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Abstract. WebAssembly (Wasm) is a low-level binary format for web
applications, which has found widespread adoption due to its improved
performance and compatibility with existing software. However, the pop-
ularity of Wasm has also led to its exploitation for malicious purposes,
such as cryptojacking, where malicious actors use a victim’s computing
resources to mine cryptocurrencies without their consent. To counteract
this threat, machine learning-based detection methods aiming to identify
cryptojacking activities within Wasm code have emerged. It is well-known
that neural networks are susceptible to adversarial attacks, where in-
puts to a classifier are perturbed with minimal changes that result in a
crass misclassification. While applying changes in image classification is
easy, manipulating binaries in an automated fashion to evade malware
classification without changing functionality is non-trivial. In this work,
we propose a new approach to include adversarial examples in the code
section of binaries via instrumentation. The introduced gadgets allow
for the inclusion of arbitrary bytes, enabling efficient adversarial attacks
that reliably bypass state-of-the-art machine learning classifiers such as
the CNN-based Minos recently proposed at NDSS 2021. We analyze the
cost and reliability of instrumentation-based adversarial example gener-
ation and show that the approach works reliably at minimal size and
performance overheads.

Keywords: Malware Detection · Adversarial Attack · Binary Instru-
mentation · Minos · Cryptojacking

1 Introduction

With the introduction of WebAssembly (Wasm) in 2017, web applications are
able to utilize a system’s CPUs with near-native efficiency [1]. Wasm allows de-
velopers to make computationally heavy applications available in-browser and
has since been used for games, text processing, visualizations, and media players
[14,21]. On the downside, malicious parties have also utilized Wasm to distribute
malicious binaries to victims that visit an infected website and thus gain ac-
cess to the victim’s resources without having to gain access to their system. In
particular, the near-native performance of Wasm and the support provided by
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all major browsers make WebAssembly a prime target for cryptojacking attacks
[14,21,35]. In-browser cryptojacking or drive-by cryptocurrency mining allows
an attacker to utilize their victim’s computational resources for mining cryp-
tocurrencies without their knowledge or consent, thus profiting from the returns
without having to pay for the spent energy. To address this issue, various meth-
ods have been proposed to protect against cryptojacking attacks. However, while
fast, traditional static approaches like blacklisting malicious hosts or matching
signatures are easily bypassed [31]. Dynamic detection systems [17,15,30], on the
other hand, rely on more sophisticated metrics that cause a runtime overhead
and require the malicious binary to be executed. Minos, a lightweight machine
learning-based detection system, provides a promising solution to this prob-
lem [23]. By transforming Wasm binaries to grey-scale images, Minos can utilize
a convolutional neural network (CNN) for the classification of binaries. This
provides a rapid and effective approach that can be applied prior to executing
the binaries, thereby offering efficient protection against in-browser cryptojack-
ing attacks. While promising, CNNs are known to be susceptible to adversarial
attacks [39]. Malicious parties looking to distribute their malware have a high
incentive to evaluate possible avenues for bypassing detection frameworks. In
particular, the development of more sophisticated evasion techniques by attack-
ers could render existing detection methods ineffective. Adversarial examples are
usually crafted under the assumption that small changes to the input are ne-
glectable. However, applying adversarial examples to binaries that follow strict
syntactical and semantical rules requires specific placement of adversarial pay-
loads without invalidating the binary or changing the semantics. Still, attacks
leveraging adversarial examples to bypass visualization-based malware detectors
have been proven to succeed on Windows Portable Executables [20,16,28].

In this paper, we evaluate the feasibility of utilizing adversarial examples
against the Wasm-based classifier Minos [23] presented at NDSS 2021. We demon-
strate the feasibility of inserting semantic-preserving gadgets using binary instru-
mentation into the code section of WebAssembly applications, allowing effective
crafting of adversarial examples inside the gadget, thus enabling the evasion of
the Minos detection system. In contrast to existing work, we add the adver-
sarial payload directly into the application’s control flow and introduce both
size-efficient (SE) and optimization-resistant (OR) gadgets. Our findings shed
light on the potential weaknesses of machine learning-based classifiers in detect-
ing cryptojacking and highlight the need for ongoing efforts to improve their
robustness and security, particularly when classifiers are applied in scenarios
with incentives to evade classification. To summarize, our key contributions are:

– Comprehensive collection of malign Wasm samples from the Cisco Umbrella
1 Million websites list.

– A novel approach for automatically crafting adversarial examples in code by
introducing semantic-preserving instruction gadgets via instrumentation.

– Demonstrating a grey-box adversarial attack against the Minos classifier by
training a substitute model and applying our gadgets.

– A comprehensive evaluation of the efficacy and costs of the attack.
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2 Background

2.1 WebAssembly

WebAssembly (Wasm) [1] is a binary instruction format for a stack-based virtual
machine that enables high-performance applications that run seamlessly in web
browsers. It is designed to provide near-native performance to web applications
and allows developers to write applications in various programming languages,
including C, C++, and Rust, while still being executed in the browser. Wasm is
supported by all major web browsers and has gained significant traction in re-
cent years, particularly in resource-intensive applications, where the performance
benefits provided by Wasm are especially important. In most settings, Wasm is in-
tegrated into the JavaScript code of a website, from where the Wasm modules
are loaded, and the respective functions are called. Its stack-based architecture,
widespread support, and versatility make it an essential tool for modern web
development.

2.2 Cryptojacking Malware

Cryptocurrency mining is the process of solving complex mathematical problems
in order to validate transactions and add new blocks to a blockchain network [22].
The process requires a significant amount of computational power and energy.
As compensation for the computation time, miners are rewarded with new units
of the respective cryptocurrency. This reward mechanism is a key component
of the decentralized nature of many cryptocurrencies, as it incentivizes individ-
uals and organizations to participate in the network and maintain its security.
However, as the difficulty of mining increases and the competition among min-
ers grows, the margin between the resources spent on mining and the returned
profits diminishes. If a malicious actor manages to utilize a victim’s resources
for mining, the computational cost is removed from the equation. In general,
the unauthorized use of a device’s computing power to mine cryptocurrencies,
typically without the knowledge or consent of the device’s owner, is referred to
as cryptojacking. This type of attack can occur via host- or browser-based min-
ing and can have significant impacts on both individual users and organizations.
Host-based cryptojacking requires the installation of a cryptocurrency miner on
the victim’s machine through, i.e., malicious software installed by the victim [35].
Browser-based cryptojacking is a method of exploiting a victim’s device through
a malicious website. The attacker inserts a script into the website’s code that
runs in the victims’ browser upon visiting the site and uses their device’s pro-
cessing power to mine cryptocurrency while profiting the owner of the operation.
With the introduction of WebAssembly and its near-native speed, the efficiency
of browser-based mining has significantly increased, making the attack lucra-
tive. Unlike traditional malware, browser-based cryptojacking does not require
the victims to download any files, making it subtle and difficult to prevent.
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2.3 Malware Detection

Identifying whether a binary contains malicious functionality is an active area
of research across different types of binaries. Various approaches have been pro-
posed for detecting cryptojacking, one of the primary malicious usages of Wasm
binaries [21]. Due to the reliance of cryptojacking malware on network commu-
nication, network-based detection systems have been proposed, analysing the
network traffic [32]. Host-based detection frameworks rely, in general, on either
static or dynamic analysis to identify malware. Dynamic approaches observe
the execution of a binary while monitoring key metrics such as memory con-
sumption [25], the number of executed arithmetic operations [37], or through
CPU profiling [17]. Prevention techniques that identify malware based on re-
source consumption can be circumvented through throttling [12]. Additionally, a
number of machine learning classifiers have been proposed that require dynamic
features such as API calls and resource information [30] or runtime information
such as the number of web sockets or workers [15]. In order to generate dynamic
features, the potentially malicious binary needs to be executed on the host’s
machine. Static approaches, on the other hand, do not require the evaluated
code to be executed; instead, the binary is directly evaluated, for example, by
matching known signatures or URL blacklisting [12]. However, these techniques
can be circumvented using obfuscation [31]. MinerRay [31] relies on the static
detection of hash semantics to make obfuscation-based prevention harder as the
semantics of the functions are evaluated.

In general, efficiently detecting whether a WebAssembly binary utilizes the
host’s resources for mining cryptocurrencies without relying on dynamic fea-
tures allows a detection framework to warn the user that a malicious binary is
loaded before the execution of the binary. Nassem et al. developed Minos [23],
a lightweight real-time detection system that aims to efficiently detect whether
a WebAssembly binary utilizes the host’s resources for cryptomining using a
CNN. Minos is designed to be implemented as a browser plug-in which uses
the detection framework to warn users about any detected cryptomining bina-
ries before they are executed. Upon visiting a website that loads a Wasm binary,
the detection framework transforms the bytes contained inside the binary into a
two-dimensional grey-scale image which is then evaluated by a pre-trained CNN.
This architecture allows the system to classify a binary, on average, in 25.9 ms
while achieving an overall accuracy of 98.97% against an in-the-wild dataset [23].

2.4 Adversarial Attacks

Deep neural networks, along with other machine learning models, have been
discovered to be susceptible to adversarial attacks on their input data [34,4].
Given a target model θ, an input x and a target class t ̸= θ(x), an adversaries
objective is to find a minimal perturbation δx under a norm N = || · || s.t.

θ(x+ δx) = t (1)
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Minimizing the perturbation vector δx under a norm N ensures that the origi-
nal input x and the newly generated input, or adversarial example, x∗ = x+ δx
are close to each other under a given distance metric D. However, finding a
perturbation δx that satisfies Equation 1 is generally a hard problem due to
the nonlinearity of the evaluated model θ [34]. Existing methods for crafting
an adversarial example, such as the L-BFGS, solve the problem using approx-
imations [39]. Carlini and Wagner (C&W) proposed a different approach by
transforming the constraint shown in Equation 1 into an optimization problem
using an appropriately chosen objective function L, s.t. if θ(x+ δx) = t is satis-
fied, L(x∗) ≤ 0 holds [8]. By moving the constraint into the minimization term,
the problem of finding an adversarial example is an optimization task that min-
imizes N (δx) + ϵ · L(x∗) such that x∗ ∈ [0, 1]n where ϵ > 0 is a suitably chosen
constant. The optimization problem is solved using gradient-based optimization
methods [5]. The gradient of the objective function with respect to the input
x is used to update the perturbation δx in each iteration of the optimization
process. The process is repeated until the minimum perturbation, which results
in the adversarial example being classified as the target class t, is found. With-
out access to the gradients of the target model θ, the aforementioned attack
cannot be utilized. However, given query access, the adversary can train a local
substitute network [27] by querying the target classifier with synthesized or oth-
erwise gathered data. Using the results obtained through inference against the
target network as labels, the local model is trained. Due to the transferability
between models, it is possible to train a machine learning model that mimics the
behaviour of a target model [13]. In a black-box scenario [27], a network with
unknown architecture is attacked, requiring a custom architecture for the local
substitute network. In the grey-box scenario, additional information about the
target network, such as parameters or its architecture, is known, and hence the
substitution network architecture can be chosen similarly to the target model.
The local model can then be utilized to generate adversarial examples that are
transferable to the target network [27].

3 Madvex: Crafting Functional Adversarial Binaries

The Minos classifier [23] uses an image-based machine learning technique to
quickly identify malicious WebAssembly binaries. However, such classifiers are
shown to be vulnerable to adversarial attacks [34]. This section describes the
attack methodology used to craft binaries that are misclassified by Minos. To
illustrate the applicability of such an attack, we limit the adversary and assume
a grey-box scenario where the attacker has query access to the model and knowl-
edge of the network’s architecture. Although the Minos classifier’s architecture
was published by Naseem et al., the training data and model were not made
available. Therefore, we use a Minos classifier trained by Cabrera-Arteaga et al.
[7] as the target of our attack experiments.
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Fig. 1: Systematic overview of the training procedure for the substitute model.
Malicious (M) samples are augmented to generate a balanced dataset. To gen-
erate labels, the target model is queried. The labelled benign (B) and malicious
data is used to train the substitute model using 5-fold cross-validation.

3.1 Data Acquisition

The performance of the attack correlates with the quality of the local substitute
model trained by the adversary. Therefore a comprehensive dataset of malicious
and benign WebAssembly binaries is required to train a suitable substitute net-
work. The original Minos model was trained on a balanced dataset containing
300 samples [23]. The data preparation and training procedure for the substi-
tute model is schematically visualized in Fig. 1 and described below in detail.
To obtain benign samples, we used WasmBench1, a WebAssembly dataset con-
taining more than 23.000 real-world binaries published by Hilbig et al. as part
of an empirical study [14]. We obtained 34 malicious samples from a dataset2
published in the context of Minesweeper [17]. Additionally, we ran a crawler
to increase the number of malware samples and gather up-to-date malware. By
iterating over the Cisco Umbrella 1 Million list [11], we were able to download
187 WebAssembly binaries. Each domain on this list is visited by the crawler,
which resides on any page for three seconds. By hooking a JavaScript function
into each document load, we are able to dump any WebAssembly binary before
it is executed. Considering that the malware may not reside on the homepage
directly, the crawler additionally visits three randomly chosen internal links.
Overall 40% of the crawled binaries resided on subdomains and were found ei-
ther through accessing internal links or redirects. The Minesweeper [17] classifier
categorized ten out of the 187 crawled binaries as being malicious. Even after
combining the samples of public datasets with the results of our crawling cam-
paign, the number of obtained malicious binaries is considerably lower than that
of benign binaries. In order to compensate for this difference and additionally
increase the number of samples, we utilize the Wasm-fuzzer wasm-mutate [6] as a
diversifier. By utilizing wasm-mutate, one can generate a variety of different We-
bAssembly binaries that retain the original semantic. Mutation cores available
in wasm-mutate enable semantic-preserving transformations. A sample function
that performs the addition of two integers and two mutations of the function
1 https://github.com/sola-st/WasmBench (Accessed 2023/01/31)
2 https://github.com/vusec/minesweeper (Accessed 2023/01/31)

https://github.com/sola-st/WasmBench
https://github.com/vusec/minesweeper
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(a) Original function
(func (;0;)

(param i32 i32)
(result i32)
local.get 0
local.get 1
i32.add

)

(b) Mutated version of (a)
(func (;0;)

(param i32 i32)
(result i32)
local.get 0
i32.const 0
i32.shl
i32.const 0
i32.add
local.get 1
i32.add

)

(c) Mutated version of (a)
(func (;0;)

(param i32 i32)
(result i32)
local.get 0
local.get 1
i32.add
i32.const 0
i32.shr_u
local.get 0
local.get 1
i32.add
i32.const 0
i32.sub
i32.and

)

Fig. 2: Wasm function performing the addition of two integers (a) and two
semantic-preserving mutations (b),(c) of the original function using different
seeds in wasm-mutate [6].

are shown in Fig. 2. Each mutation is generated using a different seed, allowing
us to generate a larger variety of syntactically different binaries with identical
semantics. To generate appropriate adversarial examples, a shadow model that
is as similar to the target model as possible must be utilized. To achieve this, the
internal labels assigned to the samples are only used for balancing and not used
for training. Instead, the pre-trained Minos network [7] is employed for label
generation. After augmentation of the malicious samples, we obtain a dataset
containing 2.3 × 104 malicious and 2.3 × 104 benign binaries that are used for
training the substitute model.

3.2 Substitute Network Training

We use the architecture employed by Minos for the substitute model because
we assume a known architecture in the grey-box attack. The architecture of
the CNN is shown in Fig. 3. Convolutional neural networks typically receive an
image as the input for classification. The Minos classifier requires the input to
be a grey-scale image of size 100 × 100. To allow binaries of varying sizes to
be represented as a fixed-dimensional image, the bytes are reshaped into the
largest possible two-dimensional array with the same width and height. The
remaining bytes are discarded. Initially, each byte of the binary corresponds to
one pixel. However, the image is downscaled to a 100 × 100 image. A detailed
description of the downsampling process is given in Section 3.3. The original
model was trained using an 80% training and 20% testing split. However, we
use 5-fold cross-validation for training. Hence five models are trained each on
80% of the dataset described in Section 3.1, while 20% of samples are withheld
for validation. For the evaluation, Minos was trained with one epoch (M-1)
to prevent overfitting, followed by 50 epochs (M-50), the same number as the
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100x100x1 89x89x16 49x49x16 47x47x32 23x23x32 21x21x64 10x10x64 6400
3x3 2x2 3x3 2x2 3x3

Input Image Convolution Max pooling Convolution Max pooling Convolution Max pooling

Fig. 3: Architectural overview of the Minos classifier from Naseem et al. [23].
The CNN contains three convolution layers, three pooling layers, and one fully
connected layer. The input image shows a Wasm binary that is transformed into
a grey-scale image.

target model. The area under the curve (AUC) and loss after the final epochs
are reported in Table 1. Even after training the substitute network for only one
epoch, the validation AUC reaches 99% with a validation loss of 0.14. After
training for 50 epochs, the validation loss decreases to 0.04.

3.3 Attack Methodology

Performing an adversarial attack against an image-based classifier requires slight
modifications of the original image to manipulate the generated response in the
desired direction. The alterations are often transparent to the naked eye as they
result in a small amount of noise added to the original image. However, in the
case of binaries, slightly manipulating the value of a pixel, for example, chang-
ing a value from 0x2A to 0x2B, changes the original instruction from f32.load
to f64.load invalidating the binary. We require a procedure that allows us to
manipulate certain areas of the binary without changing the behaviour. Using in-
strumentation, we can add, manipulate or remove instructions from the malware
and provide areas inside the code section that can be utilized for the adversarial
attack. While we are still unable to manipulate arbitrary pixels, adding spe-
cially crafted gadgets into the binary enables specific bytes to be utilized for the
adversarial attack. Generating an adversarial example requires iterative manip-
ulation of the target value in small increments. Hence, an area of bytes that are

Table 1: Substitute network training evaluation after the last epoch for (a) one
epoch (M-1) and (b) 50 epochs (M-50).

(a) M-1

Fold 0 1 2 3 4
AUC 0.96 0.95 0.96 0.96 0.94

Val. AUC 0.99 0.99 0.99 0.99 0.99
Loss 0.29 0.30 0.29 0.29 0.34

Val. Loss 0.13 0.14 0.15 0.15 0.14

(b) M-50

Fold 0 1 2 3 4
AUC 1.00 1.00 1.00 1.00 1.00

Val. AUC 1.00 1.00 1.00 1.00 1.00
Loss 0.03 0.03 0.04 0.03 0.03

Val. Loss 0.05 0.05 0.03 0.04 0.04
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(c) CDF over benign binaries

Fig. 4: Histogram of relative section size (a) for code section, data section and
all remaining sections for all binaries as described in Section 3.1. Cumulative
density for relative section size for all malicious binaries (b) and benign binaries
(c).

arbitrarily manipulable is ideal. Each WebAssembly binary is split into several
sections, each with a different purpose. As shown in Fig. 4a, the code section
represents, in most cases, the largest section inside both malicious and benign
binaries that were analyzed. When separately evaluating the section distribution
for malicious and benign binaries (cf. Fig. 4b and Fig. 4c), it is apparent that in
both cases, the code section remains the largest section. The code section con-
tains all functions with their instructions, whereas the data section represents a
linear array of memory accessible through instructions in the code section. While
an attack against the data section is also possible by extending the size of the
linear memory and using this area for crafting the attack, we chose to target the
code section as it represents the largest section of the binaries. An overview of
our attack methodology is given in Fig. 5. Each step is described in detail below.

Semantic-preserving Gadgets To enable manipulation inside the code sec-
tion, we require an instruction that has a number of bytes that are freely choos-
able. In particular, instructions that load constants onto the stack cause specific
values to be present inside the code section. Hence, constructing a gadget that
loads an arbitrary constant onto the stack and removes it allows a number of
bytes to be arbitrarily chosen. Additionally, it can be inserted anywhere into the
control flow because, after the gadget’s execution, the stack will be in the same
state as before. WebAssembly allows four number types to be pushed onto the
stack as constants - 32 and 64 bit variants of integers and floats. We opt to use
64 bit constants, as the ratio between the number of bytes that are available for
the adversarial attack and the number of bytes required for the overall gadget
is higher. Generally, both integers and floats can work. However, WebAssembly
encodes all integers using the LEB128 variable-length encoding in either the
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Malign
Wasm

Gadget

Instrumen-
tation

BenignAdversarial
Attack

Downs-
sampling

Substitute
Model

Up-
sampling

Adversarial
Binary

Mask
Malign

Fig. 5: Schematic overview of the attack methodology. A malicious binary is
instrumented to add the gadgets used for carrying the adversarial payload. After
downsampling, the adversarial attack is performed against the substitute model.
To recreate the original binary, we upsample the adversarial image and recreate
the original binary.

signed or unsigned variant. Compared to the encoding utilized for floating point
values, IEEE-754 [2], the integer encoding enforces a number of restrictions on
the bytes representing the integer. IEEE-754, on the other hand, allows all bytes
to assume all possible values. Hence we use 64 bit floating point constants to craft
the attack. The f64.const x:f64 instruction can be used to push the 64 bit
floating point number x onto the stack. We initialize the constant to 0x80808080
to allow both positive and negative perturbations. To ensure that the function-
ality of the target binary is not modified, the value must be removed from the
stack before normal execution resumes. We demonstrate two gadgets that can be
inserted after arbitrary instructions, as the execution of the gadget only changes
the contents of the stack temporarily. A size-efficient gadget (SE) is shown in
Fig. 6a. After the constant is pushed onto the stack, it is immediately removed
again using the drop instruction. Each inserted gadget of this type increases the
size of the binary by ten bytes, out of which the adversarial attack can utilize
eight bytes (compare Fig. 6b). Hence, only 20% of the size overhead is attributed
to bytes that cannot be manipulated during the attack phase.

Due to the low complexity of the size-efficient gadget, it is easy to discern that
the two instructions will retain the program’s semantics. However, optimizers
such as wasm-opt [38] can remove all gadgets of this type from the binary.
Note that using an optimizer before classifying the binary is not part of the
Minos framework [23] because it would counteract the high efficiency of the
detection system. Nevertheless, we are able to craft a gadget that is not removed
by wasm-opt, even when using its most aggressive optimization setting. This
resilience, however, is only made possible by increasing the gadget’s complexity.
The composition of our optimizer-resistant gadget (OR) is shown in Fig. 6c and
the binary representation in Fig. 6d. The basic idea remains unchanged; we still
load a constant onto the stack, thus introducing a value that can be manipulated
during the attack phase. However, instead of directly loading the value onto the
stack and dropping it, we use it as the increasing constant for a loop counter.
However, as the value can be an arbitrary float value, i.e. negative and positive,
we divide it by itself to have a known value, i.e. one. We then check whether
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(a) Size-efficient gadget

f64.const 0x0
drop

(b) Binary representation of (a)

0x44 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0
0x1a

(c) Optimizer-res. gadget
(local $UID1 f64)
(loop $UID2

local.get $UID1
f64.const 0x0
f64.add
local.tee $UID1
local.get $UID1
f64.div
f64.const 42
f64.gt
br_if $UID2

)

(d) Binary representation of (c)

0x03 ,0x40
0x20 ,0x02
0x44 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0
0xa0
0x22 ,0x02
0x20 ,0x02
0xa3
0x44 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0x45 ,0x40
0x64
0x0d ,0x00
0x0b

Fig. 6: Size-efficient (a) and optimizer-resistant (c) gadget and their binary rep-
resentation (b,d). Bytes that can be manipulated during the adversarial attack
are highlighted in blue.

this new value is less than some constant, i.e. 42, which is always true, and
break the loop. While it is intuitively understandable that this loop will never
be executed more than once, it is not easily determined by an algorithm since
loops are difficult to analyze. While this gadget survives optimization passes,
only eight out of 32 bytes can be utilized for the adversarial attack. Gadgets
are inserted into the code section at randomly drawn insertion points with a
predetermined frequency. The relation between the number of inserted gadgets
and the success rate of the attack is evaluated in Section 4.1. In Section 4.2,
we evaluate the execution speed of both gadgets in relation to the number of
gadgets inserted into the binary. Insertion of either gadget into the target binary
can be performed once per binary before distribution and requires linear time in
the size of the binary, making the instrumentation efficient.

Downsampling A given binary can be of any size between a few kilobytes and
many megabytes. Hence, the authors of Minos [23] downsample each binary into
an image of fixed dimensionality, i.e. 100 × 100 pixels (Fig. 3). As our shadow
model utilizes the same architecture, it also requires an input image of that
size. However, as we need to keep track of the positions that allow for a change
within the instrumented binary, i.e. the constants within our gadgets, we use a
custom downsampling algorithm for crafting the attacks. Yet, at inference time,
the original downsampling method is used. At first, we transform the sequence of
bytes b from the binary into a squared image with a dimension of ⌊

√
|b|⌋. Hence, a

few bytes at the end are discarded. From this squared image, we combine as many
pixels as needed in order to downsample the image to 100× 100 pixels. For this
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purpose, we calculate the mean of a group of pixels, which then become a single
pixel. To keep track of what pixels contain a byte that is used for the adversarial
attack, we maintain a mask M1. The mask has the same dimensionality as the
image and marks all positions that contain editable values. To easily revert the
downsampling when restoring the binary, we store the coordinates of the original
group of pixels for each downsampled pixel.

Adversarial Attack After downsampling, the image x is perturbed iteratively
until our shadow model misclassifies the image as benign using the method pro-
posed by Carlini & Wagner [8]. However, instead of optimizing for a fixed num-
ber of iterations, we keep iterating until the shadow model prediction reaches a
threshold τ . Experimentally we determined τ = 10−13. However, we also termi-
nate the optimization after 1×104 iterations. During our experiments, we found
that the lower the threshold for the prediction score is, the higher the chance
that an original model will share the classification of the shadow model. In order
to only perturb pixels related to the gadgets, we multiply the mask M1 that was
saved during downsampling before adding the perturbation δx to the sample.
Given the model θ, a normalization | · | and the constant ϵ, the perturbation of
the input under the objective function L is given as:

x = x+M1 · ϵ ·
∣∣∣∣ ddxL(θ(x), 0)

∣∣∣∣
In our experiments, we chose ϵ = 0.05 and L as binary cross-entropy [5]. We
derive the change needed for the input x within the normalization term so that
the prediction θ(x) gets closer to zero, i.e. benign. However, instead of adding the
whole perturbation to x, only a small factor is added. This can be compared to
the learning rate in classical machine learning. As we cannot perturb the whole
input image but rather just the constants within the gadgets, our crafted mask
is multiplied before the summation. As the mask has zeros on all non-editable
pixels, i.e. the original code of the binary, and a one wherever there is at least a
single gadget, the perturbation is only applied to pixels that relate to gadgets.

Upsampling The result of the adversarial attack is a perturbed image x∗ where
the perturbation is only applied to the pixels that initially belonged to at least a
single gadget. Those changes must now be mapped back to the original binary.
For the perturbed image, we look at every pixel that belonged to at least one
gadget. If such a pixel is found, we retrieve the corresponding group of pixels
G. To correctly update G, the bytes belonging to an adversarial payload need to
be modified s.t. the mean value of G equals the corresponding pixel value of x∗.
Given the sum of the pixel values

∑
p∈G p, the number of pixels |G| and the target

pixel p∗ the update factor fadv can be derived using the following equation:

fadv = p∗ · |G| −
∑
p∈G

p
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To apply the factor fadv to the adversarial payload, we create a mask M2 that
has a one at every editable position within G. M2 contains the same values as
M2 but flipped, s.t., ones become zeros and vice versa. We can update the group
of pixels using the following equation:

Gadv =

M2

fadv∑
M2

+M2G if
∑

M2 ≥ 1

G otherwise

The left term of the addition in the first case replaces all the editable pixels within
the image with a shared factor. The second term adds the original values. This
way, the new mean value of Gadv equals the target value of the downsampled
image. In case there are no gadgets in the particular group, i.e.

∑
M2 = 0,

G is simply copied. After the termination of the adversarial attack, the image
is flattened into a byte array badv, and the bytes that were cropped during
downsampling are appended again.

Possible Countermeasures In Section 4.1, we show that Minos [23] is suscep-
tible to the presented adversarial attack. However, it is essential to also discuss
possible improvements that could prevent such adversarial attacks and aid in
hardening the detection framework. The option to remove semantic-preserving
gadgets using an optimizer was already discussed in Section 3. While an addi-
tional optimization step prevents an adversary from relying on the size-efficient
gadget, the more complex optimization-resistant gadget still allows effective ad-
versarial attacks. Machine learning models can be directly hardened against ad-
versarial attacks using, for example, defensive distillation [26], which is a tech-
nique where the class probability vectors of a trained DNN are used to train
another DNN of the same dimensionality. As the name suggests, defensive dis-
tillation is derived from the concept of distillation [3], where one trained DNN is
used to train a smaller DNN without losing accuracy. Another promising method
for hardening models against adversarial attacks is presented by Goodfellow et
al. [13]. They create adversarial examples and use them as training data for their
model. However, the presented countermeasures were shown not to be effective
against a thoughtful attacker [36].

4 Evaluation

4.1 Gadget Effectiveness

Using our corpus of malicious samples (Section 3.1), we evaluate the effectiveness
of our attack by creating adversarial examples for each binary. We consider the
insertion density d as the relative frequency of occurrence of our gadget, s.t. for
a given density d ∈ [0, 1], for every 1000 instructions d · 1000 gadgets are added.
Fig. 7 shows the misclassification rates of binaries with the size-efficient gad-
get (Fig. 7a) and the optimization-resistant gadget (Fig. 7b) against the Minos
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Fig. 7: Minos misclassification rate of binaries with size-efficient gadgets (a) and
optimizer-resistant gadgets (b) against the pre-trained Minos [23] classifier by
Cabrera-Arteaga et al. [7]. Each plot depicts the misclassification rate of the
original binary (Original), the instrumented binary without adversarial payload
(Instr.), and the misclassification rate of the binaries with adversarial payload
derived using Minos trained for one epoch (Adv. M-1) and for 50 epochs (Adv.
M-50). The adversarial misclassification rates are average over all five folds. The
error bars depict the standard deviation.

classifier [23] trained by Cabrera-Arteaga et al. [7]. To the best of our knowl-
edge, Minos is the only WebAssembly malware classifier that utilizes machine
learning to classify malware directly on a representation of the binary itself. To
evaluate the effectiveness of our adversarial payloads at invoking misclassifica-
tions, we plot the misclassification rates for the original binary, the instrumented
binary without adversarial payload and the adversarially crafted binaries. The
original binaries are unaffected by the gadget density and never result in mis-
classification. For instrumented binaries without adversarial payloads, it becomes
apparent that after a sufficiently large number of insertions, the classifier cannot
detect the malicious binary even without the adversarial attack. Fig. 8b shows
the size increase of the binary through the addition of our gadgets. For each
gadget, the misclassification rates of the instrumented binaries start to increase
significantly at a size of roughly 1.5× the original binary. Considering that the
larger the binary gets, the higher the compression rates and information loss are
during downsampling, an increase in misclassification rates that correlates with
a size increase can occur. Due to the difference in the number of added bytes
per gadget, the misclassification rate for the larger optimization-resistant gadget
increases at lower densities. However, for both gadgets, one can observe that the
adversarially crafted binaries consistently outperform the binaries that are only
instrumented, causing higher misclassification rates at lower densities. Addition-
ally, adversarial payloads generated using the substitute models trained for one
epoch consistently cause higher misclassifications at lower densities than pay-
loads generated using the models trained for 50 epochs. To further evaluate the
misclassification caused by instrumenting the malicious binary, we additionally
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Fig. 8: Correlation between the insertion density and the relative increase in
execution time (a) and size (b). Both the size-efficient gadget (SE) and the
optimization-resistant gadget (OR) are evaluated. The x-axis represents the den-
sity of the gadgets, while the y-axis represents the relative execution time com-
pared to the baseline (no gadget insertion) (a) and the relative increase of the
binary’s size in bytes (b). The average over the evaluated binaries is plotted, and
the error bars represent the standard deviation.

instrumented 50 randomly selected benign binaries with the optimizer-resistant
gadget that caused higher misclassification rates. At densities of both 0.1 and
0.01, the classifier correctly identified all evaluated benign binaries as benign,
suggesting a tendency of the classifier to classify samples as benign. To evaluate
the effectiveness of our method, we additionally generated adversarial payloads
for the benign binaries that caused the substitute model to misclassify the bi-
nary as malicious. Using the substitute model trained for one epoch, we were
able to successfully cause the target classifier to misclassify, on average, 77%
of the binaries over all folds at a density of 0.1. Overall, at a density of 0.02,
both gadgets are shown to be successful in evading the target classifier for at
least 70% of evaluated malicious binaries, while the misclassification rates for
the instrumented binary without the adversarial payload are at or below 20%,
highlighting the effectiveness of our approach.

4.2 Performance Analysis

To quantify the gadget’s impact on the runtime of instrumented binaries, we
measured the execution time in relation to the gadget density. This correlation
is illustrated in Fig. 8a. We utilized a WebAssembly hashing library [24] and
performed 5 × 105 rounds of SHA-256 hashing. A baseline was established by
measuring the execution time without inserting the gadgets. The execution time
of both gadgets is shown in relation to the baseline. The insertion of the size-
efficient gadget only results in a small constant increase in execution time, sug-
gesting that the inserted gadget is not executed. WebAssembly is compiled using
an ahead-of-time compiler, which includes optimization of the code. As the size-
efficient gadget neither changes the data flow nor the control flow, the compiler
likely identifies and removes those instructions during compilation. However,
similar to wasm-opt [38], this optimizer cannot detect the optimization-resistant
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Fig. 9: Average number of iterations (y-axis) required to achieve a confidence of
1× 10−12 for a given gadget density (x-axis). Both the size-efficient gadget (SE)
and the optimizer-resistant gadget (OR) are evaluated on the substitute model
trained for one epoch (M-1) and 50 epochs (M-50). The error bars show the
standard deviation.

gadget. As a result, the execution time increases linearly in the number of in-
serted gadgets. However, considering that a density of 0.02 is enough to trick
the target classifier, the increase in runtime is reasonable.

Additionally, we evaluated the requirements for generating an adversarial ex-
ample, which heavily depends on the gadget density. The number of iterations
required to achieve a confidence of less than 1× 10−13 within the shadow model
was measured as a function of the chosen gadget density. The results are depicted
in Fig. 9, which displays the average number of iterations required during the
adversarial example generation over the applied gadget density. As both gad-
get types hold the same number of bytes utilized for the adversarial payload,
they require a similar number of iterations to reach the confidence level. The
adversarial training optimization loop was run for a maximum of 1× 104 itera-
tions. Overall, the lower the chosen density, the more iterations are required to
reach the target confidence, as fewer bytes are available for adversarial crafting.
While the adversarial examples crafted using the substitute model trained for
one epoch outperform the adversarial examples crafted using the model trained
for 50 epochs, the adversarial example reaches the target confidence with fewer
iterations on the model trained for 50 epochs. The execution time of a single
iteration is 9.84 ms on an AMD Ryzen 9 7950X 16-Core Processor, which ren-
ders the attack feasible. Note that this optimization needs to only be performed
once per malware. However, an attacker could potentially exploit the low cost
of generating new adversarial examples by regularly distributing new binaries to
website visitors.

5 Related work

The use of machine learning-based classifiers for detecting malware has been
shown to be fast and effective in identifying binaries as malicious or benign.
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However, the robustness of these classifiers against adversarial inputs is often
limited. As more machine learning-based classifiers are utilized for detecting
malware, malicious actors who want to distribute their malware have a high in-
centive to utilize evasion techniques to prevent detection. Especially for Windows
Portable Executables (PEs), a number of classifiers and evasions exist. Existing
adversarial evasions on classifiers that utilize a gray-scale image representation
of the target binary [16] rely on FSGM [13] or Carlini & Wagner [8], to generate a
perturbation vector for the image [20,16,28]. However, in contrast to our attack,
Liu et al. [20] directly apply the perturbation to the image representation of the
binary. While they show a successful attack against the classifier, the generated
adversarial example is not a valid binary anymore, rendering their evasion in-
effective. Khormali et al. [16] generate the adversarial example and append the
adversarial payload to the end of the file or at the end of a section. This ensures
that the adversarial example is added into nonexecutable areas, and hence the
original functionality remains. While this enables the addition of the adversarial
payload into the malicious binary, a sophisticated defender can easily remove the
payload by statically identifying unused bytes and masking them before classifi-
cation, as they should have no impact on the classification performance. Using
our attack methodology, the adversarial payload is placed inside the code sec-
tion and directly baked into the control flow of the target binary, preventing
a defender from easily removing the payload. Additionally, we have presented
the optimization-resistant gadget that cannot be generally removed using an
optimization pass. Evasions against other network architectures that directly
consider the sequence of bytes from Windows PE files generally insert adversar-
ial payloads in unused bytes between sections [18,33,29], in a new section [18] or
at the end of the file [9,29]. While these approaches generate executable binaries,
it is rather easy to circumvent for a slightly more sophisticated detection model,
e.g. one that first removes unused bytes or truncates sections or files. Either of
our proposed gadgets is inserted directly into the instructions so that more so-
phisticated static analysis techniques, such as data flow and control flow analysis,
are required to detect them fully. However, there are also numerous adversarial
attacks against classifiers that classify a binary on more sophisticated features
than just an image from its raw binary data, e.g. based on extracted features
such as control flow, data flow, API calls, libraries, or dynamic features [10,19].
While the general procedure for generating the perturbation vector is similar,
the application to the binary relies on transforming the target in a way that the
corresponding features change. The interested reader is referred to Ling et al.
[19], who provide an in-depth evaluation of different evasion techniques against
Windows PE malware. Cabrera-Arteaga et al. [7] proposed a malware evasion
system against Wasm malware detectors and, in particular, Minos. However, their
system relies on obfuscation to bypass detection frameworks, and they do not
utilize adversarial attacks.



18 N. Loose et al.

6 Conclusion

In this paper, we introduced a novel technique for placing adversarial payloads
directly into the instruction stream using binary instrumentation to bypass ma-
chine learning-based malware detectors. We have demonstrated the effectiveness
of our technique by crafting a grey-box adversarial attack against Minos [23],
a lightweight cryptojacking detection framework for WebAssembly presented at
NDSS 2021. To place payloads inside the code section of the binary, we have
introduced two semantic-preserving gadgets for Wasm binaries with a focus on
size-efficiency and optimization-resistance, respectively. We have collected an ex-
tensive dataset with both benign and malicious binaries by utilizing two existing
benchmark datasets [17,14] as well as results from a crawling campaign of one
million websites from the Cisco Umbrella list [11]. To populate this dataset,
we used wasm-mutate [6] to generate augmented binaries. Every sample was
then assigned a label by querying the target model, i.e. Minos [23] provided by
Cabrera-Arteaga et al. [7]. All samples with their corresponding label were then
used to train a substitute model of our targeted model. The challenge of creating
a functional adversarial example inside a binary without altering the semantics
was met by carefully inserting novel semantic-preserving gadgets. These gadgets
can be injected freely into the code section of a Wasm binary without changing
the semantics using binary instrumentation. Each gadget contains a number of
bytes that carry the adversarial payload and can be manipulated freely during
the attack phase. By attacking our substitute model, we successfully craft func-
tional adversarial examples for cryptojacking binaries. Using an insertion density
of 0.02 and the better-performing substitute network trained for one epoch (M-
1), we are able to cause the target detector to misclassify all of the evaluated
malicious binaries, demonstrating the effectiveness of our attack. Additionally,
we show that our size-efficient gadget is removed during compilation resulting in
only a negligible runtime overhead. The optimizer-resistant gadget, by design,
is not removed before execution and thus leads to a linear overhead in the den-
sity. However, as a small insertion density of 0.02 is sufficient in bypassing the
classifier, the execution time is only increased by roughly 10%. To prevent such
attacks, we addressed typical countermeasures; However, as discussed by Tramèr
et al. [36], as long as the adversary is able to manipulate features used by a clas-
sifier, the threat of adversarial attacks cannot be fully mitigated. The success
of our grey-box adversarial attack on Minos highlights the need for continued
research and improvement of defences against adversarial attacks on machine
learning-based malware detection frameworks.
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