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Abstract. This paper explores human behavior in virtual networked
communities, specifically individuals or groups’ potential and
expressive capacity to respond to internal and external stimuli, with
assortative matching as a typical example. A modeling approach based
on Multi-Agent Reinforcement Learning (MARL) is proposed, adding a
multi-head attention function to the A3C algorithm to enhance
learning effectiveness. This approach simulates human behavior in
certain scenarios through various environmental parameter settings and
agent action strategies. In our experiment, reinforcement learning is
employed to serve specific agents that learn from environment status
and competitor behaviors, optimizing strategies to achieve better
results. The simulation includes individual and group levels, displaying
possible paths to forming competitive advantages. This modeling
approach provides a means for further analysis of the evolutionary
dynamics of human behavior, communities, and organizations in
various socioeconomic issues.
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1 Introduction

The exploration of human behavior patterns has mainly relied on quantitative
and qualitative actual investigation and analysis and social experiments under
certain conditions. These traditional methods cannot avoid many practical
limitations, such as the budgetary cost of conducting social surveys and
experiments, the difficulty of obtaining data resources, and even ethical and
moral constraints. Due to these limitations and difficulties, multiagent system
(MAS) simulation and artificial intelligence methods are utilized to assist
traditional social investigation and analysis. Even for some social experiments
that cannot carry out by ethical or moral restrictions, a well-designed
simulation can provide a certain degree of reliable results or help to do
counterfactuals in social experiments.
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Considering the high complexity of human behavior patterns, we choose a
simple but fundamental human behavior — assortative matching — for our social
experiments. The matching theory has essential applications in social and
economic fields, e.g., labor market, industry planning, and international trade.
This study was inspired by a coupling game conceived by Dan Ariely [I], who
claimed and guessed that the result would be an equal matching when single
men and women play such a coupling game under specific rules, without
experimenting.

We design and implement simulation experiments with multi-agent systems
and machine learning methods, which verify the common-sense-based equal
matching. In the designed virtual environment, our policy-based reinforcement
method improves strategies to enable some agents to obtain competitive
advantages over others. The experiments examine the transformation
conditions of these competitive advantages and the transformation process,
which are essential to the evolving dynamic of social communities.

2 Related Works

Policy-based reinforcement learning is a subfield of reinforcement learning
focused on developing algorithms for learning control policies to manage agents
in complex environments. The application of policy-based reinforcement
learning to assortative matching in human behavior modeling is a relatively
new research area.

This area of research emerged in the 2010s, when computer scientists and
computational social scientists explored the use of reinforcement learning
techniques to model and predict relationship formation in large-scale social
networks. Early work focused on developing algorithms that can influence
relationship formation by incentivizing individuals to form relationships with
others who are similar to themselves in specific characteristics.

The use of deep neural networks in reinforcement learning was introduced
by Mnih et al. from Google DeepMind [2]. In 2015, the same research group
introduced the Deep Q-Network (DQN) algorithm [3], which uses deep neural
networks to approximate the action-value function. The algorithm
demonstrated superhuman performance in many Atari games. In 2016, the
Asynchronous Advantage Actor-Critic (A3C) algorithm [4] was introduced,
which uses multiple parallel actors to interact with the environment and reduce
the time needed for convergence.

Since then, the field has developed new policy-based reinforcement learning
algorithms for assortative matching in online social networks, online dating
platforms, and mobile communication networks. These algorithms have been
applied to real-world data and provided new insights into the factors that
shape relationships and social networks.

The Trust Region Policy Optimization (TRPO) algorithm was introduced
by Schulman et al. of OpenAl [5], which uses a trust region constraint to ensure
stable updates to the policy. The Proximal Policy Optimization (PPO) algorithm
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[6] was introduced in 2017, which combines ideas from policy gradient methods
and trust region methods to provide a flexible and computationally efficient
approach to policy optimization.

Recent research has explored the use of deep reinforcement learning
techniques for policy-based assortative matching, which can improve the
performance of algorithms and address challenges associated with traditional
reinforcement learning algorithms.

However, limited research applied policy-based reinforcement learning to
assortative matching in human behavior modeling, a multidisciplinary field
combining economics, sociology, and computer science techniques to study the
factors that shape relationships and social networks. Most researches in this
field have been based on analytical and computational models rather than
reinforcement learning approaches.

3 Methods

This study presents a novel reinforcement learning algorithm, the Multi-Head
Attention Asynchronous Advantage Actor-Critic (MA-A3C) algorithm, shown in
Fig[l] This approach integrates the Multi-Head Attention mechanism with the
classic Asynchronous Advantage Actor-Critic (A3C) algorithm and is specifically
designed to address assortative matching problems in reinforcement learning.
Given the inherent complexities of human behavior patterns, the proposed MA-
A3C algorithm provides a more effective solution for modeling these patterns.
Additionally, the algorithm demonstrates scalability and has the potential for
more comprehensive applications in research domains involving human behavior
modeling.

The A3C algorithm is a widely recognized multi-agent reinforcement learning
(MARL) technique that incorporates the actor-critic framework and parallel
computing. This multi-agent model is particularly well suited for simulating
human behavior, as it employs multiple parallel processing units to learn a policy
asynchronously, thus enabling more efficient state space exploration.

Adding the MA-A3C algorithm can improve its performance. This is because
the Multi-Head Attention function enables the algorithm to attend to different
state space elements more flexibly and in a more fine-grained way. Multi-Head
Attention is a common technique in deep learning that allows for creation of
multiple attention mechanisms that can be applied to different input elements.

In reinforcement learning, Multi-Head Attention can be used to enable the
A3C algorithm to attend to different states based on their relative importance.
This can help improve the efficiency of the learning process by enabling the
algorithm to focus on the most important elements of the state while ignoring
the less important ones.

3.1 Multi-Head Attention Function in A3C Algorithm (MA-A3C)

Let S be the state representation, W; be the weight matrix for the i*” head, and
b; be the bias vector for the i head. The attention scores for the i** head can
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Fig.1. Multi-Head Attention Asynchronous Advantage Actor-Critic (MA-A3C)
network structure. The left section shows the general structure of MA-A3C. The right
expand section shows the details of the multi-head attention mechanism.

be calculated as the dot product of S and W; with softmax normalization: a; =
softmax(S - W; + b;). Next, the attention scores are used to weight the features
of the state representation: S; = a; - S. Finally, the weighted features from
each head are concatenated to produce the final enhanced state representation:
Stinal = [S1,52, ..., Sg], where H is the number of heads. The enhanced state
representation is then passed to the policy network to determine the action.

3.2 General Procedures of MA-A3C Algorithm

(1) Enhancing state representation The state of the environment can be
represented as a vector of features. This representation can be enhanced using
normalization, dimensionality reduction, and feature selection techniques. Let
x; € R™ be the state of the environment at time ¢, and let z; € R™ be the
enhanced representation, where m is the number of features after enhancement.
The enhancement process can be expressed as z; = f (), where f(-) implements
normalization, dimensionality reduction, and feature selection techniques.

For instance, normalization can be performed using the mean and standard
deviation of the features. Dimensionality reduction can be achieved using
principal component analysis (PCA) or singular value decomposition (SVD)
techniques. Feature selection can be performed by selecting the most important
features based on some criteria.
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(2) Calculating attention scores To compute attention scores for each head,
we can use various methods such as dot product attention, scaled dot product
attention, or MLP attention. Let 't € R™ be the state representation and let
h be the number of heads. The attention scores for each head can be calculated
as a set of scalar values a; 1, at 2, ..., at,m, which indicate the relative importance
of each feature in the state representation.

The dot product attention method can be used to calculate attention scores,
where a; ; = (2't, j)T - wj, and x4 ; is the jtP feature of the state representation
x;, and w; is the weight vector associated with the jth feature.

The attention scores are used to weight each head’s state representation
features. The weighted features can then be combined to form a context vector
representing the state’s multi-head attention representation. Alternatively,
scaled dot product attention or MLP attention can be used for calculating the
attention scores.

(3) Normalizing attention scores In the A3C algorithm with multi-head
attention function, attention scores are typically normalized using a softmax
function to ensure that they sum to 1. This enables the attention mechanism to
focus on the most significant parts of the state representation while ignoring the
less important ones.

Let a; = [at1,a4,2, -, arm] be the vector of attention scores for time step t.
The normalized attention scores can be calculated using the softmax function
expressed in Eq[]

exp(at)
S explary) W

The softmax function maps a vector of real numbers to a probability distribution,
ensuring that the attention scores sum to 1, i.e., Z;ﬂzl pej = L.

Normalizing the attention scores allows the A3C algorithm to dynamically
weight the features in the state representation based on their importance,
resulting in a more effective representation of the state. The attention
mechanism can focus on the most important parts of the state representation
while ignoring the less important elements, which can improve the performance
of the policy-based reinforcement learning algorithm.

pt = softmax(a;) =

(4) Weighting features The attention scores are used to weight the features
of the state representation. The weighted features are combined using a linear
transformation to produce a new, enhanced state representation.

Let s; = [s1,1,5¢t,2,-.,St,n] be the state representation at time step ¢, and
P = [Pe1, P2, - Di.m] be the corresponding normalized attention scores. The
weighted state representation can be calculated by Eq[2]

m
2= Dy sty (2)
j=1
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This weighted state representation dynamically emphasizes the most
important features of the state while ignoring the less important ones. The
weighted state representation can then be fed into a neural network or machine
learning model for further processing. This results in a more effective
representation of the state that can be used for decision-making in the
policy-based reinforcement learning algorithm.

(5) Passing enhanced state to policy network The process of calculating
attention scores, normalizing the scores, weighting the features, and passing the
enhanced state to the policy network is repeated for each head. This allows the
policy network to attend to different parts of the state space using multiple
fine-grained attention mechanisms.

Let 6 be the parameters of the policy network and fy(z;) be the function
representing the policy network that maps the enhanced state representation z;
to a set of actions. The policy network can be formulated as Eq[3]

ar = fo(zt) 3)

where a; = [ay1,a4,2, ..., ar k] s the vector of actions output by the policy network
for time step t¢.

The policy network can be trained to maximize a reward signal that reflects
the elements’ performance in the environment.

The enhanced state representation is fed into the policy network, which
outputs a set of actions that can be taken by the elements in the environment.
This results in a more effective representation of the state and improved
decision-making in the policy-based reinforcement learning algorithm.

(6) Multi-head attention To enable the policy network to attend to
different parts of the state space using multiple fine-grained attention
mechanisms, we repeat the process of calculating attention scores, normalizing
the scores, weighting the features, and passing the enhanced state to the policy
network for each head.

Let H be the number of heads in the multi-head attention function, and
h € 1,2,..., H be the index for each head. For each head h, we calculate the
attention scores, ayp = [ n,1,Qt 12, .-, Qhn], using a method such as dot
product attention, scaled dot product attention, or multi-layer perceptron
attention. We then normalize the attention scores using the softmax function
to obtain the normalized attention scores by Eq[d]

B, = softmax(av ) (4)

We then  weight the features of the state representation,
St = [St,1,5t,2, ..., St,n], using the normalized attention scores to obtain the
weighted features by Eq[f

n
Zt.h = Zﬂt,h,ist,i (5)
i=1
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Finally, we obtain the enhanced state representation for each head by
concatenating the weighted features for each head. That Iis,
zy = |21, 2,2, .., 2,1, and this enhanced state representation can then be
passed to the policy network to produce a set of actions, a; = fo(zt).

This process of applying the multi-head attention function in the A3C
algorithm is repeated for each head to allow the policy network to attend to
different parts of the state space using multiple fine-grained attention
mechanisms.

(7) Updating policy network The policy network is updated using the
gradient of the policy objective, which is calculated using the observed rewards
and estimated state values. The policy objective is defined as the difference
between the expected return and the estimated value of each state, and the
gradient of this objective is used to update the policy network.

Let J(0) be the policy objective, where 6 is the set of parameters of the policy
network; R; is the reward observed at time step t; V(s;;¢) is the estimated
value of state s;; v is the discount factor; and ¢ are the parameters of the value
function.

The expected return from state s; is given by Eql] .

Gr=Ri+7-V(siz1;0) +7° - V(siya; ) + ... (6)

The policy objective is the negative logarithm of the policy, weighted by the
advantage function, and is given by Eq[7]

T
J(0) = _% > log ma(ar|si) A (7)

where mg(as|s¢) is the policy network, and A; = Gy — V(s4;¢) is the advantage
function. The gradient of the policy objective concerning the parameters of the
policy network is given by Eq[§|

T
1
VoJ(0) = —Tzvtglogwe(aﬂst)/lt (8)

t=1

This gradient is used to update the parameters of the policy network using
the Adam optimization algorithm, a variant of stochastic gradient descent. The
value function is updated using the mean squared error between the observed
returns and the estimated returns.

The policy network is updated iteratively until convergence, at which point
the policy network has learned an optimal policy for mapping states to actions.
The A3C algorithm has been shown to achieve state-of-the-art performance on
a range of benchmark reinforcement learning problems.
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4 Experiment and Discussion

4.1 Experimental Environment

Assortative matching games are fundamental games that combine both
competition and cooperation. In this study, we develop a simulation model,
shown in Fig[2] using Netlogo (https://ccl.northwestern.edu/netlogo/) based
on the "love coupling” idea introduced by Dan Ariely [I]. The model includes a
set of basic strategies to simulate human behavior, with the simulation
consisting of a population of male and female agents (default=25 each gender)
divided into control and experimental groups. The control group only employs
the basic strategies predefined in the model, while the experimental group can
accept strategy optimization from the python-based MA-A3C reinforcement
learning engine during the simulation, shown in Fig[3]

Python NetLogo Python Netlogo
environment environment
(Initialization)
¢ i pyNetlogo
‘ NetLogoLink ‘ ‘ NetLogo API ‘ Dataframe - Agents
(Interaction)
¢ i Behavior
‘ JPype F—{ NetLogoLink ‘ MA-A3C Policy
Engine .
& Linux
Python Java
(a) Environment concept (b) Implementation structure

Fig. 2. Environment construction. (a) Environment concept shows the Multi-agent
Reinforcement Learning (MARL) environment concept using Netlogo and Python. (b)
Implementation structure shows the MA-A3C engine embedded system implementation
structure in this study.

4.2 Experiment Design

4.2.1 General Rules for Agents

Each agent has a unique numerical label (default value in the range [0,24]) and
moves within a predefined activity space, searching for agents with higher
numerical labels within their visual range. Agents can request pairing with
others who accept or reject based on individual strategies. If pairing is
successful, the reward value is equal to the sum of the numerical labels of both
agents, which is shared equally by the successful agents. The aim of all agents
is to obtain higher rewards.
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(a) Initial state 7 (b) Matching completed state

Fig. 3. Screenshots of the simulation are presented above, starting from the initial
state and continuing until the end of the specified time step duration. The blue icons
represent ’Male’ agents, and the pink icons represent 'Female’ agents. The agents act
according to their own policies within a limited space.

4.2.2 Evaluation Criteria

The control group serves as a baseline for the study, representing the
simulation pairing results without external intervention. The experimental
group evaluates whether the MA-A3C reinforcement learning can achieve
better-matching results, including whether the agents in the experimental
group can successfully match with opposite-sex partners with higher numerical
labels compared to those in the control group with the same numerical label.
The agents in the experimental group serve as MA-A3C reinforcement learning
workers, with their policy network adopting few steps update method and their
global network adopting a round-based update method. This study explores
the effectiveness of reinforcement learning algorithms in improving assortative
matching game outcomes and provides valuable insights into the potential
applications of reinforcement learning in social simulation.

4.2.3 Initial Policies and Learnable Variables

For all agents, the following initial strategies are adopted.

Move policy The agent selects a target. The target is the opposite-sex agent
with the highest numerical label that has not yet successfully paired within the
agent’s visual range and whose label is not the most recent one in the ’'being
declined list’ (to avoid the excessive pursuit of the same potential partner). If
there are no eligible targets, the agent moves randomly.
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Offer policy The agent sends a pairing offer if the target is within a distance
of three steps. At this point, both the sender and the recipient of the offer pause
their movement. The recipient of the offer decides to accept or decline based on
their decline and accept decision policy.

Decline policy For the first n offers received, the agent declines them
unconditionally and records the sender’s label in their own ’decline list’. The
sender of the declined offer records the label of the target in their ’being
declined list’. For offers received after the first n, if the sender’s label is lower
than the maximum value in the ’decline list’, the offer is declined.

Accept policy For the first n offers received, the agent does not accept any of
them. For offers received after the first n, if the sender’s label is greater than or
equal to the maximum value in the ’decline list’, the offer is accepted, and the
matching is completed.

Policy optimization Different experimental conditions were applied to the
control and experimental groups during the game. The control group remained
with the same initial policies and underwent no stochastic changes. In contrast,
the experimental group underwent policy optimization, with their learnable
variables, such as move direction, first decline n, decline list, and being
declined list, updated accordingly.

4.3 Experiment Result

Simulation Result of Control Group (Baseline) Based on the evaluation
criteria described in Section 4.2.2, the experiments simulated the results of all
agents in the control group. The goal was to analyze how equal matching was
affected by different conditions, especially the view range of the agents. As shown
in Table[T] a larger view range led to more equal matching. In other words, if
some agents in the experimental group were able to match with partners whose
numerical labels had a higher-than-average gap, it indicated that the MA-A3C
algorithm was effective.

MA-A3C Reinforcement Learning for Policy Optimization The results
of the baseline experiment showed that equal matching was relatively better
with a view range of 25, making it appropriate to conduct a mixed experiment
with a control and experimental group. We introduced an experimental group
(optimized by the MA-A3C reinforcement learning) to examine how much
assortative matching changed under this condition. We used the same 50x50
space and agent initialization, similar to the baseline experiment. The only
difference was that we selected the smallest 10 labels (i.e., labels in [0, 9]) of
male and female agents as the experimental group, which was tested within the
same time step duration. After the matching was completed, compared to the
baseline, the absolute difference of each pairing increased from 1.02 to 7.09,
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Table 1. Baseline results of assortative matching on different view ranges

View Trial Ttrials

Abs. label diff. range #1 #2 #3 #4 #5 Avg.
Avg. label diff. 5 8.80 8.40 7.56 7.44 6.36 7.71
Standard deviation 5.94 5.88 5.93 6.19 4.70 5.73
Avg. label diff. 15 7.28 3.84 2.96 2.76 5.36 4.44
Standard deviation 6.41 3.31 3.22 3.41 3.76 4.02
Avg. label diff. 25 0.96 0.88 0.64 0.84 1.76 1.02
Standard deviation 1.14 1.01 0.95 1.28 1.56 1.19
Note: Abs. label diff.: Absolute label difference of paired agents.

Avg. label diff.: Average of Abs. label diff.

and the variance from 1.19 to 5.80. This indicates that the experimental group
agents with smaller label values increased their competitiveness after policy
optimization and could match with partners with larger label values. Table[2]
shows the detailed results of the experiment conducted five times.

4.4 Discussion

In our experiments, we found that view range had the most significant effect on
the absolute deviation of matched pairs, as shown in Table[l] In a non-sparse
space, a larger view range typically means more information can be obtained.
This information represents potential competitive advantages for agent actions.
Individuals with wider fields of view have more reference points for their
behavior when they obtain more external information, enabling them to
leverage their potential competitive advantages. This characteristic is also
reflected in macrosocial and economic behavior, where increased information
flow is conducive to better resource flow and matching.

Although the control group and experimental group had the same view
range and were in the same environment, the agents in the experimental group
had more competitive advantages through the MA-A3C optimization strategy.
Specifically, the agents in the experimental group are the ”workers” in the
policy algorithm. The global network selectively learns their actions and policy
experiences in the local environment. This selection is achieved through the
multi-head attention mechanism. The experimental results show that not all
agents in the experimental group performed well every time. Due to many
objective random factors in the environment, a good action result is likely due
to luck rather than strategy. Therefore, although the multi-head attention
mechanism cannot completely filter and exclude this random luck, it can
effectively give more attention to factors less affected by randomness during
learning.

From the prior knowledge of the Secretary problem[13] in human behavior
analysis, we know that the optimal cutoff tends to n/e as n increases, and the best
applicant is selected with probability 1/e. The MA-A3C engine can also obtain
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Table 2. Simulation results of the control group and experimental group in five trials
(view range = 25).

Trial #1 #2 #3 #4 #5

Rough steps

Female Male Female Male Female Male Female Male Female Male

10 19 5 22 18 22 14 16 7 14 19
24 22 13 12 23 13 18 19 19 17
20 14 18 24 24 22 19 24 12 21
16 23 10 21 15 16 14 21 23 4
100 21 24 20 20 21 3 15 23 16 12
7 20 15 5 19 1 22 15 11 15
17 21 23 6 17 2 13 18 12 1
1 17 16 16 13 15 5 20 15 6
2 16 11 11 18 24 20 11 18 18
200 5 15 19 17 16 12 23 17 22 9
18 8 17 21 14 7 4 20 24 13
15 7 24 6 11 17 24 1 17 14
22 5 1 14 2 20 11 12 21 5
23 2 21 10 1 11 3 16 8 24
300 13 11 8 15 20 10 21 5 20 3
11 15 4 13 12 8 2 9 2 10
0 2 7 8 4 21 12 10 10 8
14 10 14 9 10 9 10 8 9 20
8 3 9 7 9 19 8 4 7 7
400 10 9 12 5 6 5 7 3 5 11
9 6 6 1 5 4 9 6 4 2
4 1 3 4 8 23 17 7 0 16
6 4 2 1 7 18 0 2 6 5
12 0 5 2 3 6 6 3 3 0
500 3 3 0 0 0 0 1 0 1 2
C.Gr.Avg.Diff. -2.63 -1.90 -1.80 -1.07 -2.73 -2.07 -1.90 -1.57 -3.00 -1.80
E.Gr.Avg.Diff. 210 470 1.00 3.30 4.10 3.10 190 3.30 2.60 4.60
Avg. label diff. 7.32 5.52 7.92 7.16 7.52
STD deviation 5.84 5.32 6.13 5.69 6.02

Note:

C.Gr.Avg.Diff.: Control group average difference of paired agents.
E.Gr.Avg.Diff.: Experimental group average difference of paired agents.
represents the outstanding agent in experimental group,
which gains a higher label partner than group average.
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similar experiences in repeated reinforcement learning, thereby improving the
agent’s initial setting of n.

From the records of the experimental group’s target selection, we found that
sometimes agents follow the same-sex agents with high label values instead of
the high label values of the opposite-sex agents in the conventional strategy.
Opposite-sex agents favor same-sex agents with high label values, and following
them may have more opportunities to interact with high-label value opposite-sex
agents. Similar wisdom can also be found in human behavior patterns. Education
can be understood as students following teachers to a certain extent.

5 Conclusion

In most environments handled by reinforcement learning, such as Atari2600,
the agent’s and environment’s relationship is independent. However, in human
behavior modeling, the association is more complex and richer.

This paper chose a fundamental human behavior pattern in which the agent’s
actions entirely determine the environment. The results of this modeling imply
similar phenomena of human behavior in the real world. For example, under the
economic man hypothesis, follow-up and collaborative strategies are the dynamic
basis for forming an entrepreneurship and management team. In this study, we
propose the MA-A3C algorithm, which combines the A3C algorithm with the
multi-head attention mechanism to optimize the policy of a small number of
agents in the experimental group and break the balance of equal matching.

From the experiment, we realized that equal matching is likely a specific
manifestation of the Nash equilibrium in human behavior patterns. However,
the underlying game mechanism requires further in-depth study in future
research. Learning to act in multi-agent systems has received attention
primarily from game theory, focusing on algorithms that converge to the Nash
equilibrium. Reinforcement learning, on the other hand, focuses on acting
optimally in stochastic scenarios. The learning process of systems of intelligent
interacting agents is highly complex due to the complexity of single-agent
learning combined with their communications and networked information
dynamics, which is a topic for future work.
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