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Abstract

We study the problem of comparing a pair of geometric networks that may not be sim-
ilarly defined, i.e., when they do not have one-to-one correspondences between their nodes
and edges. Our motivating application is to compare power distribution networks of a region.
Due to the lack of openly available power network datasets, researchers synthesize realistic
networks resembling their actual counterparts. But the synthetic digital twins may vary sig-
nificantly from one another and from actual networks due to varying underlying assumptions
and approaches. Hence the user wants to evaluate the quality of networks in terms of their
structural similarity to actual power networks. But the lack of correspondence between the
networks renders most standard approaches, e.g., subgraph isomorphism and edit distance,
unsuitable.

We propose an approach based on the multiscale flat norm, a notion of distance between
objects defined in the field of geometric measure theory, to compute the distance between a
pair of planar geometric networks. Using a triangulation of the domain containing the input
networks, the flat norm distance between two networks at a given scale can be computed
by solving a linear program. In addition, this computation automatically identifies the 2D
regions (patches) that capture where the two networks are different. We demonstrate through
2D examples that the flat norm distance can capture the variations of inputs more accurately
than the commonly used Hausdorff distance. As a notion of stability, we also derive upper
bounds on the flat norm distance between a simple 1D curve and its perturbed version as a
function of the radius of perturbation for a restricted class of perturbations. We demonstrate
our approach on a set of actual power networks from a county in the USA. Our approach
can be extended to validate synthetic networks created for multiple infrastructures such as
transportation, communication, water, and gas networks.

1 Introduction
The power grid is the most vital infrastructure that provides crucial support for the delivery of basic
services to most segments of society. Once considered a passive entity in power grid planning
and operation, the power distribution system poses significant challenges in the present day. The
increased adoption of rooftop solar photovoltaics (PVs) and electric vehicles (EVs) augmented
with residential charging units has altered the energy consumption profile of an average consumer.
Access to extensive datasets pertaining to power distribution networks and residential consumer
demand is vital for public policy researchers and power system engineers alike. However, the
proprietary nature of power distribution system data hinders their public availability. This has
led researchers to develop frameworks that synthesize realistic datasets pertaining to the power
distribution system [4, 13, 16, 17, 28, 29]. These frameworks create digital replicates similar to
the actual power distribution networks in terms of their structure and function. Hence the created
networks can be used as digital duplicates in simulation studies of policies and methods before
implementation in real systems.

The algorithms associated with these frameworks vary widely—ranging from first principles
based approaches [17, 28] to learning statistical distributions of network attributes [29] to using
deep learning models such as generative adversarial neural networks [14]. Validating the synthetic
power distribution networks with respect to their physical counterpart is vital for assessing the
suitability of their use as effective digital duplicates. Since the underlying assumptions and al-
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gorithms of each framework are distinct from each other, some of them may excel compared to
others in reproducing digital replicates with better precision for selective regions. To this end, we
require well-defined metrics to rank the frameworks and judge their strengths and weaknesses in
generating digital duplicates of power distribution networks for a particular geographic region.

The literature pertaining to frameworks for synthetic distribution network creation include cer-
tain validation results that compare the generated networks to the actual counterpart [4, 12, 29].
But the validation results are mostly limited to comparing the statistical network attributes such as
degree and hop distributions and power engineering operational attributes such as node voltages
and edge power flows. Since power distribution networks represent real physical systems, the cre-
ated digital replicates have associated geographic embedding. Therefore, a structural comparison
of synthetic network graphs to their actual counterpart becomes pertinent for power distribution
networks with geographic embedding. Consider an example where a digital twin is used to ana-
lyze impact of a weather event [27]. Severe weather events such as hurricanes, earthquakes and
wild fires occur in specific geographic trajectories, affecting only portions of societal infrastruc-
tures. In order to correctly identify them during simulations, the digital twin should structurally
resemble the actual infrastructure.

Problem Statement: In recent years, the problem of evaluating the quality of reconstructed net-
works has been studied for street maps. Certain metrics were defined to compare outputs of frame-
works that use GPS trajectory data to reconstruct street map graphs [1, 2]. The abstract problem can
be stated as follows: compute the similarity between a given pair of embedded planar graphs. This
is similar to the well known subgraph isomorphism problem [7] wherein we look for isomorphic
subgraphs in a pair of given graphs. A major precursor to this problem is that we require a one-to-
one mapping between nodes and edges of the two graphs. While such mappings are well-defined
for street networks, the same cannot be inferred for power distribution networks. Since power
network datasets are proprietary, the node and edge labels are redacted from the network before
it is shared. The actual network is obtained as a set of “drawings” with associated geographic
embeddings. Each drawing can be considered as a collection of line segments termed a geometry.
Hence the problem of comparing a set of power distribution networks with geographic embedding
can be stated as the following: compute the similarity between a given pair of geometries lying on
a geographic plane.

Our Contributions: We propose a new distance measure to compare a pair of geometries using the
flat norm, a notion of distance between generalized objects studied in geometric measure theory [9,
21]. This distance combines the difference in length of the geometries with the area of the patches
contained between them. The area of patches in between the pair of geometries accounts for the
lateral displacement between them. We employ a multiscale version of the flat norm [22] that uses a
scale parameter λ ≥ 0 to combine the length and area components (for the sake of brevity, we refer
to the multiscale flat norm simply as the flat norm). Intuitively, a smaller value of λ captures larger
patches of area between the geometries while a large value of λ captures more of the (differences
in) lengths of the geometries. Computing the flat norm over a range of values of λ allows us to
compare the geometries at multiple scales. For computation, we use a discretized version of the
flat norm defined on simplicial complexes [10], which are triangulations in our case. It may not be
possible to derive standard stability results for this distance measure that imply only small changes
in the flat norm metric when the inputs change by a small amount—there is no alternative metric
to measure the small change in the input. We demonstrate through 2D examples (in Fig. 8), for
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instance, that the commonly used Hausdorff metric cannot be used for this purpose. Instead, we
have derived upper bounds on the flat norm distance between a piecewise linear 1-current and its
perturbed version as a function of the radius of perturbation under certain assumptions provided
the perturbations are performed carefully (see Section 4.3).

A lack of one-to-one correspondence between edges and nodes in the pair of networks prevents
us from performing one-to-one comparison of edges. Instead we can sample random regions in
the area of interest and compare the pair of geometries within each region. For performing such
local comparisons, we define a normalized flat norm where we normalize the flat norm distance
between the parts of the two geometries by the sum of the lengths of the two parts in the region.
Such comparison enables us to characterize the quality of the digital duplicate for the sampled
region. Further, such comparisons over a sequence of sampled regions allows us to characterize
the suitability of using the entire synthetic network as a duplicate of the actual network.

Our main contributions are the following: (i) we propose a distance measure for comparing
a pair of geometries embedded in the same plane using the flat norm that accounts for deviation
in length and lateral displacement between the geometries; and (ii) we perform a region-based
characterization of synthetic networks by sampling random regions and comparing the pair of
geometries contained within the sampled region. The proposed distance allows us to perform
global as well as local comparisons between a pair of network geometries.

1.1 Related Work
Several well defined graph structure comparison metrics such as subgraph isomorphism and edit
distance have been proposed in the literature along with algorithms to compute them efficiently.
Tantardini et al. [31] compare graph network structures for the entire graph (global comparison) as
well as for small portions of the graph known as motifs (local comparison). Other researchers have
proposed methodologies to identify structural similarities in embedded graphs [3, 23]. However,
all these methods depend on one-to-one correspondence of graph nodes and edges rather than
considering the node and edge geometries of the graphs. The edit distance, i.e., the minimum
number of edit operations to transform one network to the other, has been widely used to compare
networks having structural properties [25, 26, 32]. Riba et al. [26] used the Hausdorff distance
between nodes in the network to compare network geometries. Majhi et al. [15] modified the
traditional definition of graph edit distance to be applicable in the context of “geometric graphs”
embedded in a Euclidean space. Along with the usual insertion and deletion operations, the authors
have proposed a cost for translation in computing the geometric edit distance between the graphs.
However, the authors also show that the problem of computing this metric is NP-hard.

Meyur et al. [18] compared network geometries using the Hausdorff distance after partitioning
the geographic region into small rectangular grids and comparing the geometries for each grid.
However, the Hausdorff metric is sensitive to outliers as it focuses only on the maximum possible
distance between the pair of geometries. When the geometries coincide almost entirely except in
a few small portions, the Hausdorff metric still records the discrepancy in those small portions
without accounting for the similarity over the majority of portions. The similar approach used by
Brovelli et al. [5] to compare a pair of road networks in a geographic region suffers from the same
drawback. This necessitates a well-defined distance metric between networks with geographic
embedding [2].

Several comparison methods have been proposed in the context of planar graphs embedded
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in a Euclidean space [6, 19]. They include local and global metrics to compare road networks.
The local metrics characterize the networks based on cliques and motifs, while the global metrics
involve computing the efficiency of constructing the infrastructure network. The most efficient
network is assumed to be the one with only straight line geometries connecting node pairs. Albeit
useful to characterize network structures, these methods are not suitable for a numeric comparison
of network geometries.

2 Preliminaries
Definition 2.1 (Geometric graph). A graph G (V,E) with node set V and edge set E is said to be
a geometric graph of Rd if the set of nodes V ⊂ Rd and the edges are Euclidean straight line
segments {uv | e := (u, v) ∈ E} which intersect (possibly) at their endpoints.

Definition 2.2 (Structurally similar geometric graphs). Two geometric graphs G0 (V0,E0) and
G1 (V1,E1) are said to be structurally similar at the level of γ ≥ 0, termed γ-similar, if dist (G0,G1) ≤
γ for the distance function dist between the two graphs.

We could consider a given network as a set of edge geometries. Hence we could consider the
problem of comparing geometric graphs G0 and G1 as that of comparing the set of edge geometries
E0 and E1. In this paper, we propose a suitable distance that allows us to compare between a pair
of geometric graphs or a pair of geometries. We use the multiscale flat norm, which has been well
explored in the field of geometric measure theory, to define such a distance between the geometries.

2.1 Multiscale Flat Norm
We use the multiscale simplicial flat norm proposed by Ibrahim et al. [10] to compute the distance
between two networks. We now introduce some background for this computation. A d-dimensional
current T (referred to as a d-current) is a generalized d-dimensional geometric object with orienta-
tions (or direction) and multiplicities (or magnitude). An example of a 2-current is a surface with
finite area (multiplicity) and a specific orientation (clockwise or counterclockwise). We use Cd to
denote the set of all d-currents, and Cd(Rp) to denote the set of d-currents embedded in Rp. Vd(T )
or |T | denotes the d-dimensional volume of T , e.g., length in 1D or area in 2D. The boundary of
T , denoted by ∂T , is a (d − 1)-current. The multiscale flat norm of a d-current T ∈ Cd, at scale
λ ≥ 0 is defined as

Fλ (T ) = min
S∈Cd+1

{Vd (T − ∂S) + λVd+1 (S)} , (1)

where the minimum is taken over all (d + 1)-currents S.Computing the flat norm of a 1-current
(curve) T identifies the optimal 2-current (area patches) S that minimizes the sum of the length of
current T − ∂S and the area of patch(es) S. Fig. 1 shows the flat norm computation for a generic
1D current T (blue). The 2D area patches S (magenta) are computed such that the expression
in Eq. (1) is minimized for the chosen value of λ that ends up using most of the patch under the
sharper spike on the left but only a small portion of the patch under the wider bump to the right.

The scale parameter λ can be intuitively understood as follows. Rolling a ball of radius 1/λ on
the 1-current T traces the output current T − ∂S and the untraced regions constitute the patches S.
Hence we observe that for a large λ, the radius of the ball is very small and hence it traces major
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Figure 1: Multiscale flat norm of a 1D current T (blue). The flat norm is the sum of length of the
resulting 1D current T − ∂S (green) and the area of 2D patches S (magenta). We show T − ∂S
slightly separated for easy visualization.

features while smoothing out (i.e., missing) only minor features (wiggles) of the input current. But
for a small λ, the ball with a large radius smoothes out larger scale features (bumps) in the current.
Note that for smaller λ, the cost of area patches is smaller in the minimization function and hence
more patches are used for computing the flat norm. We can use the flat norm to define a natural
distance between a pair of 1-currents T1 and T2 as follows [10].

Fλ (T1, T2) = Fλ (T1 − T2) (2)

We compute the flat norm distance between a pair of input geometries (synthetic and actual)
as the flat norm of the current T = T1 − T2 where T1 and T2 are the currents corresponding to
individual geometries. Let Σ denote the set of all line segments in the input current T . We perform
a constrained triangulation of Σ to obtain a 2-dimensional finite oriented simplicial complex K. A
constrained triangulation ensures that each line segment σi ∈ Σ is an edge in K, and that T is an
oriented 1-dimensional subcomplex of K.

Let m and n denote the numbers of edges and triangles in K. We can denote the input current
T as a 1-chain

∑m
i=1 tiσi where σi denotes an edge in K and ti is the corresponding multiplicity.

Note that ti = −1 indicates that orientation of σi and T are opposite, ti = 0 denotes that σi is not
contained in T , and ti = 1 implies that σi is oriented the same way as T . Similarly, we define the
set S to be the 2-chain of K and denote it by

∑m
i=1 siωi where ωi denotes a 2-simplex in K and si

is the corresponding multiplicity.
The boundary matrix [∂] ∈ Zm×n captures the intersection of the 1 and 2-simplices of K. The

entries of the boundary matrix [∂]ij ∈ {−1, 0, 1}. If edge σi is a face of triangle ωj , then [∂]ij is
nonzero and it is zero otherwise. The entry is −1 if the orientations of σi and ωj are opposite and
it is +1 if the orientations agree.

We can respectively stack the ti’s and si’s in m and n-length vectors t ∈ Zm and s ∈ Zn. The
1-chain representing T − ∂S is denoted by x ∈ Zm and is given as x = t − [∂] s. The multiscale
flat norm defined in Eq. (1) can be computed by solving the following optimization problem:

Fλ (T ) = min
s∈Zn

m∑
i=1

wi |xi|+ λ

(
n∑

j=1

vj |sj|

)
s.t. x = t− [∂] s, x ∈ Zm,

(3)
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where Vd (τ) in Eq. (1) denotes the volume of the d-dimensional simplex τ . We denote volume of
the edge σi as V1(σi) = wi and set it to be the Euclidean length, and volume of a triangle τj as
V2(τj) = vj and set it to be the area of the triangle.

In this work, we consider geometric graphs embedded on the geographic plane and are asso-
ciated with longitude and latitude coordinates. We compute the Euclidean length of edge σi as
wi = R∆ϕi where ∆ϕi is the Euclidean normed distance between the geographic coordinates of
the terminals of σi and R is the radius of the earth. Similarly, the area of triangle τj is computed as
vj = R2∆Ωj where ∆Ωj is the solid angle subtended by the geographic coordinates of the vertices
of τj .

Using the fact that the objective function is piecewise linear in x and s, the minimization
problem can be reformulated as an integer linear program (ILP) as follows:

Fλ (T ) = min
m∑
i=1

wi

(
x+
i + x−

i

)
+ λ

(
n∑

j=1

vj
(
s+j + s−j

))
(4a)

s.t. x+ − x− = t− [∂]
(
s+ − s−

)
(4b)

x+,x− ≥ 0, s+, s− ≥ 0 (4c)
x+,x− ∈ Zm, s+, s− ∈ Zn (4d)

The linear programming relaxation of the ILP in Eq. (4) is obtained by ignoring the integer con-
straints Eq. (4d). We refer to this relaxed linear program (LP) as the flat norm LP. Ibrahim et
al. [10] showed that the boundary matrix [∂] is totally unimodular for our application setting.
Hence the flat norm LP will solve the ILP, and hence the flat norm can be computed in polynomial
time.

Algorithm 1 describes how we compute the distance between a pair of geometries with the as-
sociated embedding on a metric spaceM. We assume that the geometries (networks) G1 (V1,E1)
and G2 (V2,E2) with respective node sets V1,V2 and edge sets E1,E2 have no one-to-one corre-
spondence between the Vi’s or Ei’s. Note that each vertex v ∈ V1,V2 is a point and each edge
e ∈ E1,E2 is a straight line segment in M. We consider the collection of edges E1,E2 as input
to our algorithm. First, we orient the edge geometries in a particular direction (left to right in our
case) to define the currents T1 and T2, which have both magnitude and direction. Next, we con-
sider the bounding rectangle Ebound for the edge geometries and define the set Σ to be triangulated
as the set of all edges in either geometry and the bounding rectangle. We perform a constrained
Delaunay triangulation [30] on the set Σ to construct the 2-dimensional simplicial complex K. The
constrained triangulation ensures that the set of edges in Σ is included in the simplicial complex
K. Then we define the currents T1 and T2 corresponding to the respective edge geometries E1 and
E2 as 1-chains in K. Finally, the flat norm LP is solved to compute the simplicial flat norm.

2.2 Normalized Flat Norm
Recall that in our context of synthetic power distribution networks, the primary goal of compar-
ing a synthetic network to its actual counterpart is to infer the quality of the replica or the digital
duplicate synthesized by the framework. The proposed approach using the flat norm for structural
comparison of a pair of geometries provides us a method to perform global as well as local com-
parison. While we can produce a global comparison by computing the flat norm distance between
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Algorithm 1: Distance between a pair of geometries
Input: Geometries E1,E2

Parameter: Scale λ
1: Orient each edge in the edge sets from left to right: Ẽ1 := Orient (E1) ; Ẽ2 := Orient (E2).
2: Find bounding rectangle for the pair of geometries:

Ebound = rect
(
Ẽ1, Ẽ2

)
.

3: Define the set of line segments to be triangulated:
Σ = Ẽ1 ∪ Ẽ2 ∪ Ebound.

4: Perform constrained triangulation on set Σ to construct 2-dimensional simplicial complex K.
5: Define the currents T1, T2 as 1-chains of oriented edges

Ẽ1 and Ẽ2 in K.
6: Solve the flat norm LP to compute flat norm Fλ (T1 − T2).

Output: Flat norm distance Fλ (T1 − T2).

the two networks, it may not provide us with complete information on the quality of the synthetic
replicate. On the other hand, a local comparison can provide us details about the framework gen-
erating the synthetic networks. For example, a synthetic network generation framework might
produce higher quality digital replicates of actual power distribution networks for urban regions as
compared to rural areas. A local comparison highlights this attribute and identifies potential use
case scenarios of a given synthetic network generation framework.

Furthermore, availability of actual power distribution network data is sparse due to its propri-
etary nature. We may not be able to produce a global comparison between two networks due to
unavailability of network data from one of the sources. Hence, we want to restrict our compar-
ison to only the portions in the region where data from either network is available, which also
necessitates a local comparison between the networks.

For a local comparison, we consider uniform sized regions and compute the flat norm distance
between the pair of geometries within the region. However, the computed flat norm is dependent on
the length of edges present within the region from either network. Hence we define the normalized
multiscale flat norm, denoted by F̃λ, for a given region as

F̃λ (T1 − T2) =
Fλ (T1 − T2)

|T1|+ |T2|
. (5)

For a given parameter ϵ, a local region is defined as a square of size 2ϵ× 2ϵ steradians. Let T1,ϵ

and T2,ϵ denote the currents representing the input geometries inside the local region characterized
by ϵ. Note that the “amount” or the total length of network geometries within a square region varies
depending on the location of the local region. In this case, the lengths of the network geometries are
respectively |T1,ϵ| and |T2,ϵ|. Therefore, we use the ratio of the total length of network geometries
inside a square region to the parameter ϵ to characterize this “amount” and denote it by |T |/ϵ where

|T |/ϵ = |T1,ϵ|+ |T2,ϵ|
ϵ

. (6)

Note that while performing a comparison between a pair of network geometries in a local region
using the multiscale flat norm, we need to ensure that comparison is performed for similar length
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of the networks inside similar regions. Therefore, the ratio |T |/ϵ, which indicates the length of
networks inside a region scaled to the size of the region, becomes an important aspect of charac-
terization while performing the flat norm based comparison.

3 Implementation of flat norm.

3.1 Geometry comparison using flat norm.
We show a simple example depicting the use of flat norm to compute the distance between a pair
of geometries that are two line segments of equal length meeting at their midpoints in Fig. 2. As
the angle between the two line segments decreases from 90 to 15 degrees, the computed flat norm
also decreases.

Figure 2: Variation in flat norm for pairs of geometries as the angle between them decreases. When
the geometries are perpendicular to each other, flat norm distance is the maximum and it decreases
as the angle decreases.

3.2 Flat norm computation for a pair of geometries.
We demonstrate the steps involved in computing the flat norm for a pair of input geometries in

Fig. 3. The input geometries are a collection of line segments shown in blue and red (top left). We
construct the set Σ by combining all the edges of either geometry along with the bounding rectangle
(top right). Thereafter, we perform a constrained triangulation to construct the 2-dimensional
simplicial complex K (bottom left). Finally, we compute the multiscale simplicial flat norm with
λ = 1 (bottom right). Note that this computation captures the length deviation (shown by green
edges) and the lateral displacement (shown by the magenta patches).
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Figure 3: Steps in computing the flat norm for a pair of input geometries.

3.3 Flat norm computation for a pair of networks.
The steps involved in computing the multiscale flat norm distance between a pair of geometries
are shown in Fig. 4. They include the actual power distribution network (red) for a region in a
county from USA and the synthetic network (blue) constructed for the same region [17]. First, we
orient each edge in either network from left to right. Thereafter, we find the enclosing rectangular
boundary around the pair of networks. We perform a constrained Delaunay triangulation which
ensures that the edges in the geometries and the convex boundary are selected as edges of the
triangles. Finally the flat norm LP (relaxation of the ILP in Eq. (4)) is solved to compute the flat
norm distance between the networks.

The multiscale flat norm produces different distance values for different values of the scale pa-
rameter λ. Fig. 5 shows the flat norm distance between the actual and synthetic power network for
the same region for multiple values of the scale parameter λ. We observe that as λ becomes larger,
the 2D patches used in computing the flat norm become smaller as it becomes more expensive to
use the area term in the flat norm LP minimization problem.

The variation of the computed flat norm for different values of the scale parameter is sum-
marized in Fig. 6. As the scale parameter is increased, fewer area patches are considered in the
simplicial flat norm computation. This is captured by the blue decreasing curve in the plot. The
computed flat norm increases for larger values of the scale parameter λ as more and more indi-
vidual currents contribute their unscaled length toward the flat norm value instead of becoming a
boundary of some area component, which, if there are any, now also contribute more because of
the increased scale λ. We show the plot with two different vertical scales: the left scale indicates
the deviation in length (measured in km) and the right scale shows the deviation expressed through
the area patches (measured in sq.km).

3.4 Comparing Network Geometries
The primary goal of computing the flat norm is to compare the pair of input geometries. As
mentioned earlier, the flat norm provides an accurate measure of difference between the geometries
by considering both the length deviation and area patches in between the geometries. Further, we
normalize the computed flat norm to the total length of the geometries. In this section, we show
examples where we computed the normalized flat norm for the pair of network geometries (actual
and synthetic) for a few regions.
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Figure 4: Steps showing the flat norm distance computation between two networks (shown in blue
and red in the top two plots). First, the convex rectangular boundary around the pair of networks is
identified. A constrained triangulation is computed such that the edges in the networks and convex
boundary are edges of triangles (middle). The flat norm LP is solved to compute the simplicial
flat norm, which includes the sum of areas of the magenta triangles and lengths of green edges
(bottom).
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Figure 5: The flat norm computed between the pair of network geometries for three values of the
scale parameter λ ranging between λ = 1000 to λ = 10000.
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Figure 6: Effect of varying the scale parameter λ in the flat norm computation. The flat norm
for a 1-dimensional current consists of two parts: a length component and a scaled surface area
component. The variations in the length component and the unscaled surface area component
(right vertical scale) are also shown.

The top two plots in Fig. 7 show two regions characterized by ϵ = 0.001 and almost similar
|T |/ϵ ratios. This indicates that the length of network scaled to the region size is almost equal for
the two regions. From a mere visual perspective, we can conclude that the first pair of network
geometries resemble each other where as the second pair are fairly different. This is further val-
idated from the results of the flat norm distance between the network geometries computed with
the scale λ = 1000, since the first case produces a smaller flat norm distance compared to the
latter. The bottom two plots show another example of two regions with almost similar |T |/ϵ ratios
and enable us to infer similar conclusions. The results strengthens our case of using flat norm as
an appropriate measure to perform a local comparison of network geometries. We can choose a
suitable γ > 0 which differentiates between these example cases and use the proposed flat norm
distance metric to identify structurally similar network geometries. However, the choice of γ has
to be made empirically. This necessitates a statistical study of randomly chosen local regions in
different sections of the networks, which is performed in the Section 5.

4 Notion of stability for the flat norm distance
We now investigate two approaches to define a notion of stability for the flat norm distance. For
any measure of discrepancy between objects, the notion of stability is not only desirable from a
theoretical standpoint but is also necessary for practical applications. The comparison metric is said
to be stable if small changes in the input geometries lead to only small changes in the measured
discrepancy. But such a formulation introduces a “chicken and an egg” problem—in order to
evaluate the stability of a proposed metric we need an alternative baseline metric to measure the
small change in the input. Of course, the baseline metric should be stable as well. This constitutes
the first approach. The alternative approach is to derive directly an upper bound on the proposed
metric under well-defined controlled perturbations of input geometries.

13



Figure 7: Normalized flat norm (with scale λ = 1000) distances for pairs of regions in the network
of same size (ϵ = 0.001) with similar |T |/ϵ ratios (two pairs each in the top and bottom rows).
The pairs of geometries for the first plot (on left) are quite similar, which is reflected in the low flat
norm distances between them. The network geometries on the right plots are more dissimilar and
hence the flat norm distances are high.

The Hausdorff distance metric DH , which has been extensively used in the literature for com-
paring geometrically embedded networks, is stable in this sense, and is hence a natural choice for
use as the baseline metric. At the same time, the Hausdorff distance is not sensitive enough to
adequately measure small changes in the input geometries. Let us consider a δ-ball around each
node in the network for a chosen perturbation radius δ > 0. We then uniformly sample a point
in each circular region and use them as the perturbed embeddings of the nodes. The Hausdorff
distance will change if the perturbation is either significantly large to overshadow the current value
by moving some node far enough, or it is very specific and affects the maximizer nodes of DH .
As will be shown in the next subsection (Sec. 4.1) on a few simple counter-examples and the real-
world networks introduced in the previous section (Sec. 3.3), knowing the value of the Hausdorff
distance or how it changed is not enough to infer any useful information about the flat norm dis-
tance, and vice versa. Even though our examples are 1-dimensional, the behavior can be observed
in any dimension.

In the subsequent subsection (Sec. 4.3), under some mild assumptions about the scale and the
radius of perturbation, we derive an upper bound on the flat norm distance for the case of simple
piecewise linear curves in R2. We formalize these curves as a special class of integral 1-currents,
namely the piecewise linear currents, and study a class of (positive) δ-perturbations of their nodes.
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It allows us to track the change of the components of the flat norm distance while perturbing each
node one by one, which in turn allows us to construct a non-trivial upper bound on Fλ between the
original 1-current and its final perturbed version.

4.1 Comparing the Hausdorff and the flat norm distance
We refer the reader to standard textbooks on geometric measure theory [9, 21] for the formal defi-
nition of integral currents and other related concepts. For our purposes, it is sufficient to consider
an integral current as a collection of oriented manifolds with or without boundary, and with integer
multiplicities as well as orientations for each submanifold. Recall from Sec. 2.1 that Cd(Rd+1)
denotes the set of all oriented d-dimensional integral currents (d-current) embedded in Rd+1, and
supp(T ) ⊂ Rd+1 is the d-dimensional support for T ∈ Cd(Rd+1). Let X ∈ Cd(Rd+1) with (d− 1)-
boundary ∂X ∈ Cd−1(Rd+1), then the set of all d-currents embedded in Rd+1 spanned by the
boundary of X is denoted as Cd[∂X;Rd+1] ⊂ Cd(Rd+1), or simply Cd[∂X] if the embedding space
is clear from the context.

Let T0, T1 ∈ Cd(Rd+1) be two integral d-currents in Rd+1, and ∥v − u∥d be the Euclidean
distance between u, v ∈ Rd. The Hausdorff distance between currents T1 and T0 is given by

DH(T1, T0) = max

{
sup

v∈suppT0

D(v, T1), sup
v∈suppT1

D(v, T0),

}
where D(v, T ) is the distance from a point to a current given as

D(v, T ) = inf
u∈suppT

∥v − u∥d .

Let X = T1−T0−∂S be the d-component of the flat norm decomposition in Eq. (1). Note that
∂X = ∂T1−∂T0−∂∂S = ∂T1−∂T0, i.e., X ∈ Cd[∂T1−∂T0], and it can be rendered to zero only if
∂T1−∂T0 ≡ 0. Hence, the volume of the minimal d-current spanned by ∂T1−∂T0 provides a lower
bound on Fλ(T1−T0). On the other hand the Hausdorff distance between boundaries DH(∂T1, ∂T0)
doesn’t provide any meaningful insights about the actual value of DH(T1, T0). This prompts us to
suspect that the Hausdorff distance between two d-currents does not have any meaningful relations
with the value of the flat norm distance. In fact, we expect Fλ(T1 − T0) to be more sensitive to
perturbations of input geometries. Moreover, as can be seen from the examples below and the
discussion in the following Section 4.3, given that the scale λ > 0 is small enough, when T1 is
perturbed within a δ-tube the range of incurred changes of the flat norm distance depends, mainly,
on the size of perturbation δ > 0 and the input volume Vd(T1), and not on DH(T1, T0). Although
the examples in this Section are given for 1-currents in R2 for illustrative purposes, this conclusion
holds in the general case of d-currents as well.

Example 4.1 (Fixing DH(T̃1, T0)). Let T1 and T0 be two 1-currents in R2 with common boundaries,
∂T1 = −∂T0, and let H = DH(T1, T0) be the Hausdorff distance between them. For some small
δ > 0, consider T̃1—a perturbation of T1 within an δ-tube—such that the boundaries and the
Hausdorff distance do not change:

∂T̃1 = ∂T1 and DH(T̃1, T0) = H.
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Figure 8: Top Left: The input curves T1 and T0 with shared endpoints and Hausdorff distance
DH(T1, T0) = H . At a small enough scale λ > 0, the flat norm distance Fλ(T1−T0) corresponds to
the orange patch in between them. Right: Example 1. The example perturbations T̃1 (solid blue)
that lie within a δ-neighborhood (gray) of T1(dashed blue). The Hausdorff distance between T̃1 and
T0 remains same, i.e., H . The green patch (Right, Top) captures the increment ∆F, and beneath it
(Right, Bottom) the pink area corresponds to the decrement ∆F. Bottom Left: Example 2. The
example perturbation of T1 that moves only the maximizer of DH(T1, T0) further away from T0 so
that DH(T̃1, T0) = H ′ >> H . The flat norm distance increases by ∆F that corresponds to the area
of the created spike, which can be arbitrary small.

Note that DH(∂T1, ∂T0) = DH(∂T1, ∂T̃1) = 0. See Fig. 8 for examples of perturbations T̃1.
We could have cases where T̃1 lies mostly at the upper envelope of this δ-tube, causing the

flat norm distance to increase by ∆Fλ =
∣∣∣Fλ(T1 − T0)− Fλ(T̃1 − T0)

∣∣∣ (highlighted in green), or
mostly at the lower envelope causing a decrease in the flat norm distance, respectively (highlighted
in pink). In both cases, one would expect the ideal measure of discrepancy between T̃1 and T0

to change significantly as well (compared to the one between T1 and T0). The flat norm distance
accurately captures all such changes (to keep the example simple, we consider the default flat norm
distance and not the normalized version). At the same time, both such variations could have the
same Hausdorff distance H from T0 as T1, which completely misses all the changes applied to T1

in either case.

Example 4.2 (Fixing Fλ(T̃1−T0)). A modification of this example can illustrate the other extreme
case—when Hausdorff distance changes by a lot but the flat norm distance does not change much
at all, see bottom row in Fig. 8. Consider moving only the highest point on T1 further away from
T0 so that Hausdorff distance becomes H ′ >> H , as shown on the bottom left figure of Fig. 8.
We keep T1 a connected curve, thus creating a sharp spike in it. While the Hausdorff distance
between the curves has increased dramatically, the flat norm distance sees only a minute increase
as measured by the area under the spike. Moreover, the increment ∆Fλ can be decreased to almost
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zero by narrowing the spike. Once again, the flat norm distance accurately captures the intuition
that the curves have not changed much when just a single point moves away while the rest of
the curve stays the same. Hence the flat norm provides a more robust metric that better captures
significant changes while maintaining stability to small perturbations (also see Section 4.3 for
theoretical bounds).

4.2 Empirical study
We observe similar behavior to those illustrated by the theoretical example (Fig. 8) in our com-
putational experiments. Fig. 9 shows scatter plots denoting empirical distribution of percentage
deviation of the two metrics from the original values

(
%∆DH ,%∆F̃λ

)
for a local region. The

perturbations are considered for three different radii shown in separate plots. We note that the per-
centage deviations in the two metrics are comparable in most cases. In other words, neither metric
behaves abnormally for a small perturbation in one of the networks.

Figure 9: Scatter plots showing the effect of network perturbation on the normalized flat norm and
Hausdorff distances for a local region. The percentage deviation in the metrics for the perturbations
is shown along each axis. We do not observe significantly large deviations in any one metric for a
given perturbation.

Next, we compare the sensitivity of the two metrics to outliers. Here, we consider a single
random node in one of the networks and perturb it. Fig. 10 shows the sensitivity of the metrics
to these outliers. The original normalized flat norm and Hausdorff distance metrics are shown by
the horizontal and vertical dashed lines respectively. The points along the horizontal dashed line
denote the cases where the Hausdorff distance metric is more sensitive to the outliers, while the
normalized flat norm metric remains the same. These cases occur when the perturbed random
node determines the Hausdorff distance, similar to the second Example where Hausdorff distance
increased from H to H ′. On the flip side, the points along the vertical dashed line denote the
Hausdorff distance remaining unchanged while the normalized flat norm metric shows variation.
Just as in the theoretical example (Fig. 8), such variation in the normalized flat norm metric im-
plies a variation in the network structure. However, such variation is not captured by the Hausdorff
distance metric. Hence, our proposed metric is capable of identifying structural differences due to
perturbations while remaining stable when widely separated nodes (which are involved in Haus-
dorff distance computation) are perturbed. The other points which are neither on the horizontal nor
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the vertical dashed lines indicate that either metric can identify the structural variation due to the
perturbation.

Figure 10: Scatter plots showing the effect of a few outliers on normalized flat norm and Haus-
dorff distance for a local region. The original normalized flat norm and Hausdorff distance are
highlighted by the dashed horizontal and vertical lines. We observe multiple cases where the
Hausdorff distance is more sensitive to outliers compared to F̃λ.

4.3 Stability of the Flat Norm
The results of the previous subsection are applicable in all dimensions, i.e., one cannot expect to
bound changes in the flat norm by small functions of the changes in the Hausdorff distance. In this
subsection, we adopt a more direct approach to the investigation of the stability of our discrepancy
measure between geometric objects. Our goal is to construct an upper bound on Fλ from the bottom
up based only on the input geometries and an appropriately defined radius of perturbation. To this
end, we consider simple piecewise linear (PWL) curves spanned by a pair of points with no self-
intersections embedded in R2. Here, simple means that there is no self intersection or branching
in the curve that connects two points. Despite its apparent simplicity, this class of curves is of
particular interest, since they can potentially approximate any continuous non-intersecting curve
in R2. More directly, power grid networks that form the main motivated for our work can be seen
as collections of such simple curves. Although, the results of this subsection are proven only for
a pair of simple PWL currents, the empirical findings on the real-world networks, presented in the
next section (Sec. 5) comply surprisingly well with the upper bounds established for simple curves
(see Fig. 17).

We conceptualize a simple piecewise linear curve T ⊂ R2 between points s and t as the 1-
current T embedded in R2 that is equipped with an edge set E(T ) = {e1, e2, . . . , en−1, en} given
by the linear segments of T , and a node set N(T ) = {v0, v1, . . . , vn−1, vn}, where v0 = s and
vn = t, and vi = ei ∩ ei+1 for i = 1, . . . , n − 1. Such currents are defined as a formal sum
of their edges T = e1 + . . . + en, and can be thought of as discretized linear approximations of
simple continuous curves in R2. We refer to this type of currents as PWL currents, and denote the
set of all PWL currents with n edges spanned by s and t (i.e., starting at s and ending and t) as
Ln[s, t] or Ln[s, t;R2]. A subcurrent of T ∈ Ln[s, t] spanned by nodes vi and vj , where i < j, is
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denoted T [vi, vj] ⊆ T , and E
(
T [vi, vj]

)
= {ei+1, . . . , ej}, which implies T [vi, vj] ∈ Lj−i[vi, vj].

The length of T is given by |T | =
∑n

j=1 |ej|.
We start with a PWL current T0 in R2 and its copy T1. Next, we consider a sequence of per-

turbations of T1’s nodes within some δ-neighborhood to obtain T̃1, while tracking the components
of the flat norm distance between the original and the perturbed copy. Recall that the components
of the flat norm distance between generic inputs T0 and T1 are the perimeter of the unfilled void
|T1 − T0 − ∂S| and the area of a 2-current S given as A (S) = V2 (S), see Fig. 1. We refer to
them as the length (or perimeter) and the area components of flat norm distance, respectively:

Fλ (T1 − T0) = min
S∈C2(R2)

{
|T1 − T0 − ∂S|+ λA (S)

}
. (7)

Since T0 and T1 are identical to start with, the flat norm distance between them is zero (for
S = ∅). Now let us take a look at the components of the flat norm distance Fλ(T̃1 − T0) between
the original current and the perturbed copy T̃1. Let X ⊂ R2 be the 2-dimensional void with the
boundary given by T̃1− T0, and S ∈ C2(R2) be a 2-current that fills in, possibly partially, the void
X . The area component in the optimal decomposition of Fλ(T̃1 − T0) is bounded by the area of
X , A(S) ≤ A(X), and is maximized when the void is fully filled, i.e., S ≡ X . On the other hand,
the length component can be, potentially, arbitrarily large due to the complexity of ∂S:

0 ≤ |T̃1 − T0 − ∂S| ≤ |T̃1 − T0|+ |∂S|. (8)

Here we make an important assumption about the values of parameters λ > 0 and δ > 0,
formalized below, that allows us to circumvent the potential unboundedness of the perimeter com-
ponent. We mention that the problem of identifying the ranges of values of parameters that fit the
assumption is out of the scope of this paper, and will be the focus of future research.

Assumption 4.3 (Filled voids). For any original current T0 embedded in R2, the scale parameter
λ = λ(T0) > 0 is small enough such that for any size of the perturbation δ = δ(λ, T0) > 0
taken within some range 0 < δ < Mλ(T0), the optimal decomposition of the flat norm distance
between T0 and its consecutive perturbations always fills in all the voids that appear as a
result of the perturbations.

We note that this assumption does not introduce any additional challenges in implementing the
flat norm distance, since we always can find a small enough λ by scaling it by one-half until all
gaps between the input geometries are filled.

Given parameters λ > 0 and δ > 0 under Assumption 4.3, the minimization objective of
Fλ(T̃1 − T0) in Eq. (7) is achieved by a 2-current S ≡ X , where X is a 2D-void in between T̃1

and T0. Hence, ∂S = ∂X = T̃1 − T0, i.e., S ∈ C2[∂X] = C2[T̃1 − T0]. This implies that the
length component in Eq. (8) renders to 0—its minimum value. Conversely, if we would leave the
void unfilled, i.e., S ≡ 0, then the area component as well as its boundary become zero, A(S) = 0

and |∂S| = 0, while the length component is equal to the void’s perimeter: |T̃1 − T0 − ∂S| =
|T̃1 − T0| = |∂X|. Hence, under Assumption 4.3, the optimization objective of Fλ(T̃1 − T0)

reduces to the scaled area of S for S ∈ C2[T̃1 − T0]:

Fλ(T̃1 − T0) = min
S∈C2[∂X]

{
|T̃1 − T0 − ∂S|+ λA (S)

}
= λA(S). (9)

19



This collapsed minimization objective implies that for the scale and the perturbation radius
given by our assumption, the void produced by perturbing the copy of T0 is filled in by a 2-current
S spanned by T̃1−T0, such that the scaled area of S is upper bounded by its (non-scaled) perimeter:

Fλ(T̃1 − T0) = λA(S) < |∂S| = |T̃1 − T0|. (10)

4.3.1 δ-perturbations of PWL currents

We consider a PWL current T0 ∈ Ln[s, t] spanned by s, t ∈ R2, called the original current, and its
copy T1 = T0, e.g., see Fig. 11. Obviously, Fλ (T1 − T0) = 0 at any scale λ > 0.

Figure 11: The original PWL current T0 ∈ Ln[s, t] and its copy T1. The arrows show the orienta-
tions in T1 − T0, and the gray disk is the δ-ball Bδ(v) centered at an interior vertex v.

Let v = vi ∈ T1 be an interior vertex of T1, 1 ≤ i ≤ n − 1. Given a radius of perturbation
δ > 0, consider a mapping v → ṽ such that ṽ stays within an open δ-ball centered at v, i.e.,
ṽ ∈ Bδ(v) = {x ∈ R2 | ∥v − x∥2 < δ}. Let u = vi−1 and w = vi+1 be the adjacent nodes of v,
and let the corresponding incident edges be euv = (u, v) = (vi−1, vi) = ei and evw = (v, w) =
(vi, vi+1) = ei+1. Then, let ẽuv = (u, ṽ) and ẽvw = (ṽ, w) be the edge-like currents connecting
the neighbors of v to its perturbation ṽ, see Fig. 13. We define a δ-perturbation of v ∈ T1 as the
collection of mappings of v along with its two connected edges under the assumption that the new
edges ẽuv and ẽvw do not cross any of the original edges.

v
δ
⇝ ṽ =

{
v → ṽ, euv → ẽuv, evw → ẽvw

}
subject to ṽ ∈ Rδ(v)

where Rδ(v) ⊆ Bδ(v) is the allowed region of δ-perturbation defined as a subregion of the δ-ball
centered at v that is in the direct line of sight of the vertices adjacent to v (see Fig. 12):

Rδ(v) = Rδ(v;T1) =
{
ṽ ∈ Bδ(v) | ẽuv ∩ T1 = ∅, ẽvw ∩ T1 = ∅

}
. (11)

A δ-perturbation of a vertex v
δ
⇝ ṽ maps T1 into T̃1 by acting on its node and edge sets as

defined below, and defines a δ-perturbation T1
δ
⇝ T̃1. We say that the δ-perturbation of a current

T1
δ
⇝ T̃1 is induced by v

δ
⇝ ṽ. Note that the non-overlapping conditions in Eq. (11), implies that
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Figure 12: The yellow and orange circular arcs indicate the subregions of the δ-ball that are in the
line of sight of nodes u and w. The allowed region Rδ(v) of a δ-perturbation v

δ
⇝ ṽ is shown in

green, in which it is guaranteed that the perturbed edges will not cross any of the original edges
(see Eq. (11)).

ẽuv ∩ T̃1 = ẽvw ∩ T̃1 = ∅, which means that T̃1 is injective (has no self intersections).

N(T̃1) = v
δ
⇝ ṽ

(
N(T1)

)
= {s, v1, . . . , u, ṽ, w, . . . , vn−1, t} and

E(T̃1) = v
δ
⇝ ṽ

(
E(T1)

)
= {es, e2, . . . , ẽuv, ẽvw, . . . , en−1, et} .

The δ-perturbations of boundaries are given by the following maps:

s
δ
⇝ s̃ =

{
s→ s̃, es → ẽs

}
and t

δ
⇝ t̃ =

{
t→ t̃, et → ẽt

}
,

where s̃ ∈ Rδ(s) = Bδ(s) ∩ {s̃ | ẽs ∩ T1 = ∅} and t̃ ∈ Rδ(t) = Bδ(t) ∩ {t̃ | ẽt ∩ T1 = ∅}.

4.3.2 Flat Norm of δ-perturbations

Having specified the necessary definitions and procedures, we are now ready to prove our first
result regarding a single δ-perturbation of an interior node.

Theorem 4.4. Let T0 ∈ Ln[s, t;R2] for n ≥ 2 and T1 = T0 be its copy. Given a small enough
scale λ > 0 and an appropriate radius of perturbation δ > 0, consider a δ-perturbation T1

δ
⇝ T̃1

induced by perturbation of an interior node v
δ
⇝ ṽ. Then the flat norm distance between T0 and

T̃1 is upper bounded as follows:

Fλ(T̃1 − T0) ≤
λδ

2

∣∣T0[u,w]
∣∣

where u and w are vertices of T0 adjacent to v.
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Proof. Recall that by the Assumption 4.3, the optimal 2-current S is spanned by T̃1 − T0, and by
the construction ofRδ(v) the new edges ẽuv and ẽvw do not overlap with the original current. Then
∂S = T̃1 − T0 = euv + evw − ẽvw − ẽuv, which is the boundary of a quadrilateral spanned by
the vertices [u, v, w, ṽ], see Fig. 13. To keep the notation simple, we just write S = [u, v, w, ṽ] ∈
C2[T̃1 − T0]. Consider the diagonal δ̃v = (v, ṽ) ∈ L1[v, ṽ] that connects v to its perturbation. Its
length is bounded by the radius of perturbation |δ̃v| ≤ δ and it partitions S into a pair of triangles
∆v+1 and ∆v−1:

S = [u, v, w, ṽ] = [v, w, ṽ] + [ṽ, u, v] = ∆v+1 +∆v−1 (12)

with boundaries given by ∂∆v+1 = evw− ẽvw− δ̃v and ∂∆v−1 = euv+ δ̃v− ẽuv. The corresponding
areas are A(∆v+1) =

1
2
|δ̃v||evw| sin θv+1 and A(∆v−1) =

1
2
|δ̃v||euv| sin θv−1, where θi is the angle

between the diagonal δ̃ and the original edge in the corresponding triangle, (see Fig. 13). Note
that both ∆v+1 and ∆v−1, and consequently S, attain the largest possible area when the perturbed
vertex ṽ lands on the boundary of the δ-ball Bδ(v) and δ̃v is perpendicular to the original edges,
i.e., θv±1 = π/2. Let ∆v be one of the triangles and ev = evw or ev = euv be its original edge, then
the following are the upper bounds on the area of ∆v and S:

A(∆v) =
1

2
|δ̃v||ev| sin θ ≤

δ

2
|ev| (13)

A(S) = A(∆v+1) +A(∆v−1) ≤
δ

2

(
|evw|+ |euv|

)
(14)

Note that euv + evw defines a subcurrent of T0 spanned by u and w, namely T0[u,w]. Finally,
recall that under our main Assumption 4.3, Fλ(T̃1 − T0) is given by λA(S) (see Eq. (9)), which
together with the upper bound onA(S) in Eqn. 14 implies the main statement of the Theorem.

Furthermore, observe that by the triangle inequality (see Fig. 13) the length of the perturbed
edges in the boundary of S is bounded as follows:

|ev| − δ ≤ |ev| − |δ̃| ≤ |ẽv| ≤ |ev|+ |δ̃| ≤ |ev|+ δ (15)

Figure 13: The quadrilateral S = [u, v, w, ṽ] = ∆v+1 +∆v−1 appears as result of a δ-perturbation
T1

δ
⇝ T̃1 induced by a perturbation of a non-boundary vertex v

δ
⇝ ṽ.
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which implies that
∣∣∂∆v

∣∣ = |ev| + |ẽv| + |δ̃| ≥ 2|ev| − |δ̃| + |δ̃| = 2|ev|, and thus the following
bounds hold:

2|ev| ≤
∣∣∂∆v

∣∣ ≤ 2|ev|+ 2δ and

2
(
|evw|+ |euv|

)
− 2δ ≤

∣∣∂S∣∣ ≤ 2
(
|evw|+ |euv|

)
+ 2δ.

4.3.3 Sequential δ-perturbations

We now want to derive results similar to Theorem 4.4 for the case where perturbations are applied
to a subcurrent of T1 given by a subset of its adjacent nodes. To this end, we consider a sequence of
δ-perturbations of the copy current T1

δ
⇝ T̃1

δ
⇝ . . .

δ
⇝ T̃ n−1

1 induced by sequential perturbations of
the interior points v1

δ
⇝ ṽ1, . . . , vn−1

δ
⇝ ṽn−1, which we denote as [v1, . . . , vn−1]

δ
⇝ [ṽ1, . . . , ṽn−1].

The procedure of δ-perturbations described above does not guarantee “out of the box” additivity
of the area componentsA(Si) of the corresponding flat norm distances Fλ(T̃

i
1−T̃ i−1

1 ). The problem
arises when a δ-perturbation ṽi lands within a region Sj produced by vj

δ
⇝ ṽj for some j < i,

where ∂Sj = T̃ j
1 − T̃ j−1

1 . It means that Si ∩ Sj ̸= ∅ and A(Si + Sj) ̸= A(Si) + A(Sj). But
since Si and Sj are embedded in R2 the area of a formal sum Si + Sj is not larger than the area
of their union: A

(
Si + Sj

)
≤ A (Si ∪ Sj) ≤ A(Si) + A(Sj). Therefore, to find an upper bound

for Fλ(T̃
n−1
1 − T0) we can consider only perturbation sequences T1

δ
⇝ . . .

δ
⇝ T̃ n−1

1 that produce
non-overlapping regions Si, and hence, additive area components A(Si).

One way to achieve this is to force ṽ for any choice of v to land on the same “side” of T1, and
hence of T0, by restricting the δ-ball Bδ(v) to a positive cone B+

δ(v) given by the edges incident to
v in T1. As an example in Fig. 14, the light green circular arc indicates the segment of the δ-ball
that corresponds to B+

δ(v). Let v = vi ∈ N(T1) be an interior vertex of T1, i.e., 1 ≤ i ≤ n− 1, and
euv = ei = (vi−1, vi) and evw = ei+1 = (vi, vi+1) are the incident edges of v in T1. Then we get
that

B+
δ(v) = B+

δ(v;T1) =

{
x ∈ Bδ(v)

∣∣∣∣ det [x− v, euv
]T

> 0 and det
[
x− v, evw

]T
> 0

}
(16)

where det[x, y]T = x1y2 − x2y1 for x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. In the case of
boundary vertices s or t, the positive cone reduces to the half-disk bounded by a line that contains
es or et, respectively. As previously specified in Eq. (11), the allowed region of ṽ is specified by
the non-overlapping conditions:

R+
δ(v) = R+

δ(v;T1) =

{
ṽ ∈ B+

δ(v)

∣∣∣∣ ẽuv ∩ T1 = ẽvw ∩ T1 = ∅
}

= B+
δ(v;T1) ∩Rδ(v;T1). (17)

We call a perturbation vi
δ
⇝ ṽi a positive δ-perturbation of vi ∈ T̃ i−1

1 if ṽi ∈ R+
δ(vi; T̃

i−1
1 ).

We denote it as vi
δ+

⇝ ṽi, and it induces T̃ i−1
1

δ+

⇝ T̃ i
1. It easy to see that a sequence of k positive

δ-perturbations T1
δ+

⇝ . . .
δ+

⇝ T̃ k
1 produces non-overlapping regions S1, . . . , Sk.

Proposition 4.5. Let T1 ∈ Ln[s, t;R2] for n ≥ 2.Consider a sequence of perturbations T1
δ+

⇝

T̃ k0
1

δ+

⇝ . . .
δ+

⇝ T̃ k
1 induced by positive δ-perturbations of adjacent nodes [vk0 , . . . , vk] for some
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Figure 14: The light green arc indicates the positive cone B+
δ(v) (see Eq. (16)). The allowed

region R+
δ(v) (see Eq. (17)) of a positive δ-perturbation v

δ+

⇝ ṽ is shown in green. It ensures that
the sequential perturbations produce non-overlapping regions Si (Proposition 4.5). Compare this
figure to the allowed region shown in Fig. 12.

0 ≤ k0 < k ≤ n. Then the regions Sk0 , . . . , Sk produced by the corresponding perturbations in
the sequence do not overlap.

Proof. First, when two adjacent nodes are perturbed, vi−1
δ+

⇝ ṽi−1 and vi
δ+

⇝ ṽi, the edge ei =

(vi−1, vi) is perturbed twice: ei → ẽi → ˜̃ei, where ẽi ∈ L1[ṽi−1, vi] and ˜̃ei ∈ L1[ṽi−1, ṽi]. There-
fore, the boundaries of corresponding regions Si−1 and Si are:

∂Si−1 = T̃ i−1
1 − T̃ i−2

1 = ẽi−1 + ei − ˜̃ei−1 − ẽi and (18)

∂Si = T̃ i
1 − T̃ i−1

1 = ẽi + ei+1 − ˜̃ei − ẽi+1. (19)

It is worth pointing out that when only interior nodes are perturbed, i.e., 1 ≤ k0 and k ≤ n,
the edges ek0 = (vk0−1, vk0) ∈ Sk0 and ek+1 = (vk, vk+1) ∈ Sk are perturbed only once. Thus,
the edges incident to the boundaries of T1, namely es and et, are perturbed to ˜̃es or ˜̃et if and
only if the boundary nodes s and t were perturbed together with all the nodes in between. In
this case the corresponding area components S0 and Sn are given by triangles ∆s = [s, ṽ1, s̃] and
∆t = [t̃, ṽn−1, t], respectively.

Second, observe that any point x within Si is in B+
δ(vi) as well, which means that det

[
x −

vi, ẽi
]T

> 0 and det
[
x − vi, ei+1

]T
> 0. This point also belongs to B−

δ (ṽi) =
{
x ∈ Bδ(ṽi) |

det
[
x− ṽi, ˜̃ei]T < 0 and det

[
x− ṽi, ẽi+1

]T
< 0
}

, since x is enclosed by ∂Si.

Given a sequence T1
δ+

⇝ T̃ k0
1

δ+

⇝ . . .
δ+

⇝ T̃ k
1 , let us assume that ṽk ∈ Sj for some k0 ≤ j < k,

while ṽi ∈ R+
δ(vi; T̃

i−1
1 ) for all k0 ≤ i ≤ k. If k − j > 1 then ∂Sk and ∂Sj do not share

any edges, and hence placing ṽk inside Sj requires an intersection of edges, which contradicts
ṽk ∈ R+

δ(vk; T̃
k−1
1 ). If j = k − 1 then ṽk ∈ Sk ⇐⇒ det

[
ṽk − vk, ẽk

]T
> 0 and ṽk ∈ Sk−1 ⇐⇒

det
[
ṽk − ṽk−1, ẽk

]T
< 0, where ẽk = (ṽk−1, vk), which is also a contradiction. Therefore Sk does

not overlap with any of the previously produced regions Sk0 , . . . , Sk−1.
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Corollary 4.6 (Additivity of Fλ). Let T0 ∈ Ln[s, t;R2] for n ≥ 2, and T1 = T0 is its copy. Given
a small enough scale λ > 0 and an appropriate radius of perturbation δ > 0, consider a sequence
of perturbations T1

δ+

⇝ T̃ k0
1

δ+

⇝ . . .
δ+

⇝ T̃ k
1 induced by the positive δ-perturbations of adjacent nodes

[vk0 , . . . , vk] in T1 for some 0 ≤ k0 < k ≤ n. Then the flat norm distance between the adjacent
perturbations is additive and sums up to Fλ(T̃

k
1 − T0):

Fλ(T̃
k
1 − T0) =

k∑
i=k0

Fλ(T̃
i
1 − T̃ i−1

1 )

where we set T̃ k0−1 = T1.

Proof. Let S = Sk0 + . . . + Sk be the 2-current that combines all the regions produced by T1
δ+

⇝

T̃ k0
1

δ+

⇝ . . .
δ+

⇝ T̃ k
1 . Since Si∩Sj = ∅ for i ̸= j and ∂Si = T̃ i

1− T̃ i−1
1 , the boundary of S is given by

∂S = ∂Sk0 + ∂Sk0+1 + . . .+ ∂Sk−1 + ∂Sk

= (T̃ k0
1 − T1) + (T̃ k0+1

1 − T̃ k0
1 ) + . . .+ (T̃ k−1

1 − T̃ k−2
1 ) + (T̃ k

1 − T̃ k−1
1 ) = T̃ k

1 − T1.

This means that S is spanned by T̃ k
1 − T1 = T̃ k

1 − T0, which under the Assumption 4.3 implies
that

Fλ(T̃
k
1 − T0) = λA(S) = λ

k∑
i=k0

A(Si) =
k∑

i=k0

Fλ(T̃
i
1 − T̃ i−1

1 ).

Figure 15: The i-th positive δ-perturbation T̃ i−1
1

δ+

⇝ T̃ i
1 induced by vi

δ+

⇝ ṽi. The purple edges
show history of the previously perturbed edges ẽv that have been mapped to ˜̃ev in T̃ i

1.

We now present in Theorem 4.7 an upper bound on the flat norm distance between the input
current T0 and its perturbed version resulting from a sequence of perturbations of its internal nodes,
i.e., nodes in N(T0)\{s, t}. We subsequently extend the result to include perturbations of all nodes
including the boundary nodes in Corollary 4.9.

25



Theorem 4.7. Let T0 ∈ Ln[s, t;R2] for n ≥ 3, and T1 = T0 is its copy. Given a small enough
scale λ > 0 and an appropriate radius of perturbation δ > 0, consider a sequence of perturbations
T1

δ+

⇝ T̃ k0
1

δ+

⇝ . . .
δ+

⇝ T̃ k
1 induced by the positive δ-perturbations of adjacent non-boundary nodes

[vk0 , . . . , vk] in T1 for some 1 ≤ k0 < k ≤ n − 1. Then the flat norm distance between T0 and T̃ k
1

is upper bounded as follows:

Fλ(T̃
k
1 − T0) ≤

λδ

2

(∣∣T0[vk0−1, vk+1]
∣∣+ ∣∣T0[vk0 , vk]

∣∣+ (k − k0)δ

)
.

Proof. As previously was observed in Eq. (12), Si can be partitioned by δ̃i = (vi, ṽi) into a pair
of triangles ∆vi+1

= [vi, vi+1, ṽi] and ∆̃vi = [ṽi, ṽi−1, vi], with the respective boundaries ∂∆vi+1
=

ei+1 − ẽi+1 − δ̃i and ∂∆̃vi = ẽi − ˜̃ei + δ̃i. The area of these triangles is bounded as in Eq. (13),
and the upper bound on the length of the perturbed edges ẽv is given by corresponding triangle
inequalities in Eq. 15. Hence, we get the following upper bound for A(Si):

A(Si) = A(∆vi+1
) +A(∆̃vi) ≤

δ

2

(
|ei+1|+ |ẽi|

)
≤ δ

2

(
|ei+1|+ |ei|+ δ

)
(20)

Note that the upper bound on the flat norm distance for the first perturbation in the sequence
T1

δ+

⇝ T̃ k0 is given by Theorem 4.4 instead of Eq. (20), namely Fλ(T̃
k0
1 − T1) = λA(Sk0) ≤

λδ
2

(
|ek0| + |ek0+1|

)
. As was shown above in the Corollary 4.6 under the Assumption 4.3, we get

additivity of the flat norm distances between consecutive perturbations, and hence the additivity of
the upper bounds. Then we get the Theorem’s claim after doing some algebra:

Fλ(T̃
k
1 − T0) =

k∑
i=k0

Fλ(T̃
i
1 − T̃ i−1

1 ) = λ
k∑

i=k0+1

A(Si) + λA(Sk0)

≤ λδ

2

(
k∑

i=k0+1

(|ẽi|+ |ei+1|) + (|ek0|+ |ek0+1|)

)

≤ λδ

2

(
k+1∑
i=k0

|ei|+
k∑

i=k0+1

|ei|+ (k − k0)δ

)

=
λδ

2

(∣∣T0[vk0−1, vk+1]
∣∣+ ∣∣T0[vk0 , vk]

∣∣+ (k − k0)δ

)
.

We immediately get the flat norm bounds on the positive δ-perturbations of all interior nodes,
as well as for perturbations of all nodes as corollaries.

Corollary 4.8 (Complete perturbation of interior). Given the setup of Theorem 4.7, consider a
sequence of perturbations T1

δ+

⇝ . . .
δ+

⇝ T̃ n−1
1 induced by the positive δ-perturbations of all interior

nodes [v1, . . . , vn−1]. Then an upper bound on Fλ

(
T̃ n−1
1 − T0

)
is given by

Fλ

(
T̃ n−1
1 − T0

)
≤ λδ

2

(∣∣T0

∣∣+ ∣∣T0[v1, vn−1]
∣∣+ (n− 2)δ

)
= λδ

(∣∣T0

∣∣− ( |es|+ |et|
2

)
+ (n− 2)

δ

2

)
.
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Corollary 4.9 (Complete perturbation of T1). Given the setup of Theorem 4.7 with n ≥ 2, consider
a sequence of perturbations T1

δ+

⇝ . . .
δ+

⇝ T̃ n+1
1 induced by the positive δ-perturbations of each

node of T1. Then an upper bound on Fλ

(
T̃ n+1
1 − T0

)
is given by

Fλ(T̃
n+1
1 − T0) ≤

λδ

2

(
2|T0|+ nδ

)
= λδ

(
|T0|+

nδ

2

)
. (21)

Proof. Due to the additivity of the flat norm distance between adjacent δ+-perturbations, we can
perturb the interior nodes [v1, . . . , vn−1] first, and the boundary nodes after that, since now all
edges will be perturbed twice and the order will not affect the upper bound. The perturbation of
the interior nodes induces a sequence T1

δ+

⇝ . . .
δ+

⇝ T̃ n−1
1 from Corollary 4.8, while [s, t]

δ+

⇝ [s̃, t̃]

induces T̃ n−1
1

δ+

⇝ T̃ n
1

δ+

⇝ T̃ n+1
1 .

The area components produced by s
δ+

⇝ s̃ and t
δ+

⇝ t̃ are spanned by the differences of cor-
responding perturbations are given by triangles S0 = ∆s = [s, ṽ1, s̃] ∈ C2[T̃ n

1 − T̃ n−1
1 ] and

Sn = ∆t = [t̃, ṽn−1, t] ∈ C2[T̃ n+1
1 − T̃ n

1 ]. Their boundaries are:

∂S0 = ∂∆s = ẽs − ˜̃es − δ̃s and ∂Sn = ∂∆t = ẽt − ˜̃et + δ̃t

where δ̃v ∈ L1(v, ṽ) such that |δ̃v| ≤ δ, see Fig. 16. Then the upper bound on the flat norm distance
becomes

Fλ(T̃
n+1
1 − T0) = Fλ(T̃

n+1
1 − T̃ n

1 ) + Fλ(T̃
n
1 − T̃ n−1

1 ) + Fλ(T̃
n−1
1 − T0)

≤ λδ

2

(
n−1∑
i=2

|ẽi|+
n∑

i=1

|ei|+ |ẽs|+ |ẽt|

)

=
λδ

2

(
n∑
i=i

|ẽi|+
n∑

i=1

|ei|

)
(22)

≤ λδ

2

(
2|T0|+ nδ

)
= λδ

(
|T0|+

nδ

2

)
.

4.3.4 Normalized flat norm of δ-perturbations

Recall from Section 2.2 (Eq. (5)) that the normalized flat norm distance is given as

F̃λ

(
T̃1 − T0

)
=

Fλ

(
T̃1 − T0

)∣∣T0

∣∣+ ∣∣T̃1

∣∣ .
Note that the normalized flat norm distance has a natural upper bound given by Fλ

(
T̃n−1
1 − T0

)
/
∣∣T0

∣∣
that may be of interest when measurements of one of the input geometries are not available or are
not reliable. The following corollary of Theorem 4.7 follows from Eq. (21) by dividing both sides
by |T0|.
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Figure 16: The positive δ-perturbations T̃ n−1
1

δ+

⇝ T̃ n
1

δ+

⇝ T̃ n+1
1 induced by perturbations of the

boundary vertices [s, t] ⇝ [s̃, t̃]. The area components S0 and Sn that were produced in the result
are given by triangles instead of quadrilaterals.

Corollary 4.10. Given the setup of Theorem 4.7 for n ≥ 2, consider a sequence of perturbations
T1

δ+

⇝ . . .
δ+

⇝ T̃ n+1
1 induced by the positive δ-perturbations of each node of T1. Then an upper

bound on the normalized flat norm distance F̃λ

(
T̃ n+1
1 − T0

)
is given by

F̃λ

(
T̃ n+1
1 − T0

)
≤ λδ

(
1 +

n

2
∣∣T0

∣∣δ
)

= λδ

(
1 +

δ

2ê

)
where ê = 1

n
|T0| is the average edge length of T0.

Theorem 4.11. Let T0 ∈ Ln[s, t;R2] for n ≥ 2, and T1 = T0 be its copy. Given a small enough
scale λ > 0 and an appropriate radius of perturbation δ > 0, consider a sequence of perturbations
T1

δ+

⇝ . . .
δ+

⇝ T̃ n+1
1 induced by the positive δ-perturbations of each node of T1. Then an upper

bound on the normalized flat norm distance Fλ

(
T̃ n+1
1 − T0

)
is given by

F̃λ

(
T̃ n+1
1 − T0

)
≤ λδ

2

(
1

2
+

ê+ δ

ê+ êñ

)
= λδ

(
1

4
+

ê+ δ

2(ê+ êñ)

)
(23)

where êñ = 1
n

∣∣T̃ n+1
1

∣∣ is the average length of perturbed edges.

Proof. To derive an upper bound for the normalized flat norm distance observe that by the triangle
inequality in ∆i and ∆̃i we get the following bounds:

∆i : ei − δ ≤ ẽi ≤ ei + δ

∆̃i : ˜̃ei − δ ≤ ẽi ≤ ˜̃e+ δ

=⇒ ei + ˜̃ei
2
− δ ≤ ẽi ≤

ei + ˜̃ei
2

+ δ.
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Let T 1 = ẽ1+. . .+ ẽn. Note that T0 = e1+. . .+en and T̃ n+1
1 = ˜̃e1+. . .+˜̃en. We then continue

the derivation from the intermediate result in Eq. (22) obtained during the proof of Corollary 4.9
of Theorem 4.7:

Fλ(T̃
n+1
1 − T0) ≤

λδ

2

(
n∑

i=1

|ẽi|+
n∑

i=1

|ei|

)
=

λδ

2

(∣∣T 1

∣∣+ ∣∣T0

∣∣)

≤ λδ

2

(∣∣T0

∣∣+ ∣∣T̃ n+1
1

∣∣
2

+ |T0|+ nδ

)
.

Recall that êñ =
∣∣T̃n+1

1

∣∣/n. Then,

Fλ(T̃
n+1
1 − T0)∣∣T0

∣∣+ ∣∣T̃ n+1
1

∣∣ ≤ λδ

2

(
1

2
+

∣∣T0

∣∣∣∣T0

∣∣+ ∣∣T̃ n+1
1

∣∣ + n

|T0|+ |T̃ n+1
1 |

δ

)

=
λδ

2

(
1

2
+

ê

ê+ êñ
+

δ

ê+ êñ

)
.

Combining the generic upper bound in Eq. (10) that holds for small enough λ > 0 and an
appropriate δ > 0, we can rewrite Eq. (23) as

F̃λ(T̃
n+1
1 − T0) ≤ min

{
λδ

(
1

4
+

ê+ δ

2(ê+ êñ)

)
, 1

}
. (24)

Corollary 4.12. In the case of a non-shrinking perturbation sequence T1
δ+

⇝ . . .
δ+

⇝ T̃ n+1
1 such that∣∣T̃ n+1

1

∣∣ ≥ ∣∣T1

∣∣ = ∣∣T0

∣∣, the upper bound on the normalized flat norm distance is given as

F̃λ(T̃
n+1
1 − T0) ≤ λδ

(
3

4
+

δ

4ê

)
.

5 Statistical analysis of normalized flat norm
We use the proposed multiscale flat norm to compare a pair of network geometries from power
distribution networks for a region in a county in USA. The two networks considered are the actual
power distribution network for the region and the synthetic network generated using the method-
ology proposed by Meyur et al. [17]. We provide a brief overview of these networks.

Actual network. The actual power distribution network was obtained from the power company
serving the location. Due to its proprietary nature, node and edge labels were redacted from the
shared data. Further, the networks were shared as a set of handmade drawings, many of which had
not been drawn to a well-defined scale. We digitized the drawings by overlaying them on Open-
StreetMaps [24] and georeferencing to particular points of interest [8]. Geometries corresponding
to the actual network edges are obtained as shape files.

Synthetic network. The synthetic power distribution network is generated using a framework with
the underlying assumption that the network follows the road network infrastructure to a significant
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extent [17]. To this end, the residences are connected to local pole top transformers located along
the road network to construct the low voltage (LV) secondary distribution network. The local
transformers are then connected to the power substation following the road network leading to the
medium voltage (MV) primary distribution network. That is, the primary network edges are chosen
from the underlying road infrastructure network such that the structural and power engineering
constraints are satisfied.

In this section we study the empirical distribution of the normalized flat norm F̃λ for different
local regions and argue that it indeed captures the similarity between input geometries. We use
Algorithm (2) to sample random square shaped regions of size 2ϵ × 2ϵ steradians from a given
geographic location. We perform our empirical studies for two urban locations of a county in USA.

Algorithm 2: Sample square regions from location
Input: Geometries E1,E2, number of regions N
Parameter: Size of region ϵ

1: Find bounding rectangle for the pair of geometries: Ebound = rect (E1,E2).
2: Initialize set of regions: R← {}.
3: while |R| ≤ N do
4: Sample a point (x, y) uniformly from region bounded by Ebound.
5: Define the square region r (x, y) formed by the corner points

{(x− ϵ, y − ϵ) , (x+ ϵ, y + ϵ)}.
6: if r (x, y) ∩ E1 ∩ E2 ̸= ∅ then
7: Add region r (x, y) to the set of sampled regions: R← R ∪ {r (x, y)}.
8: end if
9: end while

Output: Set of sampled regions: R.

These locations have been identified as ‘Location A’ and ‘Location B’ for the remainder of this
paper. We consider local regions of sizes characterized by ϵ ∈ {0.0005, 0.001, 0.0015, 0.002}. For
each location, we randomly sample N = 50 local regions for each value of ϵ using Algorithm (2)
and hence we consider 50 × 4 = 200 regions. For every sampled region, we use Algorithm (1)
to compute the multiscale flat norm between the network geometries contained within the region
with scale parameter λ ∈ {103, 25 × 103, 50 × 103, 75 × 103, 105}. Thereafter, we normalize
the computed flat norm using Eq. (5). Additionally, we compute the global normalized flat norm
for the entire location and indicate it by F̃G

λ . The corresponding square box bounding the entire
location is characterized by ϵG. We also denote the total length of networks in each location scaled
by the size of the location by the ratio |TG|/ϵG. The detailed statistical results for the experiments
are included in the Appendix.

5.1 Empirical distribution of F̃λ

First, we show the histogram of normalized flat norms for Location A and Location B with the five
different values for the scale parameter λ, Fig. 17. Each histogram shows the empirical distribution
of normalized flat norm values F̃λ for 200 uniformly sampled local regions (50 regions for each
ϵ). We also record the global normalized flat norm between the network geometries of the location
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F̃G
λ and denote it by the solid blue line in each histogram. We show the mean normalized flat

norm F̂λ using the solid green line, with dashed green lines indicating the standard deviation of
the distribution. As we can see from the above histograms, the distribution is skewed toward
the right for high values of the scale parameter λ. This follows from our previous discussion
of the dependence of the flat norm on the scale parameter: for a large λ, the area patches are
weighed higher in the objective function of the flat norm LP (Eq. (4)). Therefore, the contribution
of lengths of the input currents T1 and T2 towards the flat norm distance becomes more dominant at
the high values of the scale parameter λ, so that the flat norm Fλ (T1 − T2) is slowly approaching
the total network length |T1| + |T2|. Hence, the normalized flat norm is approaching 1. For the
remainder of the paper, we will continue our discussion with scale parameter λ = 1000 since
the empirical distributions of normalized flat norm corresponding to λ = 1000 indicate almost
Gaussian distribution.

Figure 17: Distribution of normalized flat norm computed using five different values of λ for 200
uniformly sampled local regions in Location A (top) and Location B (bottom). The blue line in
each histogram denotes the global normalized flat norm F̃G

λ computed for the location with the
corresponding scale λ. The solid green line denotes the mean normalized flat norm F̂λ for the
uniformly sampled local regions computed with scale λ. The dashed green lines show the spread
of the distribution.

Next, we consider the empirical distribution of normalized flat norm computed with scale pa-
rameter λ = 1000 for uniformly sampled local regions in Location A and Location B, Fig. 18. We
show separate histograms for four different-sized local regions (different values of ϵ). Note that for
small-sized local regions (low ϵ), the distribution is skewed toward the right. This is because when
we consider small regions, we often capture very isolated network geometries and the flat norm
computation is close to the total network length Fλ (T1 − T2)→ |T1|+ |T2|, which again leads the
normalized flat norm to be close to 1. Such occurrences are avoided in larger local regions, and
therefore we do not observe skewed distributions.
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Figure 18: Distribution of normalized flat norm computed using λ = 1000 for 50 uniformly sam-
pled local regions with four different sizes ϵ in Location A (top) and Location B (bottom). The blue
line in each histogram denotes the global normalized flat norm F̃G

λ . The solid green line denotes
the mean normalized flat norm F̂λ for the uniformly sampled local regions. The dashed green lines
show the spread of the distribution.

5.2 Distribution of F̃λ across local regions

The scatter plot in the top left of Fig. 19 shows the empirical distribution of
(
|T |/ϵ, F̃λ

)
values.

The scatter plot highlights as a blue star the global value
(
|TG|/ϵG, F̃G

λ

)
of Location A, which

indicates the normalized flat norm computed for the entire location. The global normalized flat
norm (with a scale parameter λ = 1000) for Location A is F̃G

λ = 0.439 and the ratio |TG|/ϵG =
0.528. Further, nine additional points are highlighted in the scatter plot denoting nine local regions
within Location A. The solid green line denotes the mean of the normalized flat norm values and
the dashed green lines indicate the spread of the values around the mean.

The nine local regions are selected such that three of them have the minimum F̃λ in the loca-
tion (highlighted by cyan colored diamonds), three of them have the maximum F̃λ in the location
(highlighted by purple triangles), and the remaining three local regions have the

(
|T |/ϵ, F̃λ

)
val-

ues close to the global value
(
|TG|/ϵG, F̃G

λ

)
for the location (highlighted by tan plus symbols).

The network geometries within each region and the flat norm computation with scale λ = 1000
are shown in the bottom plots. The computed flat norm F̃λ and ratio |T |/ϵ values are shown above
each plot. The local regions are also highlighted (cyan, purple, and tan colored boxes, respectively)
in the top right plot where the actual and synthetic network geometries within the entire location
are overlaid. Fig. 20 shows similar local regions from Location B.

From a mere visual inspection of both Figs. 19 and 20, we notice that the network geometries
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Figure 19: Plots showing normalized flat norm computed for entire Location A and few local
regions within it. The scatter plot (top left plot) shows the empirical distribution of

(
|T |/ϵ, F̃λ

)
values with the global normalized flat norm

(
|TG|/ϵG, F̃G

λ

)
for the region (blue star). Nine local

regions (three with small F̃λ, three with large F̃λ and three with
(
|T |/ϵ, F̃λ

)
values close to the

global value
(
|TG|/ϵG, F̃G

λ

)
) are additionally highlighted. The local regions are highlighted along

with the pair of network geometries (top right plot). The normalized flat norm computation (with
scale λ = 1000) for the local regions are shown in bottom plots.
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Figure 20: Plots showing normalized flat norm computed for entire Location B and few local
regions within it. The scatter plot (top left plot) shows the empirical distribution of

(
|T |/ϵ, F̃λ

)
values with the global normalized flat norm

(
|TG|/ϵG, F̃G

λ

)
for the region (blue star). Nine local

regions (three with small F̃λ, three with large F̃λ and three with
(
|T |/ϵ, F̃λ

)
values close to the

global value
(
|TG|/ϵG, F̃G

λ

)
) are additionally highlighted. The local regions are highlighted along

with the pair of network geometries (top right plot). The normalized flat norm computation (with
scale λ = 1000) for the local regions are shown in bottom plots.
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in each local region shown in the first row of the bottom plots resemble and almost overlap each
other. The computed normalized flat norm F̃λ values for these local regions agree with this obser-
vation. Similarly, the large value of the normalized flat norm justifies the observation that network
geometries for local regions depicted in the second row of the bottom plots do not resemble each
other. These observations validate our choice of using normalized flat norm as a suitable measure
to compare network geometries for local regions.

6 Conclusions
We have proposed a fairly general metric to compare a pair of network geometries embedded on
the same plane. Unlike standard approaches that map the geometries to points in a possibly simpler
space and then measuring distance between those points [11], or comparing “signatures” for the
geometries, our metric works directly in the input space and hence allows us to capture all details in
the input. The metric uses the multiscale flat norm from geometric measure theory, and can be used
in more general settings as long as we can triangulate the region containing the two geometries.
It is impossible to derive standard stability results for this distance measure that imply only small
changes in the flat norm metric when the inputs change by a small amount—there is no alternative
metric to measure the small change in the input. For instance, our theoretical example (in Fig. 8)
shows that the commonly used Hausdorff metric cannot be used for this purpose. Instead, we
have derived upper bounds on the flat norm distance between a piecewise linear 1-current and its
perturbed version as a function of the radius of perturbation under certain assumptions provided
the perturbations are performed carefully (see Section 4.3). On the other hand, we do get natural
stability results for our distance following the properties of the flat norm—small changes in the
input geometries lead to only small changes in the flat norm distance between them [9, 20].

We use the proposed metric to compare a pair of power distribution networks: (i) actual power
distribution networks of two locations in a county of USA obtained from a power company and (ii)
synthetically generated digital duplicate of the network created for the same geographic location.
The proposed comparison metric is able to perform global as well as local comparison of network
geometries for the two locations. We discuss the effect of different parameters used in the metric
on the comparison. Further, we validate the suitability of using the flat norm metric for such
comparisons using computation as well as theoretical examples.
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