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Abstract. Environmental hazards—like water and air pollution, extreme weath-
er, or chemical exposures—can affect human health in a number of ways, and it 
is a persistent apprehension in communities surrounded by mining operations. 
The application of modern technologies in the environmental monitoring of 
these Human-made hazards is critical, because while not immediately health-
threatening may turn out detrimental with unwanted negative effects. Enabling 
technologies needed to realize this concept is multifaceted and most especially 
involves deploying interconnected Internet of Things (IoT) sensors, existing 
legacy systems, enterprise networks, multi-layered software architecture (mid-
dleware), and event-processing engines, amongst others. Currently, the integra-
tion of several early warning systems has inherent challenges, mostly due to the 
heterogeneity of components. This paper proposes transversal microservice-
based middleware aiming at increasing data integration, interoperability, scala-
bility, high availability, and reusability of adopted systems using a containers 
orchestration framework for a multi-hazard early warning system. Devised 
within the scope of the ICMHEWS project, the proposed platform aims at im-
proving known challenges. 

Keywords: Microservices, Kubernetes, Middleware, Containers, Interoperabil-
ity, Integration, Early Warning Systems. 

1 Introduction 

Natural hazards can be defined as “a serious disruption of the functioning of a com-
munity or a society causing widespread human, material, economic or environmental 
losses which exceed the ability of the affected community or society to cope using its 
own resources” [1]. The preparedness towards natural hazards is a key factor in the 
reduction of their impact on society. Natural hazards/disasters are mostly from com-
promised hydro-meteorological origins resulting in pollution and chemical exposure 
to naturally occurring ones from extremes of temperature, wind and rainfall. An im-
portant part of a holistic approach to disaster risk reduction (DRR) management of 
natural hazards or disasters is the set-up of early warning systems, with several inter-
national initiatives towards the development and promotion of early warning systems 
for all natural hazards [3],[4],[5]. 
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Early warning systems (EWS) can be defined as information systems with the abil-
ity to detect and provide warnings in the form of timely and effective information 
through identified institutions that allow individuals exposed to a hazard to take ac-
tion to avoid or reduce their risk and prepare for effective response [1]. Several stud-
ies have illustrated the effectiveness of an early warning system (e.g., 
[8],[9],[12],[13],). 

 

             
 

Fig. 1. Mean yearly number of people affected per decade (stacked bars) and comparison with 
global population for global water-related disasters in the world in the last 60 years, including 

trend for the future 40 years [6] 

In previous studies, EWS(s) are primarily constructed to target a particular natural 
hazard – this approach is widely used, especially those concerning natural hazards 
[7],[10],[14],[15],[16]. However, the world’s climate is changing [17-19], and natural 
hazards are now intertwined with environmental phenomena leading direct-
ly/indirectly to natural hazards occurring concurrently with cascading effects; the 
failure to integrate EWS could affect their effectiveness and reach. Thus, it is im-
portant to devise the integration of new and existing EWS for an integrated climate 
multi-hazard early warning system (ICMHEWS1). The specifications and require-
ments of existing EWS are extremely different depending on the application area, 
leading to ad-hoc implementations of monolithic software applications and cumber-
some legacy systems. The integration of several related EWS has inherent challenges, 
which are mostly data incompatibility and system interoperability due to heterogenei-
ty, reliability, availability, transparency and abstractions to applications [2],[20-
21],[35-36], inhibiting the possibility of harnessing an integrated MHEWS. 

 

 
1  https://urida.co.za/icmhews 
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In recent years, the field of cloud computing has shown rapid growth, and a variety 
of virtualization technologies have emerged, such as microservices, with immense 
application characteristics for monolithic heterogeneous systems or applications. 
Monolithic applications components are tightly coupled, having been developed, de-
ployed and managed as one entity. This results in increased rigidity and complexity of 
the system. On the other hand, microservices are loosely coupled, independently de-
ployed, cloud-native small services [22]. The cloud-native microservices exploit con-
tainerization orchestration framework and container management systems such as 
Google Kubernetes to deploy software components or applications separately, without 
compromising the application life cycle [23],[26]. Containers encapsulate a micro-
service environment, abstracting the hardware and software infrastructure and provide 
application portability across platforms as a resource-isolated process. This provides 
the ability to break down monolithic applications into software components, and run 
them as a node on a variety of Infrastructure as a Service (IaaS) or Platform as a Ser-
vice (PaaS). Therefore, containerization enables a paradigm shift from machine-
oriented to application-oriented orchestration, resulting in easier and faster deploy-
ment, improved scalability, increased utilization of computing resources, data integra-
tion and system interoperability. To automatically manage applications with contain-
ers, several orchestration frameworks are developed, such as Kubernetes [26], Docker 
SwarmKit [25] and Apache Mesos [11].  

 
In this paper, we develop a formal model towards the decomposition of monolithic 

EWS components as containerized microservices managed by Kubernetes. This al-
lows the deployment of EWS software components towards an integrated MHEWS 
under several configurations to be explored at the modelling level before deployment 
to production. Thus, the analysis of the performance, suitability, and usability of Ku-
bernetes in a decoupled monolithic EWS is an interesting and relatively new research 
area. We aim to facilitate the expediency of the Kubernetes container orchestration 
tool in MHEWS and highlight the limitation therein. 

 
Fig. 2. Monolithic vs Microservice Architecture 
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More specifically, the contributions of this research study can be summarized as 
follows: (i) describing the model for the distribution of containerized EWS software 
applications; (ii) proposing a model for the application of Kubernetes container 
scheduling techniques for the deployment of reliable and scalable MHEW distributed 
systems; (iii) validation in EWS is conducted, more especially, in drought forecasting 
domain, (iv) discussing the limitation of current Kubernetes container orchestration 
design for EWS. 

 
The rest of the paper is organized as follows. In the next Section, the background is 

discussed. Section 3 presents the proposed experimental framework architecture, the 
implementation in a test environment and performance results. Finally, conclusions 
are presented in Section 4. 

2 Background 

In this section, we present the relevant background of our work; we start by present-
ing an overview of microservices and container management. Then we present the 
containerized orchestration framework for the study. 

 
 

2.1 Microservices and Containers Management 

In a monolithic software application, all components and services are highly coupled, 
preventing scalability and reusability of these systems or even integration with new or 
existing ones. However, to overcome these challenges, a microservices-based archi-
tecture is used. The application principle of microservices is all about modularization 
and decoupling capabilities into components that are easily adapted to distributed 
hardware. This emanates from service-oriented architectures (SOA) [24]. In a nut-
shell, microservice-based architecture is the evolution of classical SOA [22, 33]. The 
adaptability of the SOA approach to a transversal microservice-based middleware is 
to ensure seamless implementations of the various software component such as APIs, 
extensions, heterogeneous technologies or clusters in the monolithic software applica-
tion or systems.  

Microservices are independent components conceptually deployed in isolation and 
equipped with dedicated resources for utilization. The components of a microservice 
architecture are microservices, with different behaviour derives from the composition 
and coordination of its decoupled software components. Microservices manage 
growing complexity by functionally decomposing large systems into a set of 
independent services [22]. This takes modularity to the next level by making services 
completely independent in development and deployment, through emphasis on loose 
coupling and high cohesion. This approach delivers all sorts of benefits in terms of 
maintainability, scalability, integration and interoperabilty. Containers encapsulate the 
execution environment providing the ability to develop, deploy and scale applications 
as multiple instances or a set of services without dependencies [22].  
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Fig. 3. A comparison of model of containerized application and VMs. 

In literature, there are several container orchestration tools developed by different 
companies or open-source communities, typical examples such as Google Kubernetes 
[26], Apache Mesos [11], OpenShift [27], Nomad [28], Docker Compose [29], Cloud-
ify [30], etc. Google Kubernetes is an open-source container orchestration tool for 
managing containerized applications across multiple hosts [23]. It provides automatic 
deployment, scaling and management of container-based applications or software 
components. Figure 3 depicts a logical representation of Kubernetes instances. The 
architectures follow a master-slave model or Pods concept, where a master node man-
ages the worker nodes (slaves) – set up as a cluster consisting of Kubernetes-master 
and a set of Kubernetes-workers. As consequence, these nodes can be executed on-
premises, in public cloud or hybrid infrastructure. The communication between mi-
croservices is possible only through interfaces using APIs. 

 
There are four master processes in a Kubernetes-master node, namely: the API 

server, scheduler, controller manager and etcd. The Kubernetes-worker node has 
three processes, the container runtime, Kubelet and the KubeProxy. The container 
runtime needs to be installed on every node. The smallest unit of a Kubernetes cluster 
is a pod, which is an abstraction over the container runtime; usually, one application 
is dedicated to running in pod. The communication between pods is possible through 
virtual networks, with each pod having its own internal IP address. Within one pod, 
containers can reference each other directly. The access to the executed applications is 
through external service in the form of the node IP address and the service’s port 
number e.g., http://124.95.101.2:8080. The external request goes to In-
gress, which passes the request to the services residing in the container node. 

 
Services are an integral part and another component of Kubernetes; services com-

prise a static or permanent IP address attached to each pod and act like a load balancer 
between pods. Each app in a pod has its own respective service with a disjointed life 
cycle. The two sub-types of services are the internal service and the external service. 
The internal service received request from ingress to access running containerized 
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applications via respective endpoints. The orchestration of requests is possible with 
the help of ConfigMap, which contains the external configuration of applications, they 
are connected to the pods for integrated applications. Configuration of secured exter-
nal applications makes use of Secret, which is similar to the ConfigMap to store ac-
cess credentials for secured infrastructure. Volumes are another important feature that 
allows saving of persistent data required by applications running in the pods. These 
data are available through external storage attached physically to the infrastructure in 
an on-prem environment or remotely to the cloud infrastructure. 

 

 
 

Fig. 4. A logical representation of Kubernetes components in a generic infrastructure [37]. 

 
2.2 Container Orchestration 

Containerization expedites the feasibility of running applications that are container-
ized over multiple hosts in different service models [31]. Kubernetes has grown into 
container orchestration standards by simplifying the deployment and management of 
a containerized application. The Kubernetes-master provides the API server – a clus-
ter gateway for scheduling various deployments and managing the overall cluster. 
This is achieved through RESTFul interface, which allows control point for managing 
the entire Kubernetes cluster. The interactions with the clusters or configuration of the 
Kubernetes-worker nodes are through Kubectl – a built-in Kubernetes Command Line 
Interface (CLI). The scheduler receives validated requests from the API server to start 
pods in the cluster. The container manager detects the state changes and notifies the 
scheduler if a container has to be restarted. Etcd is a key value pair store of the cluster 
state, used for coordinating resources and sharing cluster configuration; it acts as the 
brain of the cluster. In the Kubernetes-workers node, The Kubelet is a process that 
interfaces with both the container and the node and is responsible for starting a pod 
within a container and assigning resources from the node to the container. KubeProxy 
forwards service requests intelligently to available replicas in the cluster. 
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A cluster orchestration platform should be able to have fully automated, self-
managed and self-healing capabilities. It also provides the ability for scalability and 
integration of containerized applications, promoting interoperability and eliminating 
the isolation of applications and systems. Among various available orchestration plat-
forms in this paper, we have used Kubernetes for monitoring and managing EWS 
software components or applications. 

 

 
Fig. 5. Components of Kubernetes [38]. 

3 Proposed Experimental Framework 

In this study, we presented an experimental framework towards the integration of 
several EWS for an integrated MHEWS using microservices. The objective is to ad-
dress and eliminate the rigidity of monolithic EWS application for an ICMHEWS by 
implementing Kubernetes in a hybrid infrastructure. The infrastructure design consists 
of on-premises workstation and VMs in the cloud. The study adopts Microsoft Azure2 
cloud services to host the VMs with Azure Kubernetes Services, which are accessible 
via a public endpoint. Azure Kubernetes Services3 (AKS) provides automated man-
agement and scalability of Kubernetes clusters for our container orchestration with the 
ability to deploy containerized Windows and Linux applications in the cloud. Kuber-
netes orchestrates clusters of VMs and schedules containers to run on those virtual 
machines based on available resources and the resource requirements of each contain-
er. The presented solution suggests the ability of Kubernetes to implement container-
ized EWS applications using it load-balancing capabilities to respond to requests. 

 
2  https://www.portal.azure.com 
3  https://azure.microsoft.com/en-us/products/kubernetes-service/ 
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Fig. 6. Experimental framework of EWS application as microservices in AKS. 

3.1 Cluster Setup 

To replicate the execution of EWS application, we converted a software component of 
an EWS into a docker base image to be deployed as a containerized application using 
AKS. Our testbed is a VM in the Azure cloud, using a preset cluster configuration for 
the testing/dev environment. The VM configurations utilize a 4 vCPUs and 16GB 
memory with a primary node pool for size 10. All nodes run Kubernetes version 
1.23.12. The cluster name is given as MHEWS_KB_Cluster with a default scaling 
setting at Autoscale for prompt scalability depending on the computing requirement 
of the executed containerized application. The complete environmental variables for 
the cluster are available on GitHub at [34]. After creating the docker images now to 
orchestrate these containers created using installed Kubernetes 1.23.12 in the cloud 
cluster. The master node is the principal node controlling the rest of the machines 
which run as container execution nodes. Kubernetes provides the tools that automate 
the distribution of applications across the cluster. Next, we configure Kubernetes to 
deploy the application for conducting the experiment and compare the performance 
result. Figure 7, 8 & 9 below depicts the pods in the cluster nodes, the up-running 
services that facilitate communication and provision of requested services through the 
endpoints and the external service endpoint to access the cluster through the BASH 
shell. 
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Fig. 7. Running nodes’ pods in the deployed cluster 

 
Fig. 8. Deployed Kubernetes services and ingresses 

 
Fig. 9. Verification of the external service endpoint to access the cluster through the BASH 

shell. 
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A pod is defined by the YAML file that consists of the parameters of the container 
image for the EWS application. Code snippet 1 shows the example of variables for 
creating a microservice pod for Figure 6.  

Listing 1. Creating Pod for MHEWS microservice. 

 

apiVersion: apps/v1 
kind; Deployment 
metadata 
 name: MHEWS cluster 
spec: 
 replicas:1 
 selector: 
  matchLabels: 
   app: MHEWS Cluster 
 template: 
  metadata: 
   labels: 
    app: MHEWS Cluster 
 
 

To enable the monitoring of the executed containerized application, the performance 
of the deployed microservice was monitored against the compute resources provided 
for the cluster. The following resource utilization metrics were considered: 

• Throughput, which is a measure of how many units of information a system can 
process in a given amount of time is measured as a performance metrics of the 
cluster. It is measured in bits / second. 

• Cluster performance is the CPU utilization when interacting with the cluster. It is 
measured in CPU core usage in milliseconds and percentages.  

• Other metrics obtained are memory usage, network utilization in bytes and statuses 
for various node conditions. 

 
3.2 Results 

 
Fig. 10. Average Throughput for deployed microservice. 



11 

 
Fig. 11. CPU usage utilization. 

 
Fig. 12. Average CPU usage Milli-cores. 

 
Fig. 13. Average cluster memory utilization. 

 
Fig. 14. Status of various node conditions 

Figures 10, 11 and 12 show the effect of executing the containerized application as a 
microservice in the cluster. The figures reveal the throughput and CPU usage on aver-
age during execution, which are not overloaded or above the median threshold for the 
cluster configuration resources. This is important as it shows the ability of Kubernetes 
to run EWS applications as a containerized microservice. Figures 13 and 14 show a 
minimum memory utilization of the cluster – all within limits. From the results shows, 
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we can conclude that Kubernetes microservices is an excellent choice for decoupling 
monolithic EWS applications towards integration of several EWS for an integrated 
climate-driven multi-hazard early warning system. 
 
 The experimental results discussed above show that containers enabled with Ku-
bernetes are capable of running the EWS application as a microservice, which will 
foster integration and interoperability towards a fully-fledged integrated climate mul-
ti-hazard early warning system. The experimental setup to validate the proposed 
framework proved to be advantageous. 

4 Conclusion 

In this study, we presented an experimental framework towards a middleware that 
integrates several EWS for an integrated climate-driven multi-hazard early warning 
system using Kubernetes microservices. The experiment shows proper execution of 
the deployed EWS docker image in the pod. The deployed pods were monitored 
based on the throughput and CPU utilizations to verify the ability of pods to run con-
tainerized applications and has performed optimally. Preliminary tests carried out on 
the platform are encouraging, but there are still much work to do in many aspects. 
This study is advantageous in light of a research study that predicts over 75% of glob-
al organizations are expected to run containerized applications in production by 2022-
2023 [32]. The work reported in this paper is a subset of a bigger project aimed at 
increasing data integration, interoperability, scalability, high availability, and reusa-
bility of EWSs for an integrated climate-driven multi-hazard early warning system. 
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