
Towards a Microservice-based Middleware for a Multi-
hazard Early Warning System

Adeyinka Akanbi1[0000-0002-8796-0674]

1 Centre for Sustainable Smart Cities (CSSC), Central University of Technology, Free State,
9300, South Africa

aakanbi@cut.ac.za

Abstract. Environmental hazards—like water and air pollution, extreme weath-
er, or chemical exposures—can affect human health in a number of ways, and it
is a persistent apprehension in communities surrounded by mining operations.
The application of modern technologies in the environmental monitoring of
these Human-made hazards is critical, because while not immediately health-
threatening may turn out detrimental with unwanted negative effects. Enabling
technologies needed to realize this concept is multifaceted and most especially
involves deploying interconnected Internet of Things (IoT) sensors, existing
legacy systems, enterprise networks, multi-layered software architecture (mid-
dleware), and event-processing engines, amongst others. Currently, the integra-
tion of several early warning systems has inherent challenges, mostly due to the
heterogeneity of components. This paper proposes transversal microservice-
based middleware aiming at increasing data integration, interoperability, scala-
bility, high availability, and reusability of adopted systems using a containers
orchestration framework for a multi-hazard early warning system. Devised
within the scope of the ICMHEWS project, the proposed platform aims at im-
proving known challenges.

Keywords: Microservices, Kubernetes, Middleware, Containers, Interoperabil-
ity, Integration, Early Warning Systems.

1 Introduction

Natural hazards can be defined as “a serious disruption of the functioning of a com-
munity or a society causing widespread human, material, economic or environmental
losses which exceed the ability of the affected community or society to cope using its
own resources” [1]. The preparedness towards natural hazards is a key factor in the
reduction of their impact on society. Natural hazards/disasters are mostly from com-
promised hydro-meteorological origins resulting in pollution and chemical exposure
to naturally occurring ones from extremes of temperature, wind and rainfall. An im-
portant part of a holistic approach to disaster risk reduction (DRR) management of
natural hazards or disasters is the set-up of early warning systems, with several inter-
national initiatives towards the development and promotion of early warning systems
for all natural hazards [3],[4],[5].

2

Early warning systems (EWS) can be defined as information systems with the abil-
ity to detect and provide warnings in the form of timely and effective information
through identified institutions that allow individuals exposed to a hazard to take ac-
tion to avoid or reduce their risk and prepare for effective response [1]. Several stud-
ies have illustrated the effectiveness of an early warning system (e.g.,
[8],[9],[12],[13],).

Fig. 1. Mean yearly number of people affected per decade (stacked bars) and comparison with
global population for global water-related disasters in the world in the last 60 years, including

trend for the future 40 years [6]

In previous studies, EWS(s) are primarily constructed to target a particular natural
hazard – this approach is widely used, especially those concerning natural hazards
[7],[10],[14],[15],[16]. However, the world’s climate is changing [17-19], and natural
hazards are now intertwined with environmental phenomena leading direct-
ly/indirectly to natural hazards occurring concurrently with cascading effects; the
failure to integrate EWS could affect their effectiveness and reach. Thus, it is im-
portant to devise the integration of new and existing EWS for an integrated climate
multi-hazard early warning system (ICMHEWS1). The specifications and require-
ments of existing EWS are extremely different depending on the application area,
leading to ad-hoc implementations of monolithic software applications and cumber-
some legacy systems. The integration of several related EWS has inherent challenges,
which are mostly data incompatibility and system interoperability due to heterogenei-
ty, reliability, availability, transparency and abstractions to applications [2],[20-
21],[35-36], inhibiting the possibility of harnessing an integrated MHEWS.

1 https://urida.co.za/icmhews

3

In recent years, the field of cloud computing has shown rapid growth, and a variety
of virtualization technologies have emerged, such as microservices, with immense
application characteristics for monolithic heterogeneous systems or applications.
Monolithic applications components are tightly coupled, having been developed, de-
ployed and managed as one entity. This results in increased rigidity and complexity of
the system. On the other hand, microservices are loosely coupled, independently de-
ployed, cloud-native small services [22]. The cloud-native microservices exploit con-
tainerization orchestration framework and container management systems such as
Google Kubernetes to deploy software components or applications separately, without
compromising the application life cycle [23],[26]. Containers encapsulate a micro-
service environment, abstracting the hardware and software infrastructure and provide
application portability across platforms as a resource-isolated process. This provides
the ability to break down monolithic applications into software components, and run
them as a node on a variety of Infrastructure as a Service (IaaS) or Platform as a Ser-
vice (PaaS). Therefore, containerization enables a paradigm shift from machine-
oriented to application-oriented orchestration, resulting in easier and faster deploy-
ment, improved scalability, increased utilization of computing resources, data integra-
tion and system interoperability. To automatically manage applications with contain-
ers, several orchestration frameworks are developed, such as Kubernetes [26], Docker
SwarmKit [25] and Apache Mesos [11].

In this paper, we develop a formal model towards the decomposition of monolithic

EWS components as containerized microservices managed by Kubernetes. This al-
lows the deployment of EWS software components towards an integrated MHEWS
under several configurations to be explored at the modelling level before deployment
to production. Thus, the analysis of the performance, suitability, and usability of Ku-
bernetes in a decoupled monolithic EWS is an interesting and relatively new research
area. We aim to facilitate the expediency of the Kubernetes container orchestration
tool in MHEWS and highlight the limitation therein.

Fig. 2. Monolithic vs Microservice Architecture

4

More specifically, the contributions of this research study can be summarized as
follows: (i) describing the model for the distribution of containerized EWS software
applications; (ii) proposing a model for the application of Kubernetes container
scheduling techniques for the deployment of reliable and scalable MHEW distributed
systems; (iii) validation in EWS is conducted, more especially, in drought forecasting
domain, (iv) discussing the limitation of current Kubernetes container orchestration
design for EWS.

The rest of the paper is organized as follows. In the next Section, the background is

discussed. Section 3 presents the proposed experimental framework architecture, the
implementation in a test environment and performance results. Finally, conclusions
are presented in Section 4.

2 Background

In this section, we present the relevant background of our work; we start by present-
ing an overview of microservices and container management. Then we present the
containerized orchestration framework for the study.

2.1 Microservices and Containers Management

In a monolithic software application, all components and services are highly coupled,
preventing scalability and reusability of these systems or even integration with new or
existing ones. However, to overcome these challenges, a microservices-based archi-
tecture is used. The application principle of microservices is all about modularization
and decoupling capabilities into components that are easily adapted to distributed
hardware. This emanates from service-oriented architectures (SOA) [24]. In a nut-
shell, microservice-based architecture is the evolution of classical SOA [22, 33]. The
adaptability of the SOA approach to a transversal microservice-based middleware is
to ensure seamless implementations of the various software component such as APIs,
extensions, heterogeneous technologies or clusters in the monolithic software applica-
tion or systems.

Microservices are independent components conceptually deployed in isolation and
equipped with dedicated resources for utilization. The components of a microservice
architecture are microservices, with different behaviour derives from the composition
and coordination of its decoupled software components. Microservices manage
growing complexity by functionally decomposing large systems into a set of
independent services [22]. This takes modularity to the next level by making services
completely independent in development and deployment, through emphasis on loose
coupling and high cohesion. This approach delivers all sorts of benefits in terms of
maintainability, scalability, integration and interoperabilty. Containers encapsulate the
execution environment providing the ability to develop, deploy and scale applications
as multiple instances or a set of services without dependencies [22].

5

Fig. 3. A comparison of model of containerized application and VMs.

In literature, there are several container orchestration tools developed by different
companies or open-source communities, typical examples such as Google Kubernetes
[26], Apache Mesos [11], OpenShift [27], Nomad [28], Docker Compose [29], Cloud-
ify [30], etc. Google Kubernetes is an open-source container orchestration tool for
managing containerized applications across multiple hosts [23]. It provides automatic
deployment, scaling and management of container-based applications or software
components. Figure 3 depicts a logical representation of Kubernetes instances. The
architectures follow a master-slave model or Pods concept, where a master node man-
ages the worker nodes (slaves) – set up as a cluster consisting of Kubernetes-master
and a set of Kubernetes-workers. As consequence, these nodes can be executed on-
premises, in public cloud or hybrid infrastructure. The communication between mi-
croservices is possible only through interfaces using APIs.

There are four master processes in a Kubernetes-master node, namely: the API

server, scheduler, controller manager and etcd. The Kubernetes-worker node has
three processes, the container runtime, Kubelet and the KubeProxy. The container
runtime needs to be installed on every node. The smallest unit of a Kubernetes cluster
is a pod, which is an abstraction over the container runtime; usually, one application
is dedicated to running in pod. The communication between pods is possible through
virtual networks, with each pod having its own internal IP address. Within one pod,
containers can reference each other directly. The access to the executed applications is
through external service in the form of the node IP address and the service’s port
number e.g., http://124.95.101.2:8080. The external request goes to In-
gress, which passes the request to the services residing in the container node.

Services are an integral part and another component of Kubernetes; services com-

prise a static or permanent IP address attached to each pod and act like a load balancer
between pods. Each app in a pod has its own respective service with a disjointed life
cycle. The two sub-types of services are the internal service and the external service.
The internal service received request from ingress to access running containerized

6

applications via respective endpoints. The orchestration of requests is possible with
the help of ConfigMap, which contains the external configuration of applications, they
are connected to the pods for integrated applications. Configuration of secured exter-
nal applications makes use of Secret, which is similar to the ConfigMap to store ac-
cess credentials for secured infrastructure. Volumes are another important feature that
allows saving of persistent data required by applications running in the pods. These
data are available through external storage attached physically to the infrastructure in
an on-prem environment or remotely to the cloud infrastructure.

Fig. 4. A logical representation of Kubernetes components in a generic infrastructure [37].

2.2 Container Orchestration

Containerization expedites the feasibility of running applications that are container-
ized over multiple hosts in different service models [31]. Kubernetes has grown into
container orchestration standards by simplifying the deployment and management of
a containerized application. The Kubernetes-master provides the API server – a clus-
ter gateway for scheduling various deployments and managing the overall cluster.
This is achieved through RESTFul interface, which allows control point for managing
the entire Kubernetes cluster. The interactions with the clusters or configuration of the
Kubernetes-worker nodes are through Kubectl – a built-in Kubernetes Command Line
Interface (CLI). The scheduler receives validated requests from the API server to start
pods in the cluster. The container manager detects the state changes and notifies the
scheduler if a container has to be restarted. Etcd is a key value pair store of the cluster
state, used for coordinating resources and sharing cluster configuration; it acts as the
brain of the cluster. In the Kubernetes-workers node, The Kubelet is a process that
interfaces with both the container and the node and is responsible for starting a pod
within a container and assigning resources from the node to the container. KubeProxy
forwards service requests intelligently to available replicas in the cluster.

7

A cluster orchestration platform should be able to have fully automated, self-
managed and self-healing capabilities. It also provides the ability for scalability and
integration of containerized applications, promoting interoperability and eliminating
the isolation of applications and systems. Among various available orchestration plat-
forms in this paper, we have used Kubernetes for monitoring and managing EWS
software components or applications.

Fig. 5. Components of Kubernetes [38].

3 Proposed Experimental Framework

In this study, we presented an experimental framework towards the integration of
several EWS for an integrated MHEWS using microservices. The objective is to ad-
dress and eliminate the rigidity of monolithic EWS application for an ICMHEWS by
implementing Kubernetes in a hybrid infrastructure. The infrastructure design consists
of on-premises workstation and VMs in the cloud. The study adopts Microsoft Azure2
cloud services to host the VMs with Azure Kubernetes Services, which are accessible
via a public endpoint. Azure Kubernetes Services3 (AKS) provides automated man-
agement and scalability of Kubernetes clusters for our container orchestration with the
ability to deploy containerized Windows and Linux applications in the cloud. Kuber-
netes orchestrates clusters of VMs and schedules containers to run on those virtual
machines based on available resources and the resource requirements of each contain-
er. The presented solution suggests the ability of Kubernetes to implement container-
ized EWS applications using it load-balancing capabilities to respond to requests.

2 https://www.portal.azure.com
3 https://azure.microsoft.com/en-us/products/kubernetes-service/

8

Fig. 6. Experimental framework of EWS application as microservices in AKS.

3.1 Cluster Setup

To replicate the execution of EWS application, we converted a software component of
an EWS into a docker base image to be deployed as a containerized application using
AKS. Our testbed is a VM in the Azure cloud, using a preset cluster configuration for
the testing/dev environment. The VM configurations utilize a 4 vCPUs and 16GB
memory with a primary node pool for size 10. All nodes run Kubernetes version
1.23.12. The cluster name is given as MHEWS_KB_Cluster with a default scaling
setting at Autoscale for prompt scalability depending on the computing requirement
of the executed containerized application. The complete environmental variables for
the cluster are available on GitHub at [34]. After creating the docker images now to
orchestrate these containers created using installed Kubernetes 1.23.12 in the cloud
cluster. The master node is the principal node controlling the rest of the machines
which run as container execution nodes. Kubernetes provides the tools that automate
the distribution of applications across the cluster. Next, we configure Kubernetes to
deploy the application for conducting the experiment and compare the performance
result. Figure 7, 8 & 9 below depicts the pods in the cluster nodes, the up-running
services that facilitate communication and provision of requested services through the
endpoints and the external service endpoint to access the cluster through the BASH
shell.

9

Fig. 7. Running nodes’ pods in the deployed cluster

Fig. 8. Deployed Kubernetes services and ingresses

Fig. 9. Verification of the external service endpoint to access the cluster through the BASH

shell.

10

A pod is defined by the YAML file that consists of the parameters of the container
image for the EWS application. Code snippet 1 shows the example of variables for
creating a microservice pod for Figure 6.

Listing 1. Creating Pod for MHEWS microservice.

apiVersion: apps/v1
kind; Deployment
metadata
 name: MHEWS cluster
spec:
 replicas:1
 selector:
 matchLabels:
 app: MHEWS Cluster
 template:
 metadata:
 labels:
 app: MHEWS Cluster

To enable the monitoring of the executed containerized application, the performance
of the deployed microservice was monitored against the compute resources provided
for the cluster. The following resource utilization metrics were considered:

• Throughput, which is a measure of how many units of information a system can
process in a given amount of time is measured as a performance metrics of the
cluster. It is measured in bits / second.

• Cluster performance is the CPU utilization when interacting with the cluster. It is
measured in CPU core usage in milliseconds and percentages.

• Other metrics obtained are memory usage, network utilization in bytes and statuses
for various node conditions.

3.2 Results

Fig. 10. Average Throughput for deployed microservice.

11

Fig. 11. CPU usage utilization.

Fig. 12. Average CPU usage Milli-cores.

Fig. 13. Average cluster memory utilization.

Fig. 14. Status of various node conditions

Figures 10, 11 and 12 show the effect of executing the containerized application as a
microservice in the cluster. The figures reveal the throughput and CPU usage on aver-
age during execution, which are not overloaded or above the median threshold for the
cluster configuration resources. This is important as it shows the ability of Kubernetes
to run EWS applications as a containerized microservice. Figures 13 and 14 show a
minimum memory utilization of the cluster – all within limits. From the results shows,

12

we can conclude that Kubernetes microservices is an excellent choice for decoupling
monolithic EWS applications towards integration of several EWS for an integrated
climate-driven multi-hazard early warning system.

 The experimental results discussed above show that containers enabled with Ku-
bernetes are capable of running the EWS application as a microservice, which will
foster integration and interoperability towards a fully-fledged integrated climate mul-
ti-hazard early warning system. The experimental setup to validate the proposed
framework proved to be advantageous.

4 Conclusion

In this study, we presented an experimental framework towards a middleware that
integrates several EWS for an integrated climate-driven multi-hazard early warning
system using Kubernetes microservices. The experiment shows proper execution of
the deployed EWS docker image in the pod. The deployed pods were monitored
based on the throughput and CPU utilizations to verify the ability of pods to run con-
tainerized applications and has performed optimally. Preliminary tests carried out on
the platform are encouraging, but there are still much work to do in many aspects.
This study is advantageous in light of a research study that predicts over 75% of glob-
al organizations are expected to run containerized applications in production by 2022-
2023 [32]. The work reported in this paper is a subset of a bigger project aimed at
increasing data integration, interoperability, scalability, high availability, and reusa-
bility of EWSs for an integrated climate-driven multi-hazard early warning system.

References

1. ISDR, 2004. Terminology Basic Terms of Disaster Risk Reduction.
http://www.unisdr.org/eng/library/lib-terminology-eng%20home.htm.

2. Zeng, M.L., 2019. Interoperability. KO Knowledge Organization, 46(2), pp.122-146.
3. IDNDR, 1994. Yokahoma strategy and plan for action for a safer world. Yokahoma, Ja-

pan: United Nations. https://www.ifrc.org/Docs/idrl/I248EN.pdf (Accessed 2/9/2021)
4. UNISDR, 2006. Developing early warning systems, a checklist: third international confer-

ence on early warning (EWC III), 27-29 March 2006, Bonn, Germany. Geneva, Switzer-
land: UNISDR. http://www.undrr.org/publication/developing-early-warning-systems-
checklistthird-international-conference-early-warning (Accessed 01/03/21)

5. UNFCCC, 2015. Paris Agreement. Paris, France: United Nations Framework Convention
on Climate Change. https://unfccc.int/sites/default/fles/english_paris_agreement.pdf (Ac-
cessed 2-9-2021)

6. CRED, E., 2011. EM-DAT: The OFDA.
7. Guzzetti, F., Gariano, S.L., Peruccacci, S., Brunetti, M.T., Marchesini, I., Rossi, M. and

Melillo, M., 2020. Geographical landslide early warning systems. Earth-Science Reviews,
200, p.102973.

8. Rogers, D. and Tsirkunov, V., 2011. Costs and benefits of early warning systems. Global
assessment rep.

13

9. Teisberg, T.J. and Weiher, R.F., 2009. Benefits and Costs of Early Warning Systems for
Major Natural Hazards. Background Paper. World Bank.

10. Liu, C., Guo, L., Ye, L., Zhang, S., Zhao, Y. and Song, T., 2018. A review of advances in
China’s flash flood early-warning system. Natural hazards, 92(2), pp.619-634.

11. Apache Mesos, https://mesos.apache.org/, last accessed 2022/11/14
12. Braimoh, A., Manyena, B., Obuya, G. and Muraya, F., 2018. Assessment of food security

early warning systems for East and Southern Africa.
13. Šakić Trogrlić, R., van den Homberg, M., Budimir, M., McQuistan, C., Sneddon, A. and

Golding, B., 2022. Early warning systems and their role in disaster risk reduction. In To-
wards the “Perfect” Weather Warning (pp. 11-46). Springer, Cham.

14. Xu, Q., Peng, D., Zhang, S., Zhu, X., He, C., Qi, X., Zhao, K., Xiu, D. and Ju, N., 2020.
Successful implementations of a real-time and intelligent early warning system for loess
landslides on the Heifangtai terrace, China. Engineering Geology, 278, p.105817.

15. Kafle, S.K., 2017. Disaster early warning systems in Nepal: Institutional and operational
frameworks. Journal of Geography & Natural Disasters, 7(2), pp.2167-0587.

16. Masinde, M. and Bagula, A., 2011. ITIKI: bridge between African indigenous knowledge
and modern science of drought prediction. Knowledge Management for Development
Journal, 7(3), pp.274-290.

17. Jiménez, L., Conde-Porcuna, J.M., García-Alix, A., Toney, J.L., Anderson, R.S., Heiri, O.
and Pérez-Martínez, C., 2019. Ecosystem responses to climate-related changes in a Medi-
terranean alpine environment over the last~ 180 years. Ecosystems, 22(3), pp.563-577.

18. Auffhammer, M., 2018. Quantifying economic damages from climate change. Journal of
Economic Perspectives, 32(4), pp.33-52.

19. Edmonds, H.K., Lovell, J.E. and Lovell, C.A.K., 2020. A new composite climate change
vulnerability index. Ecological Indicators, 117, p.106529.

20. Akanbi, A.K. and Masinde, M., 2015, December. Towards semantic integration of hetero-
geneous sensor data with indigenous knowledge for drought forecasting. In Proceedings of
the Doctoral Symposium of the 16th International Middleware Conference (pp. 1-5).

21. Akanbi, A. and Masinde, M., 2020. A distributed stream processing middleware frame-
work for real-time analysis of heterogeneous data on big data platform: Case of environ-
mental monitoring. Sensors, 20(11), p.3166.

22. Newman, S., 2021. Building microservices. " O'Reilly Media, Inc.".
23. Burns, B., Beda, J., Hightower, K. and Evenson, L., 2022. Kubernetes: up and running. "

O'Reilly Media, Inc.".
24. Xiao, Z., Wijegunaratne, I. and Qiang, X., 2016, November. Reflections on SOA and Mi-

croservices. In 2016 4th International Conference on Enterprise Systems (ES) (pp. 60-67).
IEEE.

25. Docker SwarmKit, https://docs.docker.com/engine/swarm/key-concepts/, last accessed
2022/11/15

26. Google Kubernetes, https://cloud.google.com/kubernetes-engine, last accessed 2022/11/15
27. Redhat Open Shift, https://www.redhat.com/en/technologies/cloud-

computing/openshift/container-platform, last accessed 2022/11/15
28. Nomad, https://www.nomadproject.io/, last accessed 2022/11/08
29. Docker Compose, https://github.com/docker/compose, last accessed 2022/10/15
30. Cloudify, https://cloudify.co/, last accessed 2022/11/10
31. Muralidharan, S., Song, G. and Ko, H., 2019. Monitoring and managing iot applications in

smart cities using kubernetes. CLOUD COMPUTING, 11.

https://mesos.apache.org/
https://cloud.google.com/kubernetes-engine,%20last%20accessed%20e
https://cloud.google.com/kubernetes-engine,%20last%20accessed%20e
https://cloud.google.com/kubernetes-engine,%20last%20accessed%20e
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://www.nomadproject.io/
https://github.com/docker/compose
https://cloudify.co/

14

32. Global Application Container Market - Industry Trends and Forecast to 2029,
https://www.databridgemarketresearch.com/reports/global-application-container-market,
last accessed 2022/11/14.

33. Akanbi, A. and Masinde, M., 2020. A distributed stream processing middleware frame-
work for real-time analysis of heterogeneous data on big data platform: Case of environ-
mental monitoring. Sensors, 20(11), p.3166.

34. GitHub, https://github.com/yinchar/MHEWS-Kubernetes-Cluster-
EnvPram/blob/4b54786fa54b677b433f1aee1007c91875cf558f/cluster-environment-
parameters, last accessed 2022/11/18

35. Akanbi, A., 2019. Development of Semantics-Based Distributed Middleware for Hetero-
geneous Data Integration and its Application for Drought (Doctoral dissertation, Central
University of Technology, Free State).

36. Amará, J., Ströele, V., Braga, R., Dantas, M. and Bauer, M., 2022. Integrating Heteroge-
neous Stream and Historical Data Sources using SQL. Journal of Information and Data
Management, 13(2).

37. Turin, G., Borgarelli, A., Donetti, S., Johnsen, E.B., Tapia Tarifa, S.L. and Damiani, F.,
2020, October. A formal model of the kubernetes container framework. In International
Symposium on Leveraging Applications of Formal Methods (pp. 558-577). Springer,
Cham.

38. Bisong, E., 2019. Containers and google kubernetes engine. In Building Machine Learning
and Deep Learning Models on Google Cloud Platform (pp. 655-670). Apress, Berkeley,
CA.

https://www.databridgemarketresearch.com/reports/global-application-container-market
https://github.com/yinchar/MHEWS-Kubernetes-Cluster-EnvPram/blob/4b54786fa54b677b433f1aee1007c91875cf558f/cluster-environment-parameters
https://github.com/yinchar/MHEWS-Kubernetes-Cluster-EnvPram/blob/4b54786fa54b677b433f1aee1007c91875cf558f/cluster-environment-parameters
https://github.com/yinchar/MHEWS-Kubernetes-Cluster-EnvPram/blob/4b54786fa54b677b433f1aee1007c91875cf558f/cluster-environment-parameters

	1 Introduction
	2 Background
	2.1 Microservices and Containers Management
	2.2 Container Orchestration

	3 Proposed Experimental Framework
	3.1 Cluster Setup
	3.2 Results

	4 Conclusion
	References

