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Abstract. We introduce a gradient-free data-driven framework for op-
timizing the power output of a wind farm based on a Bayesian approach
and large-eddy simulations. In contrast with conventional wind farm lay-
out optimization strategies, which make use of simple wake models, the
proposed framework accounts for complex flow phenomena such as wake
meandering, local speed-ups and the interaction of the wind turbines
with the atmospheric flow. The capabilities of the framework are demon-
strated for the case of a small wind farm consisting of five wind turbines.
It is shown that it can find optimal designs within a few iterations, while
leveraging the above phenomena to deliver increased wind farm perfor-
mance.
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Bayesian optimization.

1 Introduction

Today, the need for renewable energy sources is more urgent than ever. In the
UK, wind power is the largest source of renewable electricity, and the UK govern-
ment has committed to a further major expansion in capacity by 2030. However,
currently installed wind farms do not produce as much power as expected be-
cause the majority of the turbines operate within the wake field of other turbines
in the farm. A wind turbine operating within a wake field is an issue for two
reasons. First, the reduction of its power output due to wind speed deceleration,
and, second, the increase of fatigue loads due to increased wind fluctuations.

Wake effects can be minimised by optimally arranging the wind turbines over
the available land. Typically, wind farm layout optimization (WFLO) is carried
out with low-fidelity flow solvers (wake models) as objective function (farm power
output) evaluators [10,9]. Wake models are based on simplified assumptions for
the wakes of porous disks, and do not account for several mechanisms including
unsteadiness, non-linear interactions, or blockage, to name a few. As a result,
optimization based on wake models misses out on a number of opportunities
for performance gains through manipulation and, possibly, exploitation of these
phenomena. Furthermore, wake models typically provide discontinuous solutions,
which renders their use within gradient-based optimization algorithms problem-
atic. Nevertheless, wake models are almost invariably used in layout optimization
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studies due to their low computational cost (a single evaluation typically runs
in under a second).

More accurate approximations of the wind farm flow have been considered in
only a limited number of works [6,1]. In these works, the wind farm layout was
optimized by an adjoint approach and steady-state Reynolds-averaged Navier-
Stokes (RANS) simulations. The use of steady RANS allowed capturing a num-
ber of the aforementioned phenomena. Nevertheless, the assumption of a steady
flow means that the wake dynamics and the wake-to-wake and atmosphere-
to-wake interactions, which are critical for the wind farm layout optimization
problem, were not appropriately accounted for.

In this work, we present a gradient-free framework for optimizing the output
of a wind farm based on a Bayesian approach and high-fidelity large-eddy sim-
ulations of the flow around the wind farm. Bayesian optimization is a suitable
optimization strategy due to the multi-modality of the WFLO problem (which
makes gradient-based methods prone to getting stuck in local extrema), and the
high cost of evaluating the objective function (at least when an accurate model
of the flow field is desired, as in our study). The structure of the paper is as fol-
lows. The data-driven optimization framework is described in section 2. Section
3 discusses its application to a wind farm layout optimization problem. Finally,
section 4 summarises the present study.

2 Methodology

2.1 The optimization problem

We aim to maximise the overall power output P from N different wind turbines
experiencing K different wind states by controlling their position c = [x,y]

T
,

with x = (x1, . . . , xN ) and y = (y1, . . . , yN ), within a given space X. The space
X corresponds to the available land where the wind turbines may be installed.
To avoid overlap between the different wind turbines, we enforce a constraint
that ensures that their centers (i.e. their position) are spaced at least one turbine
diameter D apart. The optimization problem can be expressed as

arg max
c

N∑
n=1

K∑
k=1

akPn,k

s.t. c ∈X,

||ci − cj || > D, for i, j = 1, . . . , N and i 6= j

(1)

with ak being the weight (i.e. probability) of each wind state, which are
obtained from the local meteorological data (obtained via a measurement mast).

2.2 Flow solver

The power output of the wind turbines is computed with the open-source finite-
difference framework Xcompact3D [2], which solves the incompressible filtered
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Navier-Stokes equations on a Cartesian mesh using sixth-order compact schemes
and a third-order Adams-Bashforth method for time advancement [7]. Paralleli-
sation is achieved with the 2Decomp & FFT library, which implements a 2D pencil
decomposition of the computational domain [8]. The wind turbines are modelled
with the actuator disk method. The Smagorinsky model is used to model the
effects of the unresolved fluid motions. Finally, to realistically model the inter-
action of the wind farm with the atmospheric flow, a precursor simulation of a
fully-developed neutral atmospheric boundary layer is performed to generate the
inlet conditions. For more details on the numerical solver and a related validation
study, the reader is referred to [3].

2.3 Bayesian optimization algorithm

Bayesian optimization is a gradient-free optimization technique that consists of
two main steps. First, a surrogate model (here a Gaussian Process) of the objec-
tive function is computed given knowledge of its value for a set of parameters.
This also quantifies the uncertainty of the approximation. Second, it proposes
points in the search space where sampling is likely to yield an improvement.
This is achieved by minimising an acquisition function. In this work, we make
use of the GPyOpt library [11]. In particular, we use the Matérn 5/2 kernel and
the Expected Improvement acquisition function, which is minimised using the L-
BFGS algorithm. Bayesian optimization requires a number of initial samples to
start. In this work, these are obtained using both the Latin hypercube sampling
technique and a custom function that targets a uniform distribution of the wind
turbines over the available land X whilst favouring placement on the domain
boundaries (the initial layouts used in this study are shown in figure 4). For a
more thorough description of Bayesian optimization, along with an example of it
being used to optimize a chaotic fluid-mechanical system, the reader is referred
to [5].

3 Results

The data-driven optimization framework is deployed on the following problem.
The available land is a square of size 6D× 6D, where D = 100 m is the turbine
diameter. The wind blows from a single direction (easterly) and at constant
speed. The atmospheric boundary layer is characterised by friction velocity u∗ =
0.442 m/s, height δ = 501 m and roughness length z0 = 0.05 m, which correspond
to conditions in the North Sea [12]. The velocity at the hub height of the turbines,
h = 100 m, is Uh = 8.2 m/s and the turbulence intensity at the same level is
TIh = 7.4% (see figure 1). The wind turbines operate at a thrust coefficient
CT = 0.75. The size of the computational domain is 2004 × 1336 × 501 m in
the streamwise, spanwise, and vertical directions. It is discretised with 193 ×
128 × 49 points, respectively (amounting to ≈ 5 × 106 degrees of freedom at
each time step). The land where the turbines can be placed starts at x = 3.68D
from the upstream boundary. Periodic conditions are enforced on the lateral
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Fig. 1: Mean velocity (left) and turbulence intensity (right) of the simulated
atmospheric boundary layer.

domain boundaries. A time step ∆t = 0.15 s is used, with the maximum CFL
number remaining under 0.18. Statistics are averaged over a one-hour time period
following one hour of initialisation (each period corresponds to ≈ 15 flow-through
times based on the hub-height velocity).

We consider a wind farm consisting of five wind turbines. Five layouts are
used to initialise the Bayesian optimization. Four are generated with the Latin
hypercube sampling technique and one with the custom function (see section 2).
A snapshot of the streamwise velocity in the latter case is presented in figure 2,
which shows the turbulent nature of the flow field.

Fig. 2: Instantaneous streamwise velocity for layout #5. Three-dimensional view
including a square indicating the available land and five disks indicating the
turbine rotors (left). Horizontal cut at the turbine hub height (right).

The optimization runs in batch mode [4], with three sets of parameter values
to be explored proposed at every step. This means that convergence is poten-
tially sub-optimal; however, it allows for three numerical experiments to be run
in parallel. The optimization is stopped after 50 iterations. Each simulation re-
quired ≈ 70 CPU hours on ARCHER2. Figure 3 shows the optimization history.
The average farm output is normalised by the power produced by a single tur-
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bine placed at the center of the available land (denoted P0 and estimated via
a separate simulation). The optimization framework succeeds in increasing the
power output of the farm from that of the initial layouts, to the point where
it exceeds the power that would be produced from five individual turbines by
4.5%. This is of particular importance, as that would be the maximum output
estimated by conventional wake models.

Fig. 3: Normalised average wind farm power output (left) and best performance
history (right).

The initial layouts together with two explored during the optimization and
the best-performing one are presented in figure 4. For each layout, the figure also
shows the mean streamwise velocity at turbine hub height. In the case of the
best-performing layout (#40), the turbines are placed side-by-side, minimising
wake-turbine interference, with a small streamwise offset so that they can benefit
from the local acceleration of the flow around their neighbours. The normalised
power produced by each turbine (in ascending order with streamwise distance)
and the total normalised farm output are shown in table 1. Here, the third
turbine of layout #5 is of particular interest, as it is placed at the exact location
of the reference turbine, but produces 5% more power owing to speed-up effects.
As before, we note that such an increase in power could not be accounted for by
conventional wake models.

4 Conclusions

This study proposes a gradient-free data-driven framework that optimizes the
power output of a wind farm using a Bayesian approach and large-eddy simu-
lations of the flow around the farm. Unlike traditional wind farm optimization
strategies, which use simple wake models, this framework considers turbulent
flow dynamics including wake meandering, wake-to-wake and atmosphere-to-
wake interactions. The effectiveness of the framework is demonstrated through a
case study of a small wind farm with five turbines. It is shown that the optimiza-
tion can quickly find optimal designs whilst improving wind farm performance
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Case Layout ūh [m/s]

#1

#2

#3

#4

#5

Fig. 4: Example layouts and associated mean streamwise velocity at hub height
(continued on the next page).
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Case Layout ūh [m/s]

#20

#30

#40

Fig. 4: Example layouts and associated mean streamwise velocity at hub height
(continued from the previous page).

Layout P1/P0 P2/P0 P3/P0 P4/P0 P5/P0 Total

#1 0.975 1.000 0.654 0.857 0.803 4.287

#2 0.986 0.979 0.329 0.444 0.427 3.165

#3 1.005 0.987 0.989 0.398 1.059 4.438

#4 0.951 1.003 0.237 1.071 0.469 3.731

#5 1.001 1.016 1.050 0.513 0.532 4.113

#20 1.006 1.003 1.083 0.806 0.634 4.531

#30 0.984 1.007 1.092 0.916 1.099 5.099

#40 1.001 1.054 1.033 1.068 1.067 5.224

Table 1: Normalised turbine and farm power outputs for different farm layouts.
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by taking into account these complex flow phenomena. In the future, the frame-
work will be tested and applied to realistic configurations with complex wind
roses (multiple wind directions and velocities) and large wind farms with more
turbines.
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4. González, J., Dai, Z., Hennig, P., Lawrence, N.: Batch Bayesian optimization via
local penalization. In: Artificial Intelligence and Statistics. pp. 648–657. PMLR
(2016)

5. Huhn, F., Magri, L.: Gradient-free optimization of chaotic acoustics with reservoir
computing. Physical Review Fluids 7(1), 014402 (2022)

6. King, R.N., Dykes, K., Graf, P., Hamlington, P.E.: Optimization of wind plant
layouts using an adjoint approach. Wind Energy Science 2(1), 115–131 (2017)

7. Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: A
simple and efficient method with quasi-spectral accuracy. Journal of Computational
Physics 228(16), 5989 – 6015 (2009)

8. Laizet, S., Li, N.: Incompact3d: A powerful tool to tackle turbulence problems with
up to O(105) computational cores. International Journal for Numerical Methods
in Fluids 67(11), 1735–1757 (2011)
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