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Abstract. We present the Physics-Informed Long Short-Term Mem-
ory (PI-LSTM) network to reconstruct and predict the evolution of un-
measured variables in a chaotic system. The training is constrained by
a regularization term, which penalizes solutions that violate the sys-
tem’s governing equations. The network is showcased on the Lorenz-96
model, a prototypical chaotic dynamical system, for a varying number
of variables to reconstruct. First, we show the PI-LSTM architecture
and explain how to constrain the differential equations, which is a non-
trivial task in LSTMs. Second, the PI-LSTM is numerically evaluated
in the long-term autonomous evolution to study its ergodic properties.
We show that it correctly predicts the statistics of the unmeasured vari-
ables, which cannot be achieved without the physical constraint. Third,
we compute the Lyapunov exponents of the network to infer the key
stability properties of the chaotic system. For reconstruction purposes,
adding the physics-informed loss qualitatively enhances the dynamical
behaviour of the network, compared to a data-driven only training. This
is quantified by the agreement of the Lyapunov exponents. This work
opens up new opportunities for state reconstruction and learning of the
dynamics of nonlinear systems.
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1 Introduction

Chaotic dynamics arise in a variety of disciplines such as meteorology, chemistry,
economics, and engineering. Their manifestation emerges because of the expo-
nential sensitivity to initial conditions, which makes long-term time-accurate
prediction difficult. In many engineering cases, only partial information about
the system’s state is available, e.g., because of the computational cost or a limited
number of sensors in a laboratory experiment and hence, no data is available on
the unmeasured variables. Making predictions of the available observations and
reconstructing the unmeasured variables is key to understanding and predicting
the behaviour of dynamical systems.
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Neural networks are powerful expressive tools to extract patterns from data
and, once trained, they are fast and efficient at making predictions. Suitable
for time series and dynamical evolutions are recurrent neural networks (RNNs)
and long short-term memory networks (LSTMs), which have shown promising
performance in the inference of dynamical systems with multi-scale, chaotic, or
turbulent behaviour [13]. The integration of neural networks with knowledge
of governing physical equations has given rise to the field of physics-informed
neural networks [6,11]. More specifically, physics-informed RNNs with reservoir
computers have been applied successfully in the short-term reconstruction of
unmeasured variables [1, 10].

In this paper, we propose a physics-informed LSTM (PI-LSTM) to make
predictions of observed variables and, simultaneously, infer the unmeasured vari-
ables of a chaotic system. The quality of the prediction is evaluated by analysing
the autonomous long-term evolution of the LSTM and collecting the statistics of
the reconstructed variables. Crucial quantities for characterizing chaos are the
Lyapunov exponents (LEs), which provide insight into an attractor’s dimension
and tangent space. In this paper, we extract the LEs from an LSTM, trained on
a prototypical chaotic dynamical system. For state reconstruction, we show that
it is necessary to embed prior knowledge in the LSTM, which is in the form of
differential equations in this study.

The paper is structured as follows. Section 2 provides a brief introduction to
the LEs of chaotic systems and the problem setup of unmeasured variables. The
PI-LSTM is proposed in Section 3. In Section 4, we discuss the results for the
Lorenz-96 system. Finally, we summarize the work and propose future direction
in Section 5.

2 Chaotic dynamical systems

We consider a nonlinear autonomous dynamical system

d

dt
y(t) = f(y(t)), (1)

where y(t) ∈ RN is the state vector of the physical system and f : RN → RN is a
smooth nonlinear function. The dynamical system (1) is chaotic if infinitesimally
nearby trajectories diverge at an exponential rate. This behaviour is quantified
by the LEs, which measure the average rate of stretching of the trajectories in
the phase space. The LEs, λ1 ≥ · · · ≥ λN , provide fundamental insight into
the chaoticity and geometry of an attractor. Chaotic dynamical systems have at
least one positive Lyapunov exponent. In chaotic systems, the Lyapunov time
τλ = 1

λ1
defines a characteristic timescale for two nearby trajectories to sep-

arate, which gives an estimate of the system’s predictability horizon. LEs can
be computed numerically by linearizing the equations of the dynamical system
around a reference point, defining the tangent space, and by extracting the LEs
based on the Gram-Schmidt orthogonalization procedure from the corresponding
Jacobian [2].
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2.1 State reconstruction

Let y(t) = [x(t); ξ(t)] be the state of a chaotic dynamical system, where x(t) ∈
RNx are the observed variables and ξ(t) ∈ RNξ are the unmeasured variables with
N = Nx+Nξ. Specifically, let us assume that x(ti) is measured at times ti = i∆t
with i = 0, . . . Nt and constant time step ∆t. Based on these observations, we
wish to predict the full state y(ti) = [x(ti), ξ(ti)], whilst respecting the governing
equation (1), using the PI-LSTM.

3 Physics-Informed Long-Short Term Memory

LSTMs have been successfully applied to time forecasting of dynamical systems
when full observations are available [12, 13]. They are characterized by a cell
state ci+1 ∈ RNh and a hidden state hi+1 ∈ RNh that are updated at each step.
In the case of partial observations, the states are updated using the observed
variables x(ti) as follows

ii+1 = σ
(
W i[x(ti);hi] + b

i
)
,

fi+1 = σ
(
W f [x(ti);hi] + b

f
)
,

oi+1 = σ (W o[x(ti);hi] + b
o) ,

c̃i+1 = tanh (W g[x(ti);hi] + b
g),

ci+1 = σ (fi+1 ∗ ci + ii+1 ∗ c̃i+1) ,

hi+1 = tanh (ci+1) ∗ oi+1,

where ii+1,fi+1,oi+1 ∈ RNh are the input, forget and output gates. The matrices
W i,W f ,W o,W g ∈ RNh×(Nx+Nh) are the corresponding weight matrices, and
bi, bf , bo, bg ∈ RNh are the biases. The full prediction ỹ(ti+1) = [x̃(ti+1), ξ̃(ti+1)]
is obtained by concatenating the hidden state hi+1 with a dense layer[

x̃(ti+1)

ξ̃(ti+1)

]
=W densehi+1 + b

dense,

where W dense ∈ R(Nx+Nξ)×Nh and bdense ∈ RNx+Nξ .
LSTMs are universal approximators for an arbitrary continuous target func-

tion [3, 4]; however, practically, the network’s performance is dependent on the
parameters, such as weights and biases, which are computed during the train-
ing phase. To train the weights and biases, a data-driven loss is defined on the
observed data via the mean-squared error Ldd = 1

Nt

∑Nt
i=1 (x(ti)− x̃(ti))

2. To
constrain the network for the unmeasured dynamics, we add a penalization term

Lpi =
1

Nt

Nt∑
i=1

(
d

dt
ỹ(ti)− f(ỹ(ti))

)2

.

This loss regularizes the network’s training to provide predictions that fulfil the
governing equation from (1) (up to a numerical tolerance). For simplicity, the
time derivative d

dt ỹ is computed using a forward difference scheme

d

dt
ỹ(ti) ≈

ỹ(ti+1)− ỹ(ti)
∆t

.
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Fig. 1: Open-loop configuration.
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Fig. 2: Closed-loop configuration.

(Alternatively, the time derivative can be computed with a higher-order scheme.)
Combining the data-driven loss and weighing the physics-informed loss leads to
the total loss

L = Ldd + αpiLpi, αpi ∈ R+, (2)

where αpi is a penalty hyperparameter. If αpi = 0, the network is not constrained
by the governing equations, which is referred to as the ‘data-driven LSTM’.

The weights and biases are optimized by minimizing the loss L with the
Adam optimizer [5]. Early stopping is employed to avoid overfitting. During the
training and validation, the network is in an open-loop configuration, as shown
in Fig. 1. After training, the network is evaluated on test data with fixed weights
and biases, operating in a closed-loop configuration, as shown in Fig. 2. In this
mode, the network predicts the observed variables and the unmeasured variables,
while the observed variables are used as input for the next time step, allowing
for an autonomous evolution of the LSTM. This effectively defines a dynamical
system and allows for stability analysis to be performed on the LSTM.

Previous work showed that when Echo State Networks and Gated Recurrent
Units are employed to learn and predict full states from chaotic systems, the LEs
of the network align with those of the dynamical system [8,9,13] (to a numerical
tolerance), allowing to gain valuable insight into the behaviour of the network.
Thus, we analyse the LEs of the proposed PI-LSTM.

4 State reconstruction and Lyapunov exponents of the
Lorenz-96 model

The Lorenz-96 model is a system of coupled ordinary differential equations that
describe the large-scale behaviour of the mid-latitude atmosphere, and the trans-
fer of a scalar atmospheric quantity [7]. The explicit Lorenz-96 formulation of
dynamical system (1) is

d

dt
yi(t) = (yi+1(t)− yi−2(t)) yi−1(t)− yi(t) + F, i = 1, . . . , N, (3)
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where F is an external forcing. It is assumed that y−1(t) = yN−1(t), y0(t) =
yN (t) and yN+1(t) = y1(t). The state y(t) ∈ RN describes an atmospheric
quantity in N sectors of one latitude circle. In this study, we set F = 8 and
N = 10, for which the system exhibits chaos with three positive LEs. Both
the numerical solution and the reference LEs are computed using a first-order
Euler scheme with a time step of ∆t = 0.01. The largest Lyapunov exponent is
λ1 ≈ 1.59. The training set consists of Nt = 20000 points, which is equivalent to
125τλ. Hyperparameter tuning was utilized to optimise key network parameters.
In particular, the dimension of the hidden and cell state Nh was selected from
{20, 50, 100} and the weighing of the physics-informed loss αpi varied from 10−9

to 1 in powers of 10.
We deploy the PI-LSTM to reconstruct the unmeasured variables in three

test cases: reconstruction of (i) Nξ = 1, (ii) Nξ = 3, (iii) Nξ = 5 unmeasured
variables. We display networks with parameters (i) Nh = 100, αpi = 0.01, (ii)
Nh = 100, αpi = 0.01, and (iii) Nh = 50, αpi = 0.001. We choose test case (i) and
(ii) to highlight the capabilities of the PI-LSTM and select (iii) to demonstrate
how the network behaves with further limited information. (We remark that,
when the full state is available, both data-driven LSTM and PI-LSTM perform
equally well in learning the long-term statistics and the LEs.) The reconstruction
is based on an autonomous 1000τλ long trajectory in closed-loop mode.
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Fig. 3: Statistics reconstruction of unmeasured variables. Comparison of the tar-
get (black line), PI-LSTM (red dashed line) and data-driven LSTM (blue line)
probability density functions (PDF) of (i) Nξ = 1, (ii) Nξ = 3, (iii) Nξ = 5
unmeasured variables over a 1000τλ trajectory in closed-loop configuration.

In Fig. 3 we show the statistics of the reconstructed variables, which are un-
seen during the training and based on the autonomous evolution of the network.
The data-driven LSTM fails to reproduce the solution, in particular, the corre-
sponding delta-like distribution (in blue) indicates a fixed-point. In test cases
(i) and (ii), the PI-LSTM accurately reproduces the long-term behaviour of the
dynamical system. At each time step, it successfully extrapolates from the par-
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tial input to the full state. Case (iii) shows that, by increasing the number of
unmeasured observations, the complexity of the reconstruction is increased, and
the accuracy of the reconstruction is decreased. However, the PI-LSTM provides
a markedly more accurate statistical reconstruction of the target compared to
the data-driven LSTM. The PI-LSTM predicts the observed variables well (not
shown here), which indicates that incorporating knowledge of the underlying
physics enables accurate long-term prediction of the full state.
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Fig. 4: Comparison of the target (black squares), PI-LSTM (red dots) and data-
driven LSTM (blue dots) LEs for (i)Nξ = 1, (ii)Nξ = 3, (iii)Nξ = 5 unmeasured
variables. All the vertical axes are in logarithmic scale.

In Fig. 4, we compare the reference LEs (in black squares) with LEs extracted
from the data-driven LSTM (in blue circles) and PI-LSTM (in red circles) in the
three test cases. By reconstructing the unmeasured variables the networks effec-
tively reconstruct the tangent space, the properties of which are encapsulated
in the LEs. In all cases, the LEs of the data-driven LSTM deviate significantly
from the reference LEs, differing more from the target when fewer observations
are available. For test cases (i) and (ii), the PI-LSTM reproduces the target LEs
with high accuracy, with an error of 0.28% and 8% in λ1, respectively. When
reducing the number of observations further, as in (iii), the accuracy of the PI-
LSTM LEs is limited by the lack of information, with an error of 11.6% in λ1.
Figure 4 also shows that in cases (ii) and (iii) of the data-driven LSTM, the lead-
ing LE is negative (λ1 < 0), resulting in a completely incorrect solution (fixed
point solution). This means that in (ii) and (iii) the data-driven LSTM displays
no chaotic dynamics, whereas the PI-LSTM reproduces the chaotic behaviour.

5 Conclusions and future directions

We propose the Physics-Informed Long Short-Term Memory (PI-LSTM) net-
work to embed the knowledge of the governing equations into an LSTM, by
using the network’s prediction to compute a first-order derivative. In contrast to
physics-informed neural networks, which have no internal recurrent connections,
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the PI-LSTMs capture temporal dynamics whilst penalizing predictions that vi-
olate the system’s governing equations. We deploy the PI-LSTM to reconstruct
the unmeasured variables of the Lorenz-96 system, which is a chaotic system with
three positive Lyapunov exponents. The long-term prediction of the PI-LSTM
in closed-loop accurately reconstructs the statistics of multiple unmeasured vari-
ables. By computing the Lyapunov exponents of the PI-LSTM, we show the key
role of the physics-informed loss in learning the dynamics. This exemplifies how
leveraging knowledge of the physical system can be advantageous to reconstruct
and predict data in line with the fundamental chaotic properties. Future work
will focus on reconstructing unmeasured variables from experimental data.
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