or loudness unit
full scale. The more recently adopted industry standard is the EBUR scale [9]. For our
analysis, we make use of the sone scale, which is based on psychoacoustic model, and
compare our results to RMS values computed from the signals directly.

Sone Scale This scale is inspired by the psychoacoustic concept of equal loudness
curves, with the measurement being linear i.e. doubling of the perceived loudness dou-
bles the sone value [10]. While the phon scale is more closely associated with dB scale,
a phon value of 40 translates to 1 sone. The relationship between phons and sons can
be modelled using the equation:

S =

{
2(L−40)/10, if P >= 40.

(L/40)2.642, P < 40.
(1)
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RMS RMS or root mean square is the square root of the mean square of the amplitude
of the signal.

RMS = sqrt((x2
1 + x2

2....x
2
n)/N) (2)

2.2 Dynamics in Music Information Retrieval

Work on measurement of dynamics has been typically centered around Western Classi-
cal piano performances, incorporating dynamics as an expressive performance parame-
ter that can vary across performers/performances [4]. Kosta et al. [5] used change-point
detection algorithm to measure dynamic variations from audio performances and com-
pared them to the markings in the score. Further, they applied machine learning ap-
proaches like decision trees, support vector machines (SVM), artificial neural networks
[6] to predict loudness levels corresponding to the dynamic markings in the score. They
found that the loudness values can be predicted relatively well when trained across
recordings of similar pieces, while failing when trained across pianists’ other perfor-
mances.

Another approach to model dynamics is using linear basis functions to encode struc-
tural information from the score [8]. Each of the “basis function” stand for one score
marking like stacatto, crescendo, the active state being a representation of the expres-
sive marking present in the score and vice-versa. Chacón et al. [7] carry out a large
scale evaluation of expressive dynamics on piano and orchestral music using linear and
non-linear models.

3 Methodology

A diagram of the proposed methodology is presented in Figure 1. In case solely the mix
is available, the input audio mix is passed to a source separation algorithm, U-Net [16]
to get the separated vocal track. Thereafter, we extract the loudness from the separated
vocal track or vocal stem using the sone scale and RMS as described earlier. The loud-
ness extraction for the sone scale is carried out in the same way as proposed by Kosta
et al [5] in their analysis. Each of the loudness curves are normalized by dividing with
the max value for the rendition in order to carry out a fair relative comparison between
different renditions. This step makes sure that only the relative values are compared
and not the absolute ones. Finally, we apply peak picking operation to get a range of
overall dynamics that can be further processed to map to specific dynamics based on
musicological knowledge. It is to be noted that we limit the current set of experiments
to comparison of loudness curves, leaving the actual mapping of loudness values to
musically meaningful values as future work.

4 Experiments

4.1 Data Curation

We have primarily used three sources of data for our analysis:
(i) Commercial official recordings of rock and pop songs
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          U-Net      Isolated Vocal Track

  Extract Loudness Curve    SmootheningMap to dynamics

Fig. 1: Methodology for extracting loudness from a mix.

(ii) Custom karaoke tracks from the site1 exactly replicating the official tracks
(iii) Musdb dataset to validate the efficacy of source separation algorithm
To evaluate the impact of singing voice source separation we use the musdb dataset

containing 150 multi-track songs. For the commercial recordings, we conducted a pre-
liminary investigation with 7 popular tracks shown in Table 1.

For the commercial popular recordings, only the mixes are available while for the
karaoke versions, we have access to all the stems. This leads to 3 sources of data for the
analysis of the same tracks - source separated vocals from the commercial mix (CSS),
source separated vocals from the karaoke mix (KSS), vocal stems from the karaoke
stems (KSV).

4.2 Experimental Setup

As mentioned above in the methodology, we first apply source separation using the
spleeter implementation of UNet [13] to separate the mix into two stems - vocal track
and the accompaniment. This step is skipped in case vocal stems are available for anal-
ysis. We use a block size of 512 samples or 11 ms with a hanning window, and a hop
size of 256 samples or 5.5 ms. We follow the same block and hop size for the sone scale
as well as RMS values. For loudness extraction using the sone scale, we use ma sone
function in Elias Pampalk’s Music Analysis toolbox [11] in Matlab. The RMS values
are extracted using the essentia library [15]. We further apply smoothening operation
using two methods - “loess” with smooth function in matlab (based on locally weighted
non-parametric regression fitting using a 2nd order polynomial) and exponential mov-
ing average [19][EMA]. Based on experimental testing, we use a span of 5% for the
loess method. With the exponential moving average smoothening, we use an attack of
2 ms and release time of 20 ms. In the current set of experiments, the RMS smoothen-
ing is carried out using EMA methodology, and sone scale is smoothened using loess
method. This operation was followed by peak picking operation to get a sense of overall
dynamics followed. The peak picking parameters were experimentally set to a threshold
of 0.1, and a peak distance of 1.2 seconds. We used the madmom library [14] for peak
picking operation with RMS, and findPeaks function in maltab with sone scale loud-
ness extraction. Figure 2 and Figure 3 show an example of computation of loudness

1 https://www.karaoke-version.com/
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value using Sone scale and RMS respectively, followed by smoothening operation and
detected peaks for the song ‘Don’t know why’ by Norah Jones.
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Fig. 2: Loudness using sone scale for Don’t Know Why by Norah Jones
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Fig. 3: Loudness using RMS values for Don’t Know Why by Norah Jones
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4.3 Results

Overall Loudness Comparison between Renditions In order to compare the structure
similarity of the loudness curves, we computed Pearson Correlation Coefficient of the
smoothened curves extracted from the audio signals. Table 1 shows the values observed
for each of the 7 songs. As evident from the table, most values are greater than 0.8,
and in the case of comparing source separated version with the clean karaoke version,
most values are greater than 0.9 indicating the robustness of the methodology with the
pre-processing step of applying source separation.

Local dynamics To account for local dynamic changes, we compute the differences be-
tween consecutive peaks and derive a histogram from all the local differences. Further,
the computed peak differences for each song are combined together for all songs from
the same source i.e. commercial source separated, karaoke source separated and karaoke
stem vocal. Thereafter, we use the non-parametric Kolmogorov-Smirnov 2 sample test
which fits the properties of our data. This test is computed between each pair of the 3
histograms corresponding to the 3 sources. We find that for each of the comparisons,
the p-value was 0.99 indicating no statistically significant differences between the his-
togram plots. These results are in line with our initial claim that the overall structure of
the local dynamics changes as reflected in the loudness curves. These analysis results
were the same for the histograms obtained using RMS values and sone values.

Table 1: Chosen songs and Pearson Correlation Coefficients for smoothened loudness
sone curves

Song Name Artist CSS, KSV KSS, KSV CSS, KSS

Skyfall Adele 0.867 0.994 0.931
Torn Natalie Imbruglia 0.701 0.946 0.800
Fade into you Mazzy Star 0.943 0.887 0.897
Imagine John Lennon 0.889 0.981 0.440
Say you won’t let go James Arthur 0.955 0.835 0.800
Don’t know why Norah Jones 0.866 0.997 0.870
Son of a preacher man Dusty Springfield 0.701 0.957 0.669

Global Dynamic Range The global dynamic range of each of the songs is computed
using difference in max peak and min peak extracted from the smoothened loudness
curve. As indicated in Table 2, the observed global dynamic range based on peak values
are mostly similar in the case of karaoke source separated version and the karaoke vocal
stem version with the exception of the song ‘Son of a preacher man’ with RMS values,
and ‘Fade into you’ with sone values.

Outlier Analysis With a deeper analysis of the song ‘fade into you’, we find that there
is a guitar section in the original song that becomes an artifact in the source separation
output. This leads to a peak being wrongly detected increasing the overall dynamic
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Table 2: Observed dynamic range with RMS and sone values
RMS Sone

Song Name CSS KSS KSV CSS KSS KSV

Skyfall 0.460 0.156 0.176 0.503 0.477 0.489
Torn 0.092 0.138 0.206 0.355 0.199 0.213
Fade into you 0.144 0.195 0.167 0.306 0.354 0.182
Imagine 0.172 0.149 0.171 0.320 0.287 0.271
Say you won’t let go 0.187 0.138 0.142 0.272 0.190 0.199
Don’t know why 0.256 0.222 0.217 0.526 0.489 0.462
Son of a preacher man 0.150 0.227 0.371 0.275 0.339 0.295

range for both CSS and KSS resulting from peak detection. A high value of Pearson
Correlation Coefficient between CSS and KSS as compared to KSS and KSV reflects
from the fact that both of them have source separation as a pre-processing step, and
both the versions contain similar artifacts.

4.4 Influence of voice source separation on loudness computation

In order to validate the efficacy of the source separation algorithm prior to using it for
evaluating dynamics, we computed the Pearson Correlation of the smoothened loudness
curves extracted from the mix with the smoothened loudness curves of the vocal stem
tracks available with the musdb dataset [17].

As evident from the histogram in Figure 4, 138 values of the 149 songs evaluated
are greater than 0.90. There are 6 songs with values between 0.80 and 0.90, and only
1 song with a value less than 0.50. The mean of the values is 0.960 and the standard
deviation is 0.081. These results look promising to be able to use source separation as
a prior step for dynamics analysis.

Outliers The song with the lowest value of correlation coefficient “PR-Happy Daze”
contains a lot of instrumental music without much vocal component. Hence, the output
of source separation algorithm is mostly artifacts. The song “Skelpolu - Resurrection”
with a correlation coefficient of 0.58 has similar challenges.

5 Discussion

Work on transcription of dynamics is a challenging task for several reasons. One of the
primary reasons being lack of sufficiently annotated data for singing voice to validate
the efficacy of these algorithms.

Hence, in order to validate our approach, we conducted a case study with the song
‘Don’t know why by Norah Jones’ where we asked a teacher with 6 years of Western
singing teaching experience to compare the two tracks and provide feedback on the
dynamic changes. Following is the feedback that we received from the teacher for some
phrases of both tracks.
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Fig. 4: Distribution of Pearson Correlation Coefficient applied to smoothened loudness
curves of musdb dataset

I waited ’til I saw the sun
For Norah’s Version:”Norah’s dynamics change over the line. “I’ve” is ‘mp’. “Waited

till” starts as ‘mf’, which gradually drops down to ‘mp’ as she ends the line, can be seen
as a diminuendo.” For the Backing Track Version: ”Dynamically, the singer is ‘mf’
throughout. This sounds like the kind of vocal take where the original vocals have been
compressed one too many times.”

I don’t know why I didn’t come
For Norah’s Version: ”Dynamically between an ‘mp’ and ‘mf’”. For the Backing

Track Version: ”Once again at an ‘mf’. Vocals have definitely been compressed to sound
at the same level consistently”.

Case Study Results As evident from the first phrase, the teacher claimed that Norah
Jones used a wider range of dynamics in her performance as compared to the cover
version. Figure 5 shows the loudness curve of the cover version along with Norah Jones
version using the sone scale. The classified dynamic markings for the two renditions
are shown in the same plot. As compared to Norah’s version of the same song, there is
definitely a relatively very low difference between consecutive initial peaks in the cover
version. The global dynamic range observed in the results section for this song is also
in line with this observation. Similar results can be seen with RMS computation.

Challenges Despite having noisy artefacts and interferences from other instruments,
state of the art source separation may be adequate for music analysis, when extracting
dynamics. However, the peak detection method may not be robust enough to different
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Fig. 5: Loudness using sone scale for Don’t Know Why

performances and require calibration. Smoothing should be done w.r.t the tempo of the
song.

While our initial case study showed some promising results, scaling such a system
is still a very cumbersome task. Apart from the limitations with data and annotations,
we are constrained by the knowledge that can help us realize the right granularity of
transcription. For example, expressive markings like crescendo and diminuendo are
associated with phrase boundaries [18], but the reverse might not be true. We would
need collaborative efforts from multiple fronts in order to take advantage of the recent
advances in the field of audio signal processing.

6 Conclusion and Future Work

We presented a methodology to extract dynamics from a performance using loudness as
a feature. In the current investigation, we found that it is possible to use these loudness
metrics to reach a level of relative changes that can in turn be mapped to dynamics.
In future, we intend to discretise these relative values to map them to musically mean-
ingful terms that can be used for providing the right feedback to students. Apart from
that, in order to realize the overall goal of transcription, we intend to continue annota-
tions of popular songs and further apply data driven approaches of machine learning to
automatically derive the dynamic markings.

We also intend to apply the current methodology to student recordings to validate
the efficacy of the system, and if the approach can be used to provide feedback on dy-
namics to students.
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