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Abstract. Gait recognition allows identifying people at a distance based
on the way they walk (i.e. gait) in a non-invasive approach. Most of the
approaches published in the last decades are dominated by the use of
silhouettes or other appearance-based modalities to describe the Gait
cycle. In an attempt to exclude the appearance data, many works have
been published that address the use of the human pose as a modality to
describe the walking movement. However, as the pose contains less infor-
mation when used as a single modality, the performance achieved by the
models is generally poorer. To overcome such limitations, we propose a
multimodal setup that combines multiple pose representation models. To
this end, we evaluate multiple fusion strategies to aggregate the features
derived from each pose modality at every model stage. Moreover, we in-
troduce a weighted sum with trainable weights that can adaptively learn
the optimal balance among pose modalities. Our experimental results
show that (a) our fusion strategies can effectively combine different pose
modalities by improving their baseline performance; and, (b) by using
only human pose, our approach outperforms most of the silhouette-based
state-of-the-art approaches. Concretely, we obtain 92.8 % mean Top-1
accuracy in CASTA-B.

Keywords: Gait recognition - human pose - surveillance - biometrics -
deep learning - multimodal fusion.

1 Introduction

Gait-based people identification, or simply gait recognition aims at recognizing
people by their manner of walking. Unlike other biometrical features, such as
iris or fingerprints, gait recognition can be performed at a distance without the
subject cooperation. Hence, it owns very potential applications in social security
or medical research [19], among others, and many works have been published in
this area during the last decades.

* Supported by the Junta de Andalucia of Spain (P18-FR-3130, UMA20-FEDERJA-
059 and PAIDI P20.00430) and the Ministry of Education of Spain (PID2019-
105396RB-100 and TED2021-129151B-100). Including European funds, FEDER.
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Despite multiple modalities that have been proposed to describe the gait
motion, silhouettes are still the most studied modality in literature [3,5,14].
Silhouette holds a binary representation of the human body shape. A sequence
of silhouettes reflects the body limbs’ movements. However, the silhouette also
contains information about the human shape and body contours that is unre-
lated to the motion of the limbs. In this sense, models may be biased by that
appearance-based information and their performance could be penalized.

To remove that appearance-based information, many authors propose to use
the human pose as an alternative modality. Human pose describes the positions
of the body limbs at every instant and removes any other unnecessary shape
information, so it is more robust to that appearance-related bias. Typically,
pose-based gait recognition approaches exploit the 2D or 3D coordinates of the
joints from the human body [11, 1] and extract features from the correlation be-
tween the motion of different body joints to predict the identity of the subjects.
However, those approaches perform worse than those based on visual descriptors
like silhouettes [3, 5, 14]. This is caused by the less information received from the
human pose, i.e. a set of 2D/3D coordinates versus a typically 64 x 64 silhouette
image. To overcome such limitations, recent approaches [9,10] propose a mul-
timodal setup that combines the pose information with silhouettes. However,
although this multimodal setup reaches a substantial improvement, it brings up
again the body shape information, limiting the benefits of the human pose.

In this work, we propose a combination of multiple pose representations in
a multimodal setup to overcome the lack of information in every single repre-
sentation, and hence, to avoid the use of shape descriptors. Moreover, instead of
pose coordinates, we use two different representations: (%) a set of pose heatmaps
images that are extracted from a human pose estimator [23] and; (i) a dense
pose representation extracted from DensePose [18] model. These two represen-
tations contain richer information than a solely set of coordinates and allow us
to build a multimodal model that combines both representations and extracts
more valuable features through different fusion strategies.

Therefore, our main contributions are: (i) a multimodal setup that exploits
information from different pose representation modalities achieving state-of-the-
art results on CASIA-B; and, (i) a thorough experimental study comparing
different fusion strategies to better combine the information from both pose
representations.

The rest of this paper is organized as follows: Sec. 2 presents previous works.
Sec. 3 describes our fusion strategies and Sec. 4 contains the experimental results
on CASIA-B. Finally, Sec. 5 concludes the work.

2 Related work

Recent gait recognition approaches have been mostly dominated by silhouettes
or derived descriptors. GaitSet [3] uses a random stack of silhouettes where
each frame is handled independently to extract and combine features through
a Horizontal Pyramid Pooling (HPP). GaitPart [5] includes a novel part-based
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model that extracts features from horizontal splits of intermediate convolutional
activations. GLN [7] introduces concatenation at intermediate convolutional ac-
tivations and a compression module that is attached at the end of the model to
reduce feature dimensionality. GaitGL [14] applies split convolutions within the
convolutional pipeline together with a simplified version of the HPP proposed
in [3]. As an alternative to silhouettes, other works use descriptors extracted from
alternative sensors like accelerometer [4], floor-sensors [17], wave-sensors [16], or
visual modalities [2, 15] However, since all those descriptors are based on the hu-
man shape, like the silhouette, they are affected by changes in the body shape,
illumination, etc.

In an attempt to remove the human shape, many other proposals use human
pose descriptors [20] as input modality. Liao et al. [11] extract 2D joints from
the human body and fed an LSTM and CNN model for gait recognition. In [1],
the previous idea was improved by extracting 3D joints instead of 2D joints.
In [13], Liao et al. compute multiple temporal-spatial features from the joint
positions, the joint angles and motion, and limb length from the 3D human
pose model. Teepe et al. [22] proposes a Graph Convolutional-based model to
further exploit the spatial information originated from the 2D joints and their
adjacency. Finally, Liao et al. [12] extract features from both pose heatmaps
and skeleton graph images with a colored joint and limbs skeleton. Although
pose-based models have some benefits with respect to visual-based approaches,
their performance is lower in comparison with silhouette-based models.

Finally, many works propose multimodal models that exploit pose in combi-
nation with other modalities to improve the performance of pose-based models.
Li et al. [9] propose a multimodal approach that combines pose heatmaps with
silhouettes through a set of Transformers blocks that jointly process patches
from both modalities. In [10], authors use a 3D pose model inspired by the Hu-
man Mesh Recovery Model (HMR), [8] combined with silhouettes that are fed
into an ensemble of CNN and LSTM models.

Nevertheless, all these methods, despise proposing genuine strategies for
modalities fusion, most of them bring up again the silhouette or another shape-
derived, so the models learn the bias inherent to the shape covariates. In contrast,
we propose a combination of different pose representation methods, without
shape information.

3 Methodology

In this work, we propose multiple fusion strategies to combine and aggregate
features extracted from pose (i.e. heatmaps and dense pose images). We start
by describing in detail both studied pose representations. Then we describe the
key elements of our fusions strategies.

3.1 Pose representations

Hierarchical heatmap representation. Heatmap is a feature map generated
by a keypoint-based pose extractor network before computing the output coor-
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(a) Pose Heatmaps. (b) DensePose.

Fig. 1: Pose representations. Both pose heatmaps and dense pose representa-
tions are studied as modalities. For 1a, from left to right, each of the joint group
channels used as a pose heatmap representation: Right leg and hip, Left leg and
hip, Right arm and eye, Left arm and the whole body at last channels. For 1b,
images I+V are displayed. Best viewed in digital format.

dinates of each body joint. These maps hold a channel per body joint indicating
the probability distribution of the target joint. Thus, a higher value indicates
more confident detection while a low value may indicate that the joint is not
visible or its estimation is low confident.

Therefore, heatmaps codify richer information than single 2D /3D coordinates
and allow the model to be more robust to low-confident joint locations due to
noise or occlusions. We regroup the joint heatmaps into the following hierarchical
schema, which is composed of five channels: The first four channels contain
different parts of the body like the left /right arm and the left /right leg while the
last channel contains an image with all the joints of the full body. In this way,
this representation allows us to better isolate the movement of each arm or leg
from each other while keeping an overall description of the motion of the whole
body, in addition, to remove the memory requirements. Heatmap aggrupation is
depicted in figure la

Dense Pose. DensePose [18] is a dense 3D mesh representation of the human
body. This mesh indicates information about body segmentation and the 3D
location of each body part.

More concretely, the mesh is codified into three channels: (i) a body part
segmentation map image I, which splits the human body into 24 segments, where
each segment is colored in a different shade of gray — for each body part, a texture
planar gradient is used to indicate the horizontal and vertical relative coordinates
of each point concerning the origin of each body part; (%) a mapping image U
with the horizontal gradient coordinates; and, (44) a mapping image V with the
vertical gradient.

3.2 Fusion strategies

We evaluate multiple fusion strategies to aggregate the information from both
pose hierarchical heatmaps and the DensePose channels. We first implement
strategies for fusing at an early stage by aggregating the output layers at a
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certain depth through an aggregation function. Secondly, we also explore late
fusion on the final predictions obtained from each modality.

Early fusion Model architecture is split into two parallel branches, one per
modality, until the fusion stage. At the fusion stage, the gait features obtained
from each branch are aggregated into one feature map that is fed to the rest of
the model layers to obtain the final prediction. We consider different aggregation
strategies among the gait features:

— Concatenation: Features produced by the last layer of each parallel branch
are concatenated along the filter dimension. After fusion, the input filters of
the immediate after layer hold duplicated input filters to accommodate the
duplicated size while maintaining the number of output filters.

— Sum: The features output by each branch are summed into a single feature
map. Hence, we sum the output features produced by the last layer on each
branch.

— Weighted sum: Features are aggregated through a weighted sum. Weights

are learned as the rest of the model parameters during the training process.
Thus, the model finds the optimal balance among both modalities.
Let n the number of modalities and 3; the trainable parameter associated
with the i-th modality, the weight w; associated with the i-th modality is
computed through softmax function. 3; is divided by a factor /n so to
stabilize values as follows:

Bi

w; = softmax(— 1
; () (1)
This fusion also adds a layer normalization operator followed by a residual
connection to the original feature values. Early fusion with Weighted sum is
illustrated in figure 2.

Late fusion Fusion is performed at inference time on the final prediction output
by every single model trained with each modality. At test stage, we compute the
final embedding returned by each model for every sequence within gallery and
probe sets. Then, softmax probability scores are computed for every sequence,
based on the pair distance among the embeddings in the gallery, and the em-
beddings in the probe. Softmax scores measures, for every sequence, the affinity
among the target subject and the subjects in the gallery. Fusion of the softmax
probabilities is carried out by means of the following strategies:

— Product: Let P; the set of softmax scores vectors output from the m; modal-
ity. The final softmax score vectors Sproq can be computed as follows:

n

Sprod(v == C) == H Pl(ml = C) (2)

i=1



6 N. Cubero et al.

/ Heatmap branch
(ConvaD|| NILTA| || GLConvA MP GLConvA| | GLConvB | | TP
\ Weighted sum
|We

Dense Pose Dense Pose branch

m‘ Conv3D LTA GLConvA MP. GLConvA GLConvB TP

Fig.2: Scheme of Early fusion with weighted sum. Our model has two
parallel branches, one is fed with pose heatmaps and the other one with dense
pose. Note that fusion is illustrated over the GaitGL [14] architecture on GeM
layer. However, we tested other locations as explained in Sec 4.4. GLConv refers
to Global-Local Convolution, LTA to Local Temporal Aggregation, MP to Max
Pooling, TP to Temporal Pooling; GeM to Generalized-Mean pooling and FC
to Fully-Connected layer (Best viewed in digital format).

where Sproa(v = ¢) refers to the probability of assigning the score of video v
to the subject ¢ and P;(m; = ¢) is the probability of assigning the identity
of subject ¢ to that subject in the modality m;.

— Weighted sum: Final softmax scores S,,s; are computed from the softmax
vector scores P; output from each modality m; by a weighted sum as follows:

Sws(v=c) =Y _\iP;(m; =c) (3)
i=1
Where \; is the weight assigned to each modality m;, subject to Vi =
1,..,n, A\; >0 and Z?:l A= 1.
Considering n = 2 modalities, we grid values for A; from 0.1 to 0.9 with
steps of 0.1 for one modality, and assign Ao = 1 — A1 to the other modality.

4 Experiments and results

In this section, we report the experimental results of our fusion approach. Firstly,
we describe the datasets and metrics considered to evaluate our models’ perfor-
mance. Then, we report the implementation details of our models. Finally, we
report our experimental results and the comparison against the state of the art.

4.1 Datasets

We carry out our experimental study on CASIA-B dataset [24]. Note that other
popular datasets like OU-MVLP [21] or GREW [25] have not released the original
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RGB video sequences, so it is not possible to apply the pose estimators on them
to extract the pose heatmaps or the dense poses.

CASTA-B collects 124 subjects walking in an indoor environment while they
are recorded from 11 different viewpoints (i.e. from 0° to 180° in steps of 18°).
Video resolution is 320 x 240 pixels and fps is 24. For every subject, three walk-
ing conditions are considered: normal walking (NM), carrying a bag (BG) and
wearing a coat (CL). We follow the Large-Sample Training (LT) experimental
protocol followed too by [14].

The sequences from the first 74 subjects of all the walking conditions and
viewpoints are used for training. For the remaining subjects, the first four NM
sequences are used as gallery set while the rest of the walking conditions and
types are used as probe set.

As evaluation metrics, we use the standard Rank-1 (R1) accuracy to measure
the accuracy of our models, i.e. the percentage of correctly classified videos:
R1 = #correct/#total.

4.2 Implementation details

As GaitGL [14] is the current state-of-the-art model in gait recognition using
silhouettes we employ it with the two proposed modalities: pose heatmaps and
dense pose. Notice that the model is trained from scratch in all our experiments.

Table 1 summarises the training hyperparameters. For training, input sam-
ples contain 30 frames to reduce memory requirements, while at test time, we
use all video frames to evaluate model accuracy.

Regarding pose image preprocessing, our input data is scaled and cropped so
that the subject is always located in the middle of the frame, resulting in an input
shape of 64 x 44. Pose heatmaps are obtained through ViTPose [23], while I-V
images are obtained from DensePose [18]. Since image I is represented with 25
gray tones (24 body parts + background), we scale its values to the complete gray
scale range ([0, 255]). We performed preliminary ablation experiments with every
single I, U, and V image and concluded that image U does not provide valuable
data. Hence, we only use I4+V images. Figure 1b shows the I+V channels.

Table 1: Training hyperparameters. Description of the hyperparameters used

to train GaitGL [14].
[ GaitGL [14] train hyperparameters |

# iterations 80k

Batch size (P subjects x K samples)|P: 8, K: 8

Optimizer Ir: 10~ 2 (107 after iter. 70k)
Regularization L2 (Weight decay: 5- 10~ T)
# of filters per conv. block 32, 64, 128, 128

GeM pooling p initial value: 6.5

Triplet loss margin 0.2

For early fusion with the weighted sum, weights (; for every modality are
initialized to 1, and we allow the model to find the optimal values during the
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training process. All the models are developed using OpenGait [6] and PyTorch
v1.12.1.

4.3 Baseline results

Firstly, we train and evaluate the base GaitGL model with each individual pose
heatmaps and dense pose modalities. Hence, we obtain the baseline accuracy
that can be obtained per each individual modality.

Table 2 reports the accuracy obtained by the base GaitGL model trained
on every single modality. It can be observed that Dense Pose representation
achieves higher accuracy as it manages richer information than Pose Heatmaps
representation.

Table 2: Baseline accuracy. Top-1 accuracy (%) obtained per each single
modality at test stage. Mean accuracy per each walking condition (NM, BG
and CL) is reported along with the overall accuracy. The best result is high-
lighted in bold.

Walking condition
NM BG CL |Mean
Hierarchical pose heatmaps| 92.7 80.0 70.3 | 81.0
Dense Pose 96.7 91.6 83.2 |90.5

Modality

4.4 Study of early fusion strategies

In this section, we report a thorough study of the proposed early fusion strategies
over each stage of the GaitGL architecture. Thus, we have tested the proposed
aggregation strategies at several locations of the model: Conv3D, LTA, first
GLConvA layer (called GLConvAO0), second GLConvA layer (called GLConvA1l)
and GLConvB (called GLConvB), TP, GeM and FC.

The mean global top-1 accuracy obtained by each early fusion method over
all the fusion stages is summarised in Figure 3.

It can be observed that fusion strategies based on both concatenation (blue
bars) and sum (red bars) obtain worse results than the baseline result achieved by
the single Dense Pose modality, indicating that a more complex fusion strategy
is necessary.

Thus, we also tested fusion through the weighted sum, where the contribution
of each modality must be learned. The results of this fusion strategy (green bars)
show an important improvement with respect to previous fusion schemes. It can
improve in 2.3% the best result achieved by the Dense Pose baseline when applied
at the GeM module’s output. This best model holds 4.543 M of parameters, and
the average inference time per sample on an NVIDIA Titan Xp GPU is 28 ms.
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91 90.5 90.6

¢ 89 882 88.2 884 88.2 88.2 88.2
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[0 Weighted sum
!

baseline Conv3D LTA GLConvAO GLConvAl GLConvB2 GeM FC

Fig. 3: Results with Early fusion. Mean Top-1 for all the early fusion strate-
gies in all the fusion locations. Note that the accuracy scale is cropped to 80-95
%. Best viewed in digital format.

4.5 Study of late fusion strategies

The following tests focus on evaluating our proposed strategies for late fusion:
product and weighted sum (w-sum). Thus, Table 3 collects both the mean top-
1 accuracy (%) for every walking condition and the global mean for each late
fusion strategy.

Table 3: Results with Late fusion, for both Product and Weighted sum strate-
gies. Mean Top-1 accuracy, in percentage, for every walking condition is reported
along with the overall mean for all the walking conditions. Note that A, refers
to the weight associated with heatmaps and Mg, the weight associated with
densepose.

Fusion |Weights|Walking condition
NM BG CL |Mean
Product 97.5 91.5 83.4 |90.8
)\hm >\dp
0.1 0.9|97.1 92.2 84.0 | 91.1
0.2 0.8/ 97.4 92.7 84.8 | 91.6
0.3 0.7/97.6 92.7 84.9 |91.7
0.4 0.6/97.6 92.3 84.4 | 914
0.5 0.5/ 97.5 91.5 83.4 |90.8
0.6 0.4|97.1 90.3 82.0 | 89.8
0.7 0.3/ 96.5 88.6 80.0 | 88.4
0.8 0.2| 95.7 86.5 77.4 | 86.5
0.9 0.1/94.6 83.6 74.1 |84.1

W-sum

It shows that both product and w-sum improve the baseline results. For w-
sum, when dense pose modality is weighted under 0.5, the performance gets lower
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Table 4: State-of-the-art comparison on CASIA-B. Comparison with other
pose-based and shape-based models. Mean Top-1 accuracy, in percentage, for ev-
ery walking condition is reported along with the overall mean for all the walking
conditions. Best other results per each data type are highlighted in italic-bold.

Walking condition
Data [Model NM BG CL |Mean
TransGait [9] (Pose + STM) 84.5 71.2 544 | 70.0
PoseMapGait [12] 79.3 61.1 48.1 | 62.8
Poge |PoseGait [13] 68.7 44.5 39.9 | 49.7
GaitGraph [22] 87.7 74.8 66.3 | 76.3
End-to-end Pose LSTM [10] 66.1 49.3 37.0 | 50.8
End-to-end Pose CNN [10] 91.2 83.9 60.2 | 78.4
GaitSet 3] 95.0 87.2 704 | 84.2
GaitPart [5] 96.2 91.5 78.7 | 88.8
GaitGL [14] 97.4 945 83.6 | 91.8
Shape|TransGait [9] (Sil + STM) 97.3 92.8 80.6 | 90.2
TransGait [9] (Multimodal) 98.1 949 858 |92.9
End-to-end shape model [10] 97.5 90.6 75.1 | 87.7
End-to-end ensemble [10] 979 93.1 77.6 | 89.5

[Ours [PoseFusionGaitGL (tw-sum after GeM)[ 98.4 93.4 86.6 | 92.8]

than the baseline accuracy. For most of the late fusion strategies, performance
gets higher than early fusion by concatenation and sum methods. Finally, the
weighted sum with A = 0.3 for the pose heatmaps features and A = 0.7 for the
dense pose features achieves the best performance but does not improve the best
results with the best early fusion strategy.

4.6 Comparison to the state of the art using pose

Table 4 compares our best approach with the state-of-the-art pose-based and
shape-based models. Our proposal outperforms all the pose-based methods, in-
cluding ’End-to-end Pose’ [10], which has been trained end-to-end with the
original RGB frames. Our model obtains the best accuracy in the ‘walking
with clothes’ (CL) condition and improves over the performance of most of the
silhouette-based approaches, such as GaitGL [14], or GaitPart [5], and reaches
very competitive results with multimodal TransGait [9] which has been trained
using both pose and silhouette modalities.

These results show the capability of our fusion strategies to optimally ag-
gregate features from multiple pose representation modalities using little or no
shape data.

5 Conclusions

In this work, we presented an experimental study of multiple fusion pipelines
for a multimodal framework for gait recognition that exploits various human
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pose representations. Concretely, we consider two pose representations: (a) pose
heatmaps rearranged in a hierarchical decomposition of the human limbs and
(b) dense pose.

As fusion strategies, we proposed, on the one hand, early fusion on the output
descriptors produced by different layers of the model through concatenation and
sum. In addition, we introduced a weighted sum, where the weights are learned
during the training process and allow the model to leverage both modalities
optimally. And, in the other hand, we proposed multiple late fusions on the final
softmax probabilities output by each branch.

We evaluated our pose fusion approaches on the base GaitGL model for
silhouette-based gait recognition. We maintained the original GaitGL architec-
ture except for the parallel branches and fusion. We also included a comparison
against the baseline performance achieved by every single modality.

Our experimental results show that: (a) Concatenation and sum early fusion
methods do not allow one modality to enrich the features of the other modality,
so results get poor. By contrast, weighted sum allows the model to learn to
combine the features produced by each modality in a more optimal way. (b) Late
fusion generally obtains good results too, and improves the baseline performance.
And, (c) pose fusion obtains higher results than pose-based models and most
shape-based models. Our approach reaches comparable performance to other
multimodal fusions proposals based on silhouettes.

In future work, we plan to extend our study to alternative pose represen-
tations models that provide new perspectives on gait motion. In addition, we
consider studying more elaborated fusion strategies. In our study, all the pro-
posed fusion strategies treat equally the whole modality feature without taking
into account useful information that is derived from local regions.
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