
Modelling DDoS Attacks in IoT Networks using Machine
Learning

Pheeha Machaka1, Olasupo Ajayi2,*, Hloniphani Maluleke 2, Ferdinand Kahenga2,
Antoine Bagula2, Kyandoghere Kyamakya3

1 Department of Computer Science, University of South Africa, Pretoria,
Gauteng, South Africa.
2 ISAT Lab, Department of Computer Science, University of the Western
Cape, Cape Town, South Africa.
3 Institute for Smart Systems Technologies, Transportation Informatics
Group, Alpen-Adria Universität Klagenfurt, Klagenfurt, Austria.

* olasupoajayi@gmail.com

Abstract

In current Internet-of-Things (IoT) deployments, a mix of traditional IP
networking and IoT specific protocols, both relying on the TCP protocol, can be
used to transport data from a source to a destination. Therefore, TCP-specific
attacks, such as the Distributed Denial of Service (DDoS) using the TCP SYN
attack, are one of the most plausible tools that attackers can use on
Cyber-Physical Systems (CPS). This may be done by launching an attack from its
IoT subsystem, here referred to as the “CPS-IoT”, with potential propagation to
the different servers located in both fog and the cloud infrastructures of the CPS.
This study compares the effectiveness of supervised, unsupervised, semi-supervised
machine learning algorithms, as well as statistical models for detecting DDoS
attacks in CPS-IoT, particularly during data transmission to and from the
physical space to the cyber space via the Internet. The models considered are
broadly grouped into three: i.) ML-based detection - Logistic Regression (LGR),
K-Means, and Artificial Neural Networks (ANN) with two variants based on traffic
slicing. We also looked into the effectiveness of semi-supervised hybrid learning
models, which used unsupervised K-Means to label the data, then fed the output
to a supervised learning model for attack detection. ii.) Statistic-based detection -
Exponentially Weighted Moving Average (EWMA) and Linear Discriminant
Analysis (LDA). iii.) Prediction algorithms - LGR, Kernel Ridge Regression
(KRR) and Support Vector Regression (SVR). Results of simulations showed that
the hybrid model was able to achieve 100% accuracy with near zero false positives
for all the ML models, while traffic slicing traffic helped improved detection time;
the statistical models performed comparatively poorly, while the prediction models
were able to achieve over 94% attack prediction accuracy.

Anomaly detection; Distributed Denial of Service; Internet of Things; Machine
Learning; Regression analysis.

1 INTRODUCTION

The Internet of Things (IoT) provides a platform that allows objects to connect and
communicate with one another using devices that can sense, identify and locate “things”
in their surroundings, in order to better comprehend happenings in their environment.
IoT devices are used for autonomous and intelligent tasks in residences, retail outlets,

1/20

ar
X

iv
:2

11
2.

05
47

7v
2 

 [
cs

.D
C

] 
 2

0 
Ju

n 
20

22



office buildings, transportation [1], agriculture, healthcare [2, 3], and manufacturing
plants, among other places. The IoT market is growing at an exponential rate and is
estimated to have grown to over 41 billion devices by 2027. Recently, the IoT has also
expanded its reach beyond terrestrial networks by using drones [4] to complement the
services delivered by semi-static IoT networks located on the ground [5, 6]. The security
of the complex network infrastructure resulting from the combination of terrestrial and
airborne nodes, which use devices designed to operate in settings with limited resources
(computing power, storage capacity, battery), is a challenging issue that requires
incorporating security principles into different layers of the IoT protocol stack. For
example, attacks such as Denial of Service (DoS) or Distributed DoS (DDoS) can be
launched at the network, transport or application layers of the Internet stack, to easily
compromise IoT devices [7] when such devices run routing protocols that use these
layers for the transport of sensor readings, as illustrated on Table 1.

Table 1. IoT Specific Protocols

Protocol Underlying
Protocol

Architecture DDoS
Prone

Ref.

AMQP (RabbitMQ) TCP Publish/Subscribe Yes [8]
CoAP UDP Request/Response No* [9]
DDS TCP Publish/Subscribe Yes [10]
MQTT TCP Publish/Subscribe Yes [11]
XMPP TCP Both Yes [12]

Table 1 shows some IoT, and/or message telemetry specific protocols, including
Message Queuing Telemetry Transport (MQTT), Extensible Messaging and Presence
Protocol (XMPP), Advanced Message Queuing Protocol (AMQP), and their
corresponding underlying protocols. The table shows that protocols with
publish/subscribe architecture rely on TCP protocol for data telemetry, and are thus
susceptible to DDoS based TCP SYN attacks. It is important to note that though
Constrained Application Protocol (CoAP) does not run on TCP, it is still vulnerable to
DDoS attacks such as UDP Flood.

Cyber Physical Systems IoT subsystem (CPS-IoT) [13], such as that shown in Fig. 1,
rely on a mix of traditional IP networks and IoT specific protocols to move data from
devices (physical and virtual sensors, actuators, edge devices and gateways) to / from
the Cloud. An IoT specific protocol, such as MQTT or AMQP, is used for message
telemetry between device(s) and the Fog infrastructure, as shown in Fig 1; while an IP
protocol, such as the HyperText Transfer Protocol (HTTP), is used between the Fog and
Cloud infrastructures. While both protocols (MQTT and HTTP) belong to different
stacks, they are both guided by the TCP protocol in transporting data from source to
destination. Hence, DDoS attacks such as the TCP SYN can be plausible tools that
attackers use to mislead the operation of CPS and potentially cause critical damages.

Having shown through Fig. 1 and Table 1 that CPS-IoT data telemetry protocols
mostly run on TCP/IP - HTTP (TCP port 80 or 8080) and MQTT (TCP port 1883 or
8883) [11] or AMQP (TCP port 5671 or 5672) [8] - we now focus on modelling DDoS
attacks on the underlying TCP/IP network layer in the rest of this paper.

Due to the Internet’s phenomenal development over the last few decades, attackers
now have access to a growing number of vulnerable devices and often use the IoT
subsystem of CPS (where these devices are located) to launch vicious attacks that can
adversely affect the CPS as a whole. For instance, an attacker may use a large number
of these susceptible devices to initiate an attack on a server located in a Fog close to the
devices or in a Cloud infrastructure located far away. These attacks often have various
modes of intensity, with attacks that are perpetrated with low intensities, often able to
evade detection by current detection techniques.

2/20



Figure 1. A Generic CPS-IoT Subsystem

Through this research we explore the application of machine learning (ML) models,
including classification and prediction, to model DDoS attacks, specifically SYN attacks
in IP networks, such as those upon which CPS-IoT subsystems are built. A potential
use case of our research is in sensor virtualization in CPS-IoT systems. In this use case,
virtual sensors are located in the Fog or Cloud infrastructure to enhance real sensors
with the capability of differentiating and classifying incoming traffic into genuine or
bogus traffic in real-time. This discerning ability is a key requirement for the efficient
operation of next generation CPS, where security would be paramount. The selection of
the most efficient algorithms for the classification of the sensor data traffic and the
prediction of future attacks on the CPS-IoT are other key requirements for ensuring the
safe operation of CPS infrastructures. However, these processes are beyond the scope of
this work.

The specific contributions of this work include:

• Comparison of the efficiency of supervised, unsupervised, semi-supervised ML
models and statistical models in modelling DDoS attacks, in a bid to distinguish
between safe and adversarial network traffic.

• The development of a semi-supervised learning model, capable of auto-labelling
traffic and using the labelled traffic to accurately identify malicious traffic. This is
achieved by hybridizing supervised and unsupervised machine learning models.

• Determining the impact, if any, of splitting network traffic into window sizes
versus using the entire traffic stream in detecting malicious attacks.

• Exploring the effectiveness of regression models in predicting potential DDoS
attacks, in a bid to move the safety of IP networks from reactive to proactive.

The rest of the paper is structured as follows, related literature are reviewed in
Section 2, while our research methodology is presented in Section 3. Section 4 gives
details of our implementation process and obtained results, while Section 5 concludes
the paper and gives insights into potential future research directions.

3/20



2 Literature Review

The first DDoS assault on the public Internet happened in August 1999 [14]. In
February 2000, a year after the initial event, several commercial websites, including
Yahoo, CNN, and eBay, saw their first DDoS attacks. A high number of requests
overloaded these websites, forcing their services to go offline which resulted in
considerable financial losses. The July 4 2009 cyber-attacks are well-known examples of
DDoS attack, where prominent government, news media, and financial websites were
targeted in a series of cyber-attacks across South Korea and the United States [15].
These attacks caused service interruptions and the loss of millions of dollars each hour
while companies were fighting to restore their Internet services.

Parallel to the attackers’ mode of operation becoming more sophisticated and with
global reach, researchers have been investigating and developing defence mechanisms
against DDoS attack. There are various types of defence mechanisms that have been
developed so far and are broadly classified as signature-based or anomaly-based
detection systems.

Signature-based detection systems try to create a collection of templates (signatures
or rules) that may be used to determine if a particular network traffic pattern
represents an intrusion. If the attack falls into one of the attack classes specified in the
database, it can be effectively detected or recognized. As a result, signature-based
systems are capable of detecting known intrusions (patterns) with high accuracy and a
low number of false positives. However, they perform poorly in detecting novel /
unknown attacks or variations of existing attacks [16].

The limitations of signature-based intrusion detection motivated the development of
anomaly-based detection systems. Anomaly-based intrusion detection systems (ABIDS)
are concerned with detecting occurrences that appear to be out of the ordinary in terms
of system behaviour. When a divergence from regular traffic behaviour is noticed, an
attack is reported. ABIDS seek to distinguish between regular network activity and
abnormal network activity. This is accomplished by developing a ”normal system
profile” based on previous data, which serves as a baseline. They then monitor for
activities that are substantially different from this baseline. ABIDS are able to detect
variations in ”normal” network traffic patterns, such as sudden spikes, as possible DDoS
attacks. Statistical characteristics can also be used, such that a sudden shift in variance
or standard deviation can be flagged as potential attack(s) [17].

In works relating to security of IoT, the authors in [18] surveyed IoT related security
challenges and potential solutions for attacks such as DoS. In [19], a multi-layer defence
mechanism was proposed for securing IoT data transmission between sensor nodes and
gateways in rural communities with limited Internet access. In [13] mathematical
epidemiology was employed to monitor the safety and dependability of CPS-IoT
systems. The authors built an orchestration model to monitor inbound traffic and make
necessary adjustments to the actuation process. Furthermore, a protocol for node
reconfiguration of the IoT sensor network during periods of attack was also proposed.
In [20] IoT related attacks were split into four major categories, viz.: physical attacks,
including tempering, radio frequency interference, and DoS at the perception layer;
network attacks, including man in the middle attack, replay attack and network layer
[D]DoS attacks; software attacks, including malwares and viruses; and data attacks,
including data breach and unauthorized access.

Detection methods based on various models and theories have been developed in the
DDoS attack detection research community. The three key technologies that form the
basis of the majority of today’s detection techniques are machine learning (ML),
information theory, and statistical models [21]. Artificial Neural Networks (ANN),
support vector machine (SVM), and other ML techniques in cybersecurity are helpful
for decision making analysis [22]. The paragraphs that follow highlight some of the

4/20



related work in application of ML to DDoS attack detection.
Ali et al. [23] developed an ANN-based ML strategy for detecting DDoS attacks.

The backpropagation strategies employed by the ANN were Bayesian Regularization
(BR) and Scaled Conjugate Gradient (SCG). The approach effectively detects DDoS
attacks with an accuracy of up to 99.6% using BR and 97.7% using SCG
backpropagation algorithms. In [24] the authors created a system for detecting
numerous large-scale IoT attacks in sequential order. They proposed using different
specified classifiers for each attack type instead of a single classifier. For
experimentation, they presented a single-layered ANN using publicly available datasets.
They used a series of ANN models to detect specific assault types and were able to
achieve 99% accuracy by using the sigmoid function. In order to detect DDoS attacks,
the authors in [25] proposed combining feature selection with an ANN MLP (multilayer
perceptron) model. This strategy was used to choose the best features during the
training phase, and they created a feedback system to reconstruct the detector when
significant detection faults were detected dynamically. With a 98% accuracy rate, the
proposed methodology proved effective.

Ref. [26] proposed a supervised learning anomaly detection model that combines a
Radial Basis Function (RBF) kernel with a C-support optimizer (c-SVM) to
differentiate between benign and malicious traffic data. With Blackhole and Sinkhole
attacks, the model was 100% accurate, whereas with other attack types, it was 81%
accurate. However, the researchers did not compare the outcomes of their experiment
with those of other ML models. Chaudhary et al. [27] also suggested a ML technique for
detecting DDoS assaults that involved filtering crucial network packet parameters such
as packet size and interval size. SVM, Random Forest, Decision Tree, and Logistic
Regression were used and Random forest surpassed the other models with a DDoS
attack detection accuracy of 99.17%. In [28] a method for detecting DDoS attacks using
the SVM classifier was proposed. The SVM classifier had a 0.8% false alarm rate and a
classification accuracy of 95.11%. In [29], the authors used flow features of network
traffic, such as packet size, packet interval, protocol, bandwidth, and destination IP, to
construct a model to detect DDoS attacks. They used SVM, K-Nearest Neighbour
(KNN), Random Forest, Decision Tree, and ANN in their models. The results of the
experiment showed that Random Forest and ANN have 99% accuracy in detecting
malicious traffic.

For detecting DDoS attacks in Software Defined Networks (SDN), [30] employed
SVM, KNN, ANN, and Naive Bayes. Initially, the authors specified twelve features, but
the algorithms chose a subset of these features based on threshold values. The
algorithms analyzed flow traffic data and detected DDoS with 98.3 % accuracy. In a
similar study done in [31], ANN, SVM, Logistic Regression, KNN, Gaussian Naive
Bayes, Bernoulli Naive Bayes, Multinomial Naive Bayes, Decision Tree (entropy-gini),
and Random Forest algorithms were all investigated for DDoS attack detection. They
looked at data from twelve different aspects and discovered that only a small fraction of
them, such as cumulative count and descriptive statistics, was enough to detect a DDoS
attack. In their tests, they discovered that the SVM algorithm had the highest accuracy
rate of 99.7%. Ref. [32] used 23 traffic flow features to look into DDoS attack detection
in SDN. They employed the Neighbourhood Component Analysis (NCA) to determine
the most important flow data characteristics for the pre-processing and feature selection
stage. Following that, they classified DDoS attacks using the KNN, Decision Tree (DT),
ANN, and SVM algorithms. They discovered 14 features to be important in their
findings, and the DT algorithm was able to attain 100% detection accuracy. Authors
in [33] used KNN, SVM, decision tree (DT), näıve Bayes (NB), Random Forest (RF),
ANN, and logistic regression (LGR) algorithms to explore the detection of DDoS
attacks in IoT networks. Their research looked into the effectiveness of algorithms for

5/20



binary and multi-class classification. They also tested the algorithms’ performance
against a weighted and non-weighted Bot-IoT dataset. For non-weighted datasets, their
testing revealed that the RF algorithm has a 99% accuracy. The ANN performed better
in binary classification accuracy on weighted datasets. KNN, on the other hand,
surpassed other ML algorithms in multi-class classification, with an accuracy of 99%,
which is 4% higher than RF.

The accurate and timely detection of DDoS attacks remains a priority for researchers
in the field of cybersecurity, however, attackers keep modifying and developing new
attacks in order to evade detection techniques. In this research study we distinguish
between normal and DDoS attack network traffic and compare the performance of
supervised, unsupervised, and semi-supervised machine learning techniques.
Additionally, the efficacy of two approaches for forecasting possible DDoS attacks was
investigated. In the section that follows, we will provide a detailed account of the
methodological approach followed in this study.

3 Methodology

Fig. 2 gives an overview of the proposed system with major components being data
pre-processing, supervised learning, semi-supervised learning, unsupervised learning and
prediction. Each of these components described as follows:

Figure 2. General System Architecture

3.1 Data Pre-processing & Labelling

For this work, we used the DAPRA IDS evaluation dataset [34], which was prepared by
the MIT Lincoln Laboratory under DARPA and AFRL sponsorship. We used this
dataset because we had earlier inferred that IoT systems have an underlying IP network
upon which they run, hence still vulnerable to classic IP attacks such as DDoS. The
tcpdump format was used, wherein all network activities, including the whole payload of
each packet, were recorded and supplied for assessment. The data used in these

6/20



evaluations were sniffed network traffic, Solaris BSM audit data, and Windows NT
audit data. Finally, the test network was made up of a mix of real and simulated
machines, with the real and simulated machines artificially generating background
traffic while the attacks were carried out on the real machines.

We processed the raw dataset by writing a Python script to count the number of
network packets that arrived at a given host per 10 second interval. We used this as the
base line each 10 second block as zero (0), corresponding to no DDoS attack [35]. We
then introduced malicious attacks to the dataset by manually increasing the number of
packets arriving in randomly selected intervals. We labelled these as one (1), implying
DDoS attack. Fig. 3 gives a visual illustration of the process and shows packet count for
the first 2 minutes (120 seconds) of traffic flow. The top image represents legitimate
(normal) traffic, while the bottom image depicts introduction of DDoS traffic
(highlighted in yellow).

Figure 3. Data labels for Legitimate and Malicious Traffic

3.2 Supervised Learning

This component is labelled ”Supervised Learning” in Fig. 2 and it involved applying
supervised ML on manually labelled data. Supervised learning is a class of machine
learning (ML) wherein an ML model is trained using pre-labelled data, which serve as
“examples” for the ML model. Once the model has been trained, it can then be exposed
to new (test) data for classification or prediction. In our system, we considered Logistic
Regression (LGR) and Artificial Neural Network (ANN) models.

3.2.1 Data Framing

Data framing was done for ANN only and three variants were considered. In the first,
data framing was not considered, and this served as the baseline; while in the second,
the dataset was split into ”frames” of size 12, corresponding to 120 seconds of traffic
flow (at 10 seconds interval). In the third, the standard deviation of values in the frame
was calculated and appended to the frame, thus increasing the frame size to 13. The
data frames were then fed to the ANN model. The data framing process is summarized
with the pseudocode in algorithm 1.

As an illustration, by running algorithm 1 on the sample data presented in Fig. 3 we
end up with four data frames, which are shown in Fig. 4. In the figure, DF1 and DF2
are data frames representing legitimate traffic (top image in Fig. 3) and are labelled 0
which means there is no DDoS attack. DF3 and DF4 both represent traffic flows with
malicious attacks, hence labelled 1.

For each data frame, the standard deviation (σ) is calculated. This standard
deviation is used to further verify the probability that a malicious attacks has occurred.
Within a data frame, if the data points are far from the mean, then the deviation of
values within the frame would be higher, which implies that an attack occurred in that
data frame. The opposite holds true for data points that are closer as their deviation
from the mean would be smaller. This can be interpreted as an absence of attack(s).
Finally, in instances where all 12 entries in a data frame are high (full DDoS attacks),

7/20



Algorithm 1 Data Framing Algorithm

• Divide the entire dataset into data blocks of 120 seconds.

• For each 120 second data block in the dataset:

1. Create a 3 by 4 dataframe as follows:

– Set t = 0

– For row = 1 to 4

a. col1 = Packet− Count(t), t+ = 10

b. col2 = Packet− Count(t), t+ = 10

c. col3 = Packet− Count(t), t+ = 10

2. Calculate the stand deviation (σ) for the data block. //for option 1 only

Figure 4. Sample Dataframes

the standard deviation value from the mean would be small. To distinguish between
this full attack situation and a safe situation, a threshold value is used. If the calculated
σ is greater than this threshold value, then the frame is classified as being under attack.

3.2.2 Machine Learning Models

As mentioned above, both LGR and ANN were considered in this work. For LGR, an
80:20 split was used for training and test data, using the One-over-rest (OvR) training
scheme and linear memory bfgs solver. ANN on the other hand is a model that mimics
the human nervous system and has been used to solve numerous problems in Computer
science [36], such as image recognition [37] and network intrusion detection [38]. In this
work, we used it to model DDoS attacks in IP networks and we considered a 3 layered
ANN architecture. At the input layer we had 12 or 13 nodes (σ included), the hidden
layer had 6 nodes, while the output layer had 1 node. The data frames obtained in the
previous subsection were fed in, with the corresponding standard deviation value used
as the 13th node. The ReLu activation was used for the input and hidden layers, while
Sigmoid activation was used at the output layer. The processes involved in our ANN
supervised learning component are depicted in Fig. 5.

8/20



Figure 5. ANN Supervised Learning Process

3.3 Unsupervised Learning

As an alternative to manually labelling the dataset, we considered the K-means
clustering technique for automatic labelling. K-Means is a centroid based clustering
algorithm that determines cluster membership based on the proximity of data points to
a centre point (centroid) [39]. It has been used in numerous classification problems
including network classification [40], intrusion detection [41] and in trans-continental
networking [42].

In IP networks security, millions of packets often traverse the network per unit time
and need to be classified (labelled) as either legitimate or malicious traffic. Manually
doing this would be slow and laborious in such cases, hence the use of an automatic
classifier is desirable, in our case K-Means. In our work, traffic flow fall into one of two
categories (legitimate or malicious), thus, k value is set to 2.

3.4 Semi-Supervised Learning

Our semi-supervised learning component, which is labelled ”Semi-Supervised Learning”
in Fig. 2, is similar to the supervised learning described earlier. The major difference is
that rather than using manually labelled data as input to the ML models, we fed the
output of the unsupervised learning (K-Means clustering) into the models. In essence,
K-Means is used to automatically label (classify) the data, which is then used to train
the supervised model. By doing this we create a hybrid of a supervised and
unsupervised model, or in this context, a semi-supervised model. The output of this
model is then compared to the two other models (supervised and unsupervised).

9/20



3.5 Statistical Models

For completeness, we performed data classification using a classic statistical model - the
Exponentially Weighted Moving Average (EWMA) [43]. By placing more emphasis on
recent data points than on older ones, EWMA is able to detect anomalies in observed
data quickly. It has been applied in analysing and forecasting stock market, weather,
and network traffic [44,45].

In applying EWMA, we sought to detect anomalies within blocks of data. An
anomaly would be a disruption from the ”norm” (normal traffic flow). Such anomalies
are considered as attacks. We set a window size of 12, corresponding to 120 seconds,
then measured the deviations from the average traffic count in each window. The steps
for calculating EWMA are well documented in literature, however, a concise summary
of our application is given in algorithm 2

Algorithm 2 EWMA Algorithm

• Set a window size of 12 (data blocks of 120 seconds).

• Set mean, std, thresholdUp, thresholdDw to 0

• For each window:

1. mean += calculate the moving average.

2. std += calculate the moving standard deviation.

3. thresholdUp = mean+ std

4. thresholdDw = mean− std

5. Slide the window by 1 (10 seconds)

• For each data point (d) in the dataset:

1. ifd > thresholdUp or d < thresholdDw: attack = True.

2. Else attack = False

Linear Discriminant Analysis (LDA) is a statistical model used for feature reduction
and distinguishing between data entries in a dataset. In this work we are only concerned
with its application in data classification abilities, specifically binary classification of
data traffic into normal or attack. LDA has been used in similar applications domains
such as in [47,48], where it was used for anomaly detection in network traffic.

This classification (discrimination) process of LDA is achieved using Bayes’ theorem.
The steps of the 2-dimensional (binary) LDA classification are well documented in
literature, having initially being proposed in the early 1930s by Fisher [46]. For brevity
the steps are repeated in this work but refer interested readers to the work of Fisher for
details.

3.6 Prediction

Having successfully classified and distinguished between legitimate and malicious
attacks, the next logical step might be to predict the possible occurrence of such attacks.
This would help the network administrator put preventive measures in place to mitigate
them, essentially changing the defense strategy from reactive to proactive. This is
highlighted in green in Fig. 2. Three regression models were considered in this work for

10/20



prediction, the Logistic Regression (LGR), Kernel Ridge Regression (KRR) and Support
Vector Regression (SVR).

LGR models the probability that an event would occur, called the dependent
variable based on one or more independent variable(s). We chose LGR because it is well
suited for finding binary output probabilities, i.e. True or False (1 or 0) and it does not
require a linear relationship between the dependent and independent variables. In
applying it to our work we used it to determine if there would be an attack at a given
time in future. The output variable was ‘time’, while the independent variables were
traffic ‘count’ and ‘status’ (i.e. legitimate (0) or attack (1)). SVR is a version of support
vector machines proposed in [49] that tries to minimize the predictor coefficient to a
value less than or equal to a set threshold. We used the Guassian radial basis function
(rbf) as the kernel and grid search to find optimal parameters. Similar to SVR, KRR
also uses the kernel trick (rbf) but it uses a ridge as loss function instead of epsilon used
by SVR. KRR combines kernel trick with least square regression and has been shown to
be faster than SVR [51,52]. We chose KRR because of its similarity with SVR and
because there are large variances (deviations from mean) between data points in the
dataset. These variances become more pronounced when the packet count in legitimate
traffic flow (labelled 0) are compared with those of attacks (labelled 1).

4 Implementation

For this work, implementation was carried out on Google Colab, with a Python 3
Google Compute module, configured with 12GB of RAM, 2.3GHz 2 Core Intel Xeon
CPU and GPU hardware accelerators. Keras and Sci-Kit learn were used for machine
learning; Smote was used for data balancing; Pandas, NumPy were used for data
manipulation, while matplotlib was used for data visualization. Finally, an 80:20 split
was used for training and testing data for the supervised learning algorithms.

4.1 Metrics

Six metrics were used to compare the performance of the models considered, these are
false positive, false negative, average execution time, accuracy, R2, and Root Mean
Square Error (RMSE). The first 4 are specific to classification models, while the last 3
(accuracy inclusive) are for the regression models. False positive is the number of
malicious traffic that were misclassified as legitimate traffic. This is important as it
measures how well the model is able to detect attacks. False negative measures the
number of legitimate traffic that were misclassified as attacks. We define average
execution time as how long it takes the model to classify traffic. Precision and Recall
are metrics that are well used in literature, but are not considered in this work because
they both measure how “correct” a model is. Though these are important, for us, the
inaccuracy of a model is more important, as undetected attacks can be catastrophic.
Accuracy is a measure of the model’s classification (or regression) performance, i.e.
number of traffic that were correctly identified by the model. R2 is used to benchmark
the performance of a model against a baseline, while RSME is the square root of the
mean squared difference between predicted and actual values.

4.2 Supervised Learning

Table 2 summarizes the results of the supervised learning models.

From the table, the pure ANN model resulted in the highest accuracy, followed by
ANN + Data framing + SD. Logistic Regression (LGR) also had high accuracy value
but resulted in the highest number of false negatives, meaning that LGR wrongly

11/20



Table 2. Anomaly Detection Using Supervised Learning Models
Model Accuracy False Positives False Negatives
LGR 99.192 0 1.6215
ANN 99.414 0 0.6695
ANN+Dataframing 98.842 2.1805 0.1295
ANN+Dataframing+ SD. 99.405 0.9565 0.0965

classified more legitimate traffic as attacks. Conversely, data framing adversely affected
the false positive rate, resulting in about 2% of bogus traffic (DDoS attacks) being
misclassified as safe. Among the three ANN models considered, the variant without data
framing only slightly edged out the variant with data framing and standard deviation
(SD) at 99.414% vs. 99.405%. The impact of Data framing + SD is also evident here as
the combination resulted in the lowest false negative of all the models compared.

W.r.t execution time, Fig. 6 shows that the pure ANN was the slowest of all four
models, taking over 2 minutes to classify traffic flow. This would be unacceptable in
real-time environments, where high-speed data analysis and classification are
paramount. In contrast, the variants of ANN based on data framing were significantly
faster than both LGR and the pure ANN at just 11s vs 51s and 130s respectively. This
shows that breaking traffic into data frames or “windows” and processing them
accordingly can be significantly beneficial with regards to processing time.

Fig.6. Average Execution Time

4.3 Unsupervised Learning

Fig.7. K-Means Elbow Method

12/20



Though we knew the number of clusters to expect in the dataset a priori, we still ran
the Elbow method [50] to verify this. Fig. 7 shows the result of the Elbow method, with
k being re-confirmed to be 2. Running the K-Means classifier with K = 2, resulted in
an accuracy of 96.76%, with zero false positives.

4.4 Semi-Supervised Learning

The labelled outputs from K-Means (unsupervised learning) were used as input to the
supervised learning models, in essence creating a form of semi-supervised model. Table
3 shows the performance of this hybrid combination.

Table 3. Anomaly Detection Using Semi-Supervised Learning Model
Model Accuracy False Positives False Negatives
K-Means + LGR 100 0 0
K-Means + ANN 100 0 0
K-Means+ANN+Dataframing 99.64 0.73 0.07
K-Means+ ANN+Dataframing+SD. 99.69 0.67 0.01

From the table it can be seen that the incorporation of the K-Means classifier
resulted in a significant boost in the performance of all the models. Both LGR and the
pure ANN resulted in perfect accuracies, zero false positives and zero false negatives.
Similarly, the accuracies of both variants of ANN with data framing increased from
98.842% to 99.64% and 99.41 to 99.69% respectively. Of important note is the reduction
in false positive and false negative values of ANN + Dataframing and ANN +
Dataframing + SD. respectively. For the former, the false positive dropped from about
2.18% to just 0.73%, while the false negative value dropped to 0.07. For ANN +
Dataframing + SD, the false positive value dropped to 0.67 %. The overall
improvements in the final results on Table 2 compared to Table 3 shows the efficacy of
our proposed hybrid (semi-supervised) model in detecting malicious attacks. However,
the fact that both variants of ANN did not yield 100% accuracy cannot be ignored. A
possible explanation for this is that the dataset was not split into data frames of equal
sizes, hence some data frames (especially those at the tail end of the traffic flow)
contained less data i.e. less than the window size (12 data points).

4.5 Statistical Models

Table 4 summaries the results of the statistical methods used for detecting malicious
(abnormal / attack) traffic. For comparison purposes, we also included the result of the
pure Logistic Regression model (LGR).

Table 4. Anomaly Detection Using Statistical Models
Model Accuracy False Positives False Negatives
EWMA 71.299 12.102 57.268
LDA 99.837 7.797 37.870
LGR 99.192 0 1.6215

Compared to LGR, both EWMA and LDA performed poorly w.r.t False Negatives
and False Positives. The false positive and negative values in EWMA are
understandably high because the model uses simple moving standard deviation and
mean of observed samples to determine differentiate attacks. This means that for every
subsequent traffic window (120 seconds interval), EWMA would compare the mean and
standard deviation of that window with its preceding window. If the difference is much,
EWMA flags that window as being attacked. To elaborate, if we assume that little or

13/20



no data traffic arrive during the first 120 seconds, EWMA establishes a baseline with
this first window size using the mean and standard deviation (SD). If during the next
few seconds, significant number of legitimate traffic arrive, EWMA calculates the mean
and SD of this new block. It then compares the new mean and SD with the baseline.
The new values would definitely be higher than the baseline and EWMA would flag this
new window as malicious because of the higher traffic count. The reverse is the case
with the false negatives.

Being probabilistic (based on Bayes’ theorem), LDA expected performs better than
EWMA in most of the metrics. However, like EWMA, LDA also struggled with
distinguishing between high volume legitimate traffic and malicious traffic. This
problem becomes more pronounced when low traffic windows(s) is/are followed by
window(s) with slightly higher traffic counts. In such instances, the succeeding
window(s) would be classified as malicious even if there are not.

4.6 Prediction

As stated earlier, three prediction models were considered and their results are
summarized on Table 5. Of the three models compared, LGR performed the best, with
a prediction accuracy of 98.6%. It was closely followed by KRR at approx. 98%. SVR
was the least accurate of the lot at 94.64%. For R2, values closer to 1 are desirable, and
depicts the “closeness” of predicted values to the actual values. For the three models,
the same trend is observed with R2 scores, as LGR led with a score of approx. 0.94,
followed by KRR at 0.91. SVR scored 0.76, implying that its prediction curve differed
greatly from the actual curve. Finally, for RMSE, values closer to 0 are desirable as
they indicate lower prediction errors. Once again, LGR was the least error prone as it
had the lowest RMSE values, followed by KRR with a score of 0.1439. However, both
models were less error prone than SVR with a RMSE value of 0.2314. We can thus
conclude that LGR is the best predictor, while KRR is a close alternative. With such
high RMSE value, SVR is a less than ideal predictor in our use case.

Table 5. Comparison of Results of the Prediction Models

Metric KRR LGR SVR
Accuracy 97.93% 98.60% 94.64%
R2 0.9054 0.9361 0.7555
RMSE 0.1439 0.1183 0.2314

To visualize these results we plotted graphs of actual values versus those predicted
by the prediction models (KRR, LGR and SVR). For each model we took snapshots
showing its predictions for the next 15 minutes (900 seconds). Furthermore, to show the
scalability of the predictive models, we also took snapshots of predictions for the next 2
to 4 hours. These snapshots are depicted in Figs. 9(a) to 10(c), where the blue lines
represent predicted values, while the red lines indicate actual values.

Figs. 9(a) to 9(c) show plots of status versus time for KRR, LGR and SVR
respectively. Status values are binary and can only be 0 or 1, where 0 means no attack
is predicted and 1 means that an attack might take place. For all three models similar
graphs were observed for the 15 minutes time frame. Figs. 10(a) to 10(c) show the
predictions of the three models for the next 3 to 4 hours. KRR and LGR had similar
graphs, with both models coincidentally wrongly predicting the occurrence of an attack
at around the 11, 260th second marks. The results of SVR’s predictions for the same
period are shown in Fig. 10(c), with SVR making wrong predictions on 10 different
occasions. Interestingly, like KRR and LGR, SVR also wrongly predicted an imminent
attack at the same 11, 260th second mark.

14/20



(a) KRR predictions for the next 15 minutes.(b) LGR predictions for the next 15 minutes.

(c) SVR predictions for the next 15 minutes.

Figure 9. Comparison of predictions for the next 15 minutes.

(a) KRR predictions for the next 3 to 4
hours.

(b) LGR predictions for the next 3 to 4 hours.

(c) SVR predictions for the next 3 to 4 hours.

Figure 10. Comparison of predictions for the next 3 to 4 hours.

Overall these results show that LGR and KRR are better prediction models than
SVR for our use case. With attack prediction accuracies of approximately 98% for both

15/20



LGR and KRR models, it can be inferred that regression models can be used to predict
potential DDoS attacks in IoT networks. For both LGR and KRR, the inaccurate
predictions were in instances where they assumed that attacks would occur when none
occurred. These wrong predictions or false alarms, though leading to unnecessary
deployment of defensive mechanisms, are preferable to the reverse case. In the reverse
case, as observed with SVR, the model gives a false sense of security by predicting that
no attack would occur, when imminent threats abound. We therefore consider the
wrong predictions of KRR and LGR as “erring on the side of caution”.

5 Conclusion

In this study, the accuracy and timeliness of supervised, unsupervised, and
semi-supervised machine learning techniques for detecting Distributed Denial of Service
(DDoS) attacks in Cyber Physical-Internet of Things Systems (CPS-IoT) were explored.
CPS-IoT systems often rely on two well known protocols for data transmission, namely
HTTP and MQTT, both of which are built upon TCP/IP, hence vulnerable to TCP/IP
targeted attacks. DDoS attacks are common to TCP/IP, thus pose a potential threat to
the security, dependability and safety of CPS-IoT systems. In this work, five machine
learning models (ML) and two statistical models were considered for modelling DDoS
attacks in IoT networks (TCP/IP-based). These are Logistic Regression (LGR),
Artificial Neural Networks (ANN), K-Means, Kernel Ridge Regression (KRR), Support
Vector Regression (SVR), Exponentially Weighted Moving Average (EWMA) and the
Linear Discriminant Analysis (LDA).

In distinguishing between normal traffic and bogus (attack) traffic, two supervised
ML classifiers were used - LGR and ANN (and two slight variations of ANN based on
slicing). LGR gave a classification accuracy of 99.19%, a false positive rate of 1.62%,
and an average detection latency of 51 seconds from the initiation of the attack. The
ANN model, on the other hand, had better accuracy at 99.41% and lower false negative
value of 0.67 %, but was extremely slow at 130 seconds. We introduced slicing, and split
the traffic into fixed windows sizes, before applying ANN. This slicing improved the
false negative values and significantly cut down the detection time to just 11 seconds.
We then considered the K-Means unsupervised ML model, which resulted in 96.76%
classification accuracy. Finally, we developed semi-supervised ML models by combining
the K-Means with the ANN and LGR. These combinations resulted in a classification
(detection) accuracy of 100% with near zero false positives across all models. Compared
to the ML models, the statistical models performed poorly w.r.t false positive and
negatives.

We also examined the use of regression models to support network administrators in
transiting from reactive to proactive network management approach. LGR, KRR, and
SVR were investigated for their abilities to correctly predict attacks before they occur.
LGR gave the best prediction accuracy at 98.6%, followed by KRR at 97.9%, while SVR
had the worst performance at 94.64%. The R2 values for the LGR and KRR were 0.94
and 0.91 respectively, representing closeness to actual values; while their RMSE values
were respectively 0.12 and 0.14. SVR was significantly off the mark for these metrics. In
essence, LGR and KRR are both capable for predicting imminent threats, with LGR
being slightly better.

This work only considered traffic counts, time and status in determining DDoS
attack. In future works, other features such as source and destination IP addresses or
ports can be considered. Similarly, only the possible future attack times were
considered, potential future research could consider the target machine or subnet.
Finally, in CPS-IoT systems, attack detection and prediction through the use of network
topology graphs could be another avenue for future research work.

16/20



References

1. O Ajayi, A Bagula, H Maluleke, I Odun-Ayo. Transport Inequalities and the
Adoption of Intelligent Transportation Systems in Africa: A Research Landscape,
MDPI Sustainability, Volume 13, Issue 22, 2021.

2. A. Bagula, M. Mandava and H. Bagula. A Framework for Supporting Healthcare
in Rural and Isolated Areas. Elsevier Journal of Network and Communication
Applications, 2018.

3. A. Celesti at al. How to Develop IoT Cloud e-Health Systems Based on FIWARE:
A Lesson Learnt MDPI Journal of sensors and actuator Networks, 2019.

4. A. Ismail, BA. Bagula, E. Tuyishimire. Internet-Of-Things in Motion: A UAV
Coalition Model for Remote Sensing in Smart Cities. Sensors 2018, 18(7), 2184;
doi:10.3390/s18072184, 2018.

5. Kun Ma, A. Bagula, C. Nyirenda and O. Ajayi. An IoT-Based Fog Computing
Model. Sensors 2019, 19(12), 2783; doi:10.3390/s19122783, 2019.

6. Antoine Bagula and Zenville Erasmus. IoT Emulation with Cooja, in ICTP-IoT
workshop, Trieste – Italy, 2015.

7. R. Ahmad and I. Alsmadi. Machine learning approaches to IoT security: A
systematic literature review. Internet of Things, vol. 14, p. 100365, Jun. 2021,
doi:10.1016/J.IOT.2021.100365.

8. CloudAMQP. AMQP. [Online] Available:
https://www.cloudamqp.com/docs/amqp.html. Accessed Dec. 6, 2021

9. Z. Shelby, K. Hartke, C. Bormann, and B. Frank. RFC 7252: The constrained
application protocol (CoAP). Internet Engineering Task Force. 2014 Jun.

10. G. Pardo-Castellote. Omg data-distribution service: Architectural overview. Proc.
23rd Int Conf. on Distributed Computing Systems Workshops. 2003 May 19 (pp.
200-206). IEEE.

11. MQTT FAQ. [Online] Available: www.mqtt.org/faq/. Accessed Nov. 29, 2021.

12. P. Millard, P. Saint-Andre, and R. Meijer. XEP-0060: publish-subscribe. XMPP
Standards Foundation. 2010 Jul 12;1:13.

13. A. Bagula, O. Ajayi, and H. Maluleke. Cyber Physical Systems Dependability
Using CPS-IOT Monitoring. Sensors. 2021; 21(8):2761. doi:10.3390/s21082761.

14. L. Garber. Denial-of-service attacks rip the internet. Computer (Long. Beach.
Calif)., vol. 33, no. 4, pp. 12–17, Apr. 2000, doi:10.1109/MC.2000.839316.

15. S. Zargar, J. Joshi, and D. Tipper. A survey of defense mechanisms against
distributed denial of service (DDOS) flooding attacks. IEEE Commun. Surv.
Tutorials, vol. 15, no. 4, pp. 2046–2069, 2013,
doi:10.1109/SURV.2013.031413.00127.

16. H. Liao, C. Richard Lin, Y. Lin, and K. Tung. Intrusion detection system: A
comprehensive review. J. Netw. Comput. Appl., vol. 36, no. 1, pp. 16–24, Jan.
2013, doi:10.1016/J.JNCA.2012.09.004.

17/20

https://www.cloudamqp.com/docs/amqp.html
www.mqtt.org/faq/


17. M. Bhuyan, H. Kashyap, D. Bhattacharyya, and J. Kalita. Detecting Distributed
Denial of Service Attacks: Methods, Tools and Future Directions. Adv. Access
Publ., vol. 28, 2013, doi: 10.1093/comjnl/bxt031.

18. F. Khan, and S. Hameed. Understanding security requirements and challenges in
internet of things (IoTs): A review. arXiv preprint arXiv:1808.10529. 2018 Aug
30.

19. A. Bagula, L. Ngaqwazai, C. Kakoko, and O. Ajayi. On the Relevance of Using
Multi-layered Security in the Opportunistic Internet-of-Things. In Int Conf on
e-Infrastructure and e-Services for Developing Countries 2019 Dec 3 (pp. 15-29).
Springer, Cham.

20. J. Sengupta, S. Ruj, and S. Bit. A comprehensive survey on attacks, security
issues and blockchain solutions for IoT and IIoT. J Network and Computer
Applications. 2020 Jan 1;149:102481.

21. K. Singh, P. Singh, and K. Kumar. Application layer HTTP-GET flood DDoS
attacks: Research landscape and challenges. Comput. Secur., vol. 65, pp. 344–372,
Mar. 2017, doi: 10.1016/J.COSE.2016.10.005.

22. S. Hosseini and M. Azizi. The hybrid technique for DDoS detection with
supervised learning algorithms. Comput. Networks, vol. 158, pp. 35–45, Jul. 2019,
doi:10.1016/J.COMNET.2019.04.027.

23. O. Ali and P. Cotae. Towards DoS/DDoS Attack Detection Using Artificial
Neural Networks. 2018 9th IEEE Annu. Ubiquitous Comput. Electron. Mob.
Commun. Conf. UEMCON 2018, pp. 229–234, Nov. 2018,
doi:10.1109/UEMCON.2018.8796637.

24. Y. Soe, P. Santosa, and R. Hartanto. DDoS Attack Detection Based on Simple
ANN with SMOTE for IoT Environment. Proc. 2019 4th Int. Conf. Informatics
Comput. ICIC 2019, Oct. 2019, doi: 10.1109/ICIC47613.2019.8985853.

25. M. Wang, Y. Lu, and J. Qin. A dynamic MLP-based DDoS attack detection
method using feature selection and feedback. Comput. Secur., vol. 88, p. 101645,
Jan. 2020, doi: 10.1016/J.COSE.2019.101645.

26. C. Ioannou and V. Vassiliou. Classifying security attacks in IoT networks using
supervised learning. Proc. 15th Annu. Int. Conf. Distrib. Comput. Sens. Syst.
DCOSS 2019, pp. 652–658, May 2019, doi: 10.1109/DCOSS.2019.00118.

27. P. Chaudhary, and Gupta, B. Ddos detection framework in resource constrained
internet of things domain. In2019 IEEE 8th Global Conference on Consumer
Electronics (GCCE) 2019 Oct 15 (pp. 675-678). IEEE.

28. R. Kokila, S. Selvi, and K. Govindarajan. DDoS detection and analysis in
SDN-based environment using support vector machine classifier. In 2014 Sixth Int
Conf on Advanced Computing (ICoAC) 2014 Dec 17 (pp. 205-210). IEEE.

29. K. Wehbi, L. Hong, T. Al-salah, and A. Bhutta. A survey on machine learning
based detection on DDoS attacks for IoT systems. In2019 SoutheastCon 2019 Apr
11 (pp. 1-6). IEEE.

30. H. Polat, O. Polat, and A. Cetin. Detecting DDoS attacks in software-defined
networks through feature selection methods and machine learning models.
Sustain., vol. 12, no. 3, Feb. 2020, doi: 10.3390/SU12031035.

18/20



31. T. Aytac, M. A. Aydin, and A. H. Zaim. Detection DDOS attacks using machine
learning methods. Electrica, vol. 20, no. 2, pp. 159–167, Jun. 2020,
doi:10.5152/ELECTRICA.2020.20049.

32. O. Tonkal, H. Polat, E. Basaran, Z. Comert, and R. Kocaoglu. Machine learning
approach equipped with neighbourhood component analysis for ddos attack
detection in software-defined networking. Electron., vol. 10, no. 11, Jun. 2021, doi:
10.3390/ELECTRONICS10111227.

33. A. Churcher, R. Ullah, J. Ahmad, F. Masood, et al. An experimental analysis of
attack classification using machine learning in iot networks. Sensors. 2021
Jan;21(2):446.

34. M. Lichman. 1999 DARPA Intrusion Detection Evaluation Dataset — MIT
Lincoln Laboratory. 2000. www.ll.mit.edu/r-d/datasets/
1999-darpa-intrusion-detection-evaluation-dataset (accessed Nov. 14,
2021).

35. P. Machaka and A. Bagula. Statistical Properties and Modelling of DDoS Attacks.
Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 343, pp.
44–54, 2021, doi: 10.1007/978-3-030-67101-3 4.

36. V. Sze, Y. Chen, T. Yang, and J. Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE. 2017 Nov
20;105(12):2295-329.

37. M. Öney and S. Peker. The Use of Artificial Neural Networks in Network
Intrusion Detection: A Systematic Review. 2018 Int. Conf. Artif. Intell. Data
Process. IDAP 2018, Jan. 2019, doi: 10.1109/IDAP.2018.8620746.

38. S. Aftab and A. Iqbal. A Feed-Forward and Pattern Recognition ANN Model for
Network Intrusion Detection. Artic. Int. J. Comput. Netw. Inf. Secur., vol. 4, pp.
19–25, 2019, doi: 10.5815/ijcnis.2019.04.03.

39. L. Morissette and S. Chartier. The k-means clustering technique: General
considerations and implementation in Mathematica. Tutorials in Quantitative
Methods for Psychology. 2013 Feb;9(1):15-24.

40. Y. Liu, W. Li, Y. Li. Network traffic classification using k-means clustering.
InSecond international multi-symposiums on computer and computational
sciences (IMSCCS 2007) 2007 Aug 13 (pp. 360-365). IEEE.

41. C. Meng, Y. Lv, L. You, and Y. Yue. Intrusion Detection Method Based on
Improved K-Means Algorithm. J. Phys. Conf. Ser., 1302(3), p. 032011, Aug. 2019,
doi: 10.1088/1742-6596/1302/3/032011.

42. O. Ajayi, A. Bagula, and H. Maluleke. Africa 3: A continental network model to
enable the African fourth industrial revolution. IEEE Access, vol. 8, pp.
196847–196864, 2020, doi: 10.1109/ACCESS.2020.3034144.

43. S. Roberts. Control chart tests based on geometric moving averages.
Technometrics. 2000 Feb 1;42(1):97-101.

44. N. Ye, C. Borror, and Y. Zhang. EWMA techniques for computer intrusion
detection through anomalous changes in event intensity. Quality and Reliability
Engineering International. 2002 Nov;18(6):443-51.

19/20

 www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
 www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset


45. J. Yu, S. Kim, J. Bai, and S. Han. Comparative study on exponentially weighted
moving average approaches for the self-starting forecasting. Applied Sciences.
2020 Jan;10(20):7351.

46. S. Theodoridis. Classification: A tour of the classics. Machine Learning;
Theodoridis, S., Ed.; Academic Press: London, UK. 2015:275-325.

47. B. Subba, S. Biswas and S. Karmakar. Intrusion detection systems using linear
discriminant analysis and logistic regression. In 2015 Annual IEEE India
Conference (INDICON) 2015 Dec 17 (pp. 1-6). IEEE.

48. G. Noel, S. Gustafson, and G. Gunsch. Network-based anomaly detection using
discriminant analysis. J. of Information Warfare. 2001 Jan 1;1(2):12-22.

49. L. Kaufman, H. Drucker’, C. Burges, A. Smola, and V. Vapnik. Support Vector
Regression Machines. 2000, Accessed: Nov. 23, 2021. [Online]. Available:
https://www.researchgate.net/publication/2378203.

50. P. Bholowalia, and A. Kumar. EBK-means: A clustering technique based on
elbow method and k-means in WSN. International Journal of Computer
Applications. 2014 Jan 1;105(9).

51. V. Vovk. Kernel Ridge Regression. In Empirical inference 2013 (pp. 105-116).
Springer, Berlin, Heidelberg.

52. I. Witten, E. Frank, M. Hall, and C. Pal. Extending instance-based and linear
models. In Data Mining: Practical Machine Learning Tools and Techniques 2017.
Elsevier.

20/20

https://www.researchgate.net/publication/2378203

	1 INTRODUCTION
	2 Literature Review
	3 Methodology
	3.1 Data Pre-processing & Labelling
	3.2 Supervised Learning
	3.2.1 Data Framing
	3.2.2 Machine Learning Models

	3.3 Unsupervised Learning
	3.4 Semi-Supervised Learning
	3.5 Statistical Models
	3.6 Prediction

	4 Implementation
	4.1 Metrics
	4.2 Supervised Learning
	4.3 Unsupervised Learning
	4.4 Semi-Supervised Learning
	4.5 Statistical Models
	4.6 Prediction

	5 Conclusion

