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Abstract

With the recent growth in computer vision applications, the question of how fair
and unbiased they are has yet to be explored. There is abundant evidence that the bias
present in training data is reflected in the models, or even amplified. Many previous
methods for image dataset de-biasing, including models based on augmenting datasets,
are computationally expensive to implement. In this study, we present a fast and effective
model to de-bias an image dataset through reconstruction and minimizing the statistical
dependence between intended variables. Our architecture includes a U-net to reconstruct
images, combined with a pre-trained classifier which penalizes the statistical dependence
between target attribute and the protected attribute. We evaluate our proposed model on
CelebA dataset, compare the results with a state-of-the-art de-biasing method, and show
that the model achieves a promising fairness-accuracy combination.
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1 Introduction

Due to their increased usage within myriad software applications, artificial intelligence
algorithms now influence many aspects of people’s lives, particularly when they are embedded
into decision-support tools used by educators, government agencies, and various industry
sectors. Thus, it is crucial to make sure that these algorithms are scrutinized to ensure fairness
and remove unjust biases. Bias has been shown to exist in several deployed Al systems,
including the well known Correlational Offender Management Profiling for Alternative
Sanctions (COMPAS). COMPAS is an automated decision making system used by the US
criminal justice system for assessing a criminal defendant’s likelihood of re-offending. By
exploring the risk scores assigned to individuals, this system has been shown to be biased
against African Americans [4]. Other examples include a version of Google’s targeted
advertising system in which highly paid jobs were advertised more frequently to men vs.
women [12].
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Bias in computer vision is a major problem, often stemming from the training datasets
used for computer vision models [24]. There is evidence suggesting the existence of multiple
types of bias, including capture and selection bias, in popular image datasets [25]. The
problems arising from bias in computer vision can manifest in different ways. For instance, it
is observed that in activity recognition models, when the datasets contain gender bias, the bias
is further amplified by the models trained on those datasets [36]. Face recognition models
may exhibit lower accuracy for some classes of race or gender [2].

Works such as [26, 33] suggest methods to mitigate bias in visual datasets. Several studies
have deployed GANSs for bias mitigation in image datasets. For example, [22] modified the
value function of GAN to generate fair image datasets. FairFaceGAN [10] implements a
facial image-to-image translation, preventing unwanted translation in protected attributes.
Ramaswamy et al. propose a model to produce training data that is balanced for each protected
attribute, by perturbing the latent vector of a GAN [19]. Other studies employing GANs for
fair data generation include [3, 23].

A variety of techniques beyond GANs have been applied to the problems of fairness in Al
A deep information maximization adaptation network was used to reduce racial bias in face
image datasets [28], and reinforcement learning was used to learn a race-balanced network in
[27]. Wang et al. propose a generative few-shot cross-domain adaptation algorithm to perform
fair cross-domain adaption and improve performance on minority category [30]. The work
in [32] proposes adding a penalty term into the softmax loss function to mitigate bias and
improve fairness performance in face recognition. Quadriento et al. [17] propose a method
to discover fair representations of data with the same semantic meaning of the input data.
Adversarial learning has also successfully been deployed for this task [29, 34].

This paper addresses the issue of a decision-making process being dependent on protected
attributes, where this dependence should ideally be avoided. From a legal perspective, a
protected attribute is an attribute upon which discrimination is illegal [16], e.g. gender or
race. Let D = (X,S,)) be a dataset, where X represents unprotected attributes, S is the
protected attribute, and ) be the target attribute. If in the dataset D, the target attribute is not
independent of the protected attribute ()) £ S), then it is very likely that the decisions Y made
by a decision-making system which is trained on D, is also not independent of the protected
attribute (3 £ S).

We propose a model to reconstruct an image dataset to reduce statistical dependency
between a protected attribute and target attribute. We modify a U-net [20] to reconstruct
the image dataset and apply the Hilbert-Schmidt norm of the cross-covariance operator [6]
between reproducing kernel Hilbert spaces of the target attribute and the protected attribute, as
a measure of statistical dependence. Unlike many previous algorithms, our proposed method
doesn’t require training new classifiers on the unbiased data, but instead reconstructing images
in a way that reduces the bias entailed by using the same classifiers.

In Section 2 we present the problem, the notion of independence, and our proposed
methodology. In Section 3 we describe the CelebA dataset and the choice of feature catego-
rization, introduce the baseline model with which we compare our results [19], our model’s
implementation details, and finally present the experiments and results.

Bias mitigation methods can be divided into three general categories of pre-process, in-
process, and post-process. Pre-process methods include modifying the training dataset before
feeding it to the machine learning model. In-process methods include adding regularizing
terms to penalize some representation of bias during the training process. Finally, post-process
methods include modifying the final decisions of the classifiers [8]. Kamiran and Calders [11]
propose methods such as suppression which includes removing attributes highly correlated
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with the protected attribute, reweighing, i.e. assigning weights to different instances in the
data, and massaging the data to change labels of some objects. Bias mitigation methods often
come at the expense of losing some accuracy, and these preliminary methods usually entail
higher fairness-utility cost. More sophisticated methods with better results include using
generative models to augment the biased training dataset with unbiased data [19], or training
the models on entirely synthetic unbiased data [18]. Wang et al.[31] provide a set of analyses
and a benchmark to evaluate and compare bias mitigation techniques in visual recognition
models.

2 Methodology

Consider a dataset D = (X, S,)), where X is the set of images, ) = {+1,—1} is the target
attribute such as attractiveness, and S = {A, B, C, ...} is the protected attribute such as gender.
Assume there exists a classifier f: (X) — ), such that the classifier’s prediction for target
attribute is not independent from the protected attribute, i.e. f(X) L S. Our objective is to
design a transformation g : X — X ,such that 1) f (2? ) L S, i.e. the classifier’s predictions
for target attribute is independent of the protected attribute , and 2) f (2? )= f(X), i.e. the
classifier still achieves high accuracy.

In other words we want to train a network to transform our original images, such that if
the classifiers that are trained on the original and unmodified images, are used to predict the
target attribute (attractiveness in our example) from the transformed version of an image, they
still achieve high accuracy, while the predictions of those classifiers are independent of the
protected attribute (gender in our example). It should be noted that we are not seeking to train
new classifiers, but rather only aim to modify the input images. This is a main distinction
between our methodology and most of other techniques (e.g. [17] and [19]), in which the
process includes training new classifiers on modified new image datasets and achieving fair
classifiers.

Our proposed model consists of a U-net [20] as the neural network that transforms the
original images. This type of network was originally proposed for medical image segmenta-
tion, and has been widely used since its introduction. The encoder-decoder network consists
of two paths, a contracting path consisting of convolution and max pooling layers, and a
consecutive expansive path consisting of upsampling of the feature map and convolutions.
Contrary to [20] where each image is provided with a segmented image label, we provide our
U-net with the exact same image as the label, and alter the loss function from cross-entropy
to mean squared error, so that the network gets trained to produce an image as close to the
original image as possible, in a pixel-wise manner.

While some previous fairness studies consider decorrelating the target attribute from the
protected attributes, what must be ultimately sought however, is independence between the
protected attribute and the target attribute. Dealing with two random variables which are un-
correlated is easier than independence, as two random variables might have a zero correlation,
and still be dependent (e.g. two random variables A and B with recordings A = [-2,—1,0, 1,2]
and B = [4,1,0, 1,4] have zero covariance, but are apparently not independent). Given a Borel
probability distribution P, defined on a domain A x B, and respective marginal distributions
P, and P}, on A and B, independence of a and b (a_lLb) is equal to Py, factorizing as P, and
P,. Furthermore, two random variables a and b are independent, if and only if any bounded
continuous function of the two random variables are uncorrelated [7].

Let F and G denote all real-value functions defined on domains A and B respectively.
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Figure 1: Our model consists of an encoder-decoder (U-net) and a double-output pre-trained
ResNet classifier. First, the output batch of the U-net (reconstructed images) is compared
with the original batch of images by calculating MSE loss. Then, the output batch of the
U-net passes through the ResNet and statistical dependency of the two vectors is calculated
by HSIC. Detailed architecture of the U-net is described in the supplementary material.

In their paper Gretton et al. [6] define the Hilbert-Schmidt norm of the cross-covariance
operator:

HSIC(Py,, F,G) = ||Cul s M

where C,, is the cross-covariance operator. They show that if [|Cyp||% is zero, then cov(f,g)
will be zero for any f € F and g € G, and therefore the random variables a and b will be
independent. Furthermore, they show if Z := (ay,b}),..., (an,bn) € A x B are a series of n
independent observations drawn from P, then a (biased) estimator of HSIC is [6]:

HSIC(Z,F,G) = (n—1)"*tr(KHLH) )

where H,K,L € R™", K and L are Gram matrices [9], K;; := k(a;,a;), L;j = l(b;,b;), k and
[ are universal kernels, and H;; := 5 = n~! centers the observations in feature space. We
use Hilbert-Schmidt independence criteria to penalize the model for dependence between the
target attribute and the protected attribute.

2.1 Training Loss Function

We seek to modify a set of images, such that 1) the produced images are close to the original
images, and 2) the predicted target attribute is independent from the predicted protected
attribute. In the optimization problem, image quality (1) is measured by pixel-wise MSE loss.
For independence (2), consider our U-net network as a mapping from original image to the
transformed image, i.e. U, (x) = X. Consider also a function 4 : X — [0, 1] x [0,1], where
h(x;) = (hi(x;),ha2(x;)) = (P(y; = 1|x;),P(s; = 1]x;)). Our objective is to train the parameters
of Uy, such that i (Uyy(x))_1LA (U, (X)), i.e. b1 (Uy(x)) is independent of Ay (Uyy(X)) .

Given X representing a batch of N training images and X representing the transformed
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Figure 2: Examples of CelebA dataset original images. Images in the first row are labeled
not Male and images in the second row are labeled Male. In each row, the first three
images are labeled At t ract ive and the last three images are labeled not Attractive.

batch, our formal optimization problem is as follows:

NS <
minimize -~ Z Z (X} — er'ljk)2
w n=l1i,jk
image accuracy (3)
+ A x HSIC(hy (X), ha(X))

independence

where N is the number of samples, C is the number of channels of an image, W is the width
of an image, H is the height of an image, and A is the parameter that controls the trade-off
between accuracy of the transformed images and independence (fairness). In practice, the
mapping function U,, that we use is a U-net, the function A(-) is a pre-trained classifier with
two outputs & and hy, each being the output of a Sigmoid function within the range of [0, 1],
where h; = P(Y = 1]X) (a vector of size N), and h, = P(S = 1]X) (also a vector of size N),
and HSIC(-,-) denotes Hilbert-Schmidt Independence Criteria.

Figure 1 shows the network architecture and a schematic of the training procedure.
Consider a batch of original images X entering the U-net. The U-net then produces the
reconstructed images U,,(X) = X. To calculate the image accuracy part of the loss function,
the original image batch X is provided as label and the Mean Squared Error is calculated to
measure the accuracy of the reconstructed images. The ResNet component in Figure 1 is our
h(-) function as described before, which is a pre-trained ResNet classifier that takes as input
a batch of images and returns two probability vectors. The second part of the loss function,
independence, is calculated by entering the reconstructed images X into this ResNet classifier,
and calculating the HSIC between the two vectors.

As noted before, the image dataset is reconstructed in a way that using them on the
original biased classifiers, will result in an improvement in classifications. This is dissimilar
to some previous works such as [19] and [17], in which the model training process includes
augmenting the original dataset with generated images and training new fair classifiers [19],
or discovering fair representations of images and subsequently training new classifiers [17].
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3 Experiments

In this section, we test the methodology described in Section 2 on CelebA dataset [13]. We
first introduce the CelebA dataset and the attribute categories in CelebA. We then describe
the implementation details of our model. Subsequently, the method described in Ramaswamy
et al. [19] and the two versions of it that we use as baseline models to compare our results
with are introduced. Finally, we introduce evaluation metrics and present the results.

3.1 CelebA dataset

CelebA is a popular dataset that is widely used for training and testing models for face detec-
tion, particularly recognising facial attributes. It consists of 202,599 face images of celebrities,
with 10,177 identities. Each image is annotated with 40 different binary attributes de-
scribing the image, including attributes such as Black_Hair, Pale_Skin, Wavy_Hair,
Oval_Face,Pointy_Nose, and other attributes suchasMale, Attractive, Smiling,
etc. The CelebA dataset is reported to be biased [35]. In this experiment, we consider Male
attribute as the protected attribute (with Male = 0 showing the image does not belong to a
man and Male = 1 showing the image belongs to a man), and Attractive to be the target
attribute. We divide the dataset into train and test sets, with train set containing 182,599 and
test set containing 20,000 images. In the training set, 67.91% of images with Male = 0 are
annotated to be attractive (At tractive = 1), while only 27.93% of images with Male =1
are annotated as being attractive (Attract ive = 1). This shows bias exists against images
withMale = 1.

In order to compare our results with [19], we follow their categorization of CelebA
attributes. Leaving out gender (Male) as the protected attribute, among the rest 39 at-
tributes in CelebA dataset, [19] eliminates some attributes such as Blurry and Bald as
they contain less than 5% positive images. The remaining 26 attributes is subsequently
categorized into three groups. inconsistently-labeled attributes are the ones that by visu-
ally examining sets of examples, the authors often disagree with the labeling and could
not distinguish between positive and negative examples [19]. This group includes at-
tributes such as Straight_Hair, and Big_Hair. The second group of attributes are
the ones that are called gender-dependent and the images are labeled to have (or not have)
attributes based on the perceived gender [19]. These include attributes such as Young,
Arched_Eyebrows and Receding_Hairline. Finally, the last group of attributes are
called gender-independent. These attributes are fairly consistently labeled and are not much
dependent on gender expression. This group includes attributes such as Black_Hair,
Bangs, and Wearing_Hat. The list of all attributes is provided in supplementary material.

In order to compare our results with [19], we follow their categorization of CelebA at-
tributes. Leaving out gender (Male) as the protected attribute, among the rest 39 attributes
in CelebA dataset, [19] eliminates some attributes such as Blurry and Bald as they con-
tain less than 5% positive images. The remaining 26 attributes is subsequently categorized
into three groups. inconsistently-labeled attributes are the ones that by visually examining
sets of examples, the authors often disagree with the labeling and could not distinguish
between positive and negative examples [19]. This group includes Straight_Hair,
Big_Lips, Big_Nose, Oval_Face, Pale_Skin,and Wavy_Hair. The second
group of attributes are the ones that are called gender-dependent and the images are labeled
to have (or not have) attributes based on the perceived gender [19]. These include Young,
Arched_FEyebrows, Attractive, Bushy_Eyebrows, Pointy_Nose,and Recedi
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Figure 3: Examples of CelebA dataset images and how the model reconstructs them. The
first row shows a set of images from the original testing set, and the second row shows the
reconstructed images.

Finally, the last group of attributes are called gender-independent. These attributes are fairly
consistently labeled and are not much dependent on gender expression. This group of
attributes include Black_Hair, Bangs, Blond_Hair, Brown_Hair, Chubby,
Wearing_Earrings, Bags_Under_Eyes, Eyeglasses, Gray_Hair, High_C
Mouth_Slightly_Open, Narrow_Eyes, Smiling,andWearing_ Hat.

3.2 Attribute classifiers

For attribute classifiers, we use ResNet-18 pre-trained on ImageNet, in which the last layer is
replaced with a layer of size one, along with a Sigmoid activation for binary classification.
We train all models for 5 epochs with batch sizes of 128. We use the Stochastic Gradient
Descent optimizer with a learning rate of le-3 and momentum of 0.9. We use a step learning
rate decay with step size of 7 and factor of 0.1. After training, we will have 26 classifiers that
receive an image and perform a binary classification on their respective attribute.

3.3 Implementation details

As shown in Figure 1, a ResNet-18 network is used to accompany the U-net to produce
predictions for Male and Attractive. Prior to training the U-net, the ResNet-18 [21]
which is pre-trained on ImageNet, is modified by replacing its output layer with a layer of size
two, outputing the probability of attractiveness and gender. The ResNet-18 is then trained for
5 epochs on the train set, with a batch size of 128. We use the Stochastic Gradient Descent
optimizer with a learning rate of le-3 and momentum of 0.9. We use a step learning rate
decay with step size of 7 and factor of 0.1. After the ResNet is trained and prepared, we
train the U-net as described in Section 2 on the train set. The detailed architecture of the
U-net is described in Supplementary Material. In our implementation of biased estimator of
HSIC estimator in Equation 2, we use Gaussian RBF kernel function for k(-,-) and (-, -). The
training was conducted on a machine with two NVIDIA GeForce RTX 3090, and each training
of the U-Net took 1 hour. When the training is complete, the U-net is ready to reconstruct
images. Figure 3 shows six examples of how the U-net modifies the original images. We train
our model for 5 epochs with an A = 0.07.
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3.4 Comparison with baseline models

We compare our results with Ramaswamy et al.’s method, described in their paper ‘Fair
Attribute Classification through Latent Space De-biasing’ [19]. Building on work by [5]
which demonstrates a method to learn interpretable image modification directions, they
develop an improved method by perturbing latent vector of a GAN, to produce training data
that is balanced for each protected attribute. By augmenting the original dataset with the
generated data, they train target classifiers on the augmented dataset, and show that these
classifiers will be fair, with high accuracy. The second model that we compare our results with
is explicit removal of biases from neural network embeddings, presented in [1]. The authors
provide an algorithm to remove multiple sources of variation from the feature representation
of a network. This is achieved by including secondary branches in a neural network with the
aim to minimize a confusion loss, which in turn seeks to change the feature representation of
data such that it becomes invariant to the spurious variations that are desired to be removed.
We implement Ramaswamy et al.’s method as follows: As mentioned in their paper, we
used progressive GAN with 512-D latent space trained on the CelebA training set from the
PyTorch GAN Zoo. We use 10,000 synthetic images and label the synthetic images with a
ResNet-18 (modified by adding a fully connected layer with 1,000 neurons). Then we trained
a linear SVM to learn the hyper-planes in the latent space as proposed in the original paper.
We generate Xy, (160,000 images) to generate a synthetic dataset which aims to de-bias
Male from all 26 attributes one by one. Next, we train ResNet-18 classifiers on the new
datasets consisting of augmenting X’ and Xj,,. We call this model as GANDeb. We use the
implementation of [1] with the uniform confusion loss —(1/|D|)Y.;1og g, provided in [31].

3.5 Evaluation metrics

In evaluating the results of our model with the baseline models, three metrics are used.
To capture the accuracy of the classifiers, we measure the average precision. This metric
combines precision and recall at every position and computes the average. A higher average
precision (AP) is desired. To measure fairness, there are multiple metrics proposed in the
literature [15]. Among the most commonly used metrics is demographic parity (DP). This
metric captures the disparity of receiving a positive decision among different protected groups
(|P(Y = 1|S =0) — P(Y = 1|S = 1)|). A smaller DP shows a fairer classification and is
desired. Finally for our last fairness measure, we follow [14] and [19] and use difference in
equality of opportunity (DEQO), i.e. the absolute difference between the true positive rates for
both gender expressions (|TPR(S = 0) — TPR(S = 1)|). A smaller DEO is desired.

3.6 Results

All the values reported in this section, are evaluated on the same test set. Prior to comparing
the results of our method with the comparison models, to assess the original training data, the
performance of baseline classifiers being trained on the original train set, and tested on the
test set is presented. The AP, DP, and DEO values of classifiers trained on the original training
set is shown in Table 1 under Baseline. Looking into Baseline values, the AP of classifiers for
gender-independent category of attributes is higher than gender-dependent category, and the
AP of inconsistent category is less than the other two categories. As expected, DP and DEO
for gender-dependent category of attributes is higher than the other two categories.
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Figure 4: Exploring the trade-off between accuracy and fairness by incremental increasing of
parameter A. Each data point is the average over three trainings, with standard deviation of
the three trainings shown as confidence intervals.

In Table 1, we compare our model with GAN Debiasing (GanDeb) [19], Adversarial
debiasing (AdvDb) presented in [1], and the Baseline on the original data. Looking into the
average precision scores, the results show that GanDeb is slightly performing better than
Ours. This is anticipated, since half of the training data for GanDeb consists of the original
images, and therefore a higher average precision is expected. AdvDb on the other hand is
performing poorly in terms of average precision, with average precision scores far away from
other models.

Looking into demographic parity scores, the results show that GanDeb falls behind the
other two models in two out of three attribute categories. While Ours is performing better for
gender dependent and gender independent attribute categories. Looking into the third fairness
measure, difference in equality of opportunity, AdvDb and ours are performing better than
GanDeb in all three categories of attributes. Ours beats AdvDb for inconsistent attributes
category, AdvDb beats Ours in gender dependent category, and AdvDb slightly beats Ours
for gender independent category of attributes. In summary, Ours is close to GanDeb in terms
of maintaining high average precision scores, which means higher accuracy of prediction,
while beating GanDeb in terms of fairness metrics. Also, while AdvDb performance in terms
of fairness enforcement is better than ours in 3 out of 6 cases, it falls behind significantly in
terms of average precision.

To explore the trade-off between fairness and precision, we perform the following exper-
iment: A was increased between [0.01,0.15] in steps of 0.01, and for each value of 1, the
model was trained three times, each time for 1 epoch. Figure 4 shows how AP, DEO, and DP
change. The results show that by increasing A, precision decreases while fairness measures
improve.

AP DP | DEO |
Incons. | G-dep | G-indep | Incons. | G-dep | G-indep | Incons. | G-dep | G-indep
Baseline | 0.667 0.79 0.843 0.147 | 0.255 0.137 0.186 | 0.243 0.163
GanDeb | 0.641 | 0.763 0.831 0.106 | 0.233 0.119 0.158 0.24 0.142
AdvDb | 0.243 | 0.333 0.218 0.091 | 0.169 0.121 0.136 | 0.149 0.098
Ours 0.618 | 0.732 0.839 0.097 | 0.146 0.118 0.124 | 0.172 0.114

Table 1: Comparing the results of our model with Baseline, GAN debiasing (GanDeb), and
Adversarial debiasing (AdvDb). Showing AP (Average Precision, higher the better), DP
(Demographic Parity, lower the better), and DEO (Difference in Equality of Opportunity,
lower the better) values for each attribute category. Each number is the average over all
attributes within that specific attribute category.
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Figure 5: Displaying the relationship between an attribute’s statistical dependence on
Attractive attribute, and the extent to which the model modifies that attribute. Blue
bars show the HSIC between each attribute with Att ractive attribute in the original data.
Red bars show the absolute difference in demographic parity of each attribute’s classifier,
acting on original images and transformed images, respectively.

3.7 Interpretation and the effect on other attributes

In this section, we aim to display the correspondence between an attribute’s relationship
with Attractive attribute, and the extent to which the model modifies that attribute. To
do so, for each attribute, we record two values, namely HSIC value between that attribute
and the Attractive attribute, and the change in demographic parity. To calculate the
change in demographic parity, we first calculate the demographic parity of the classifier for
that specific attribute, when the classifier classifies the original testing set images (similar
to Baseline in previous tables, but for each attribute separately). We then calculate the de-
mographic parity of the classifier for that specific attribute, when the classifier receives the
modified training images Ours(5,0.07). We then subtract the two values, to get the change
in demographic parity for that specific attribute. Figure 5 presents the results, with the red
bars showing the change in demographic parity for each attribute, and the blue bars showing
the statistical dependence measured by HSIC, between each attribute with Attractive
attribute, in the original training data. The results show that the absolute change in demo-
graphic parity is positively correlated with that attribute’s statistical dependence with the
attribute Attractive, with a Pearson correlation coefficient of 0.757. For instance, we
observe large changes in demographic parity for attributes such as Young, Big_Nose,
Pointy_Nose, Oval_Face,and Arched_Eyebrows, as they are typically associated
with being attractive, and therefore reflected in the CelebA dataset labels.

4 Conclusions

We proposed an image reconstruction process to mitigate bias against a protected attribute. The
model’s performance was evaluated on CelebA dataset and compared with an augmentation
based method developed by [19]. The proposed model showed promising results in mitigating
bias while maintaining high precision for classifiers. An interesting aspect of the results is
that although we only explicitly train the U-net to remove dependence between the target
attribute (Attractive) and the protected attribute (Ma 1e), classifiers related to many other
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attributes, most of which have a statistical dependency with the target attribute, become
‘fairer’. An advantage of the proposed model is that it does not rely on modifying downstream
classifiers, and rather includes only modifying the input data, hence making it suitable to be
deployed in an automated machine learning pipeline more easily and with lower cost. As a
potential future direction, we intend to consider the problem in a situation where multiple
protected attributes are present, and attributes are non-binary. We also intend to apply similar
methodology on other data types such as tabular data.
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