
Computing k-Bisimulations for Large Graphs:
A Comparison and Efficiency Analysis

Jannik Rau1, David Richerby2[0000−0003−1062−8451], and
Ansgar Scherp1[0000−0002−2653−9245]

1 University of Ulm, Germany. {firstname.lastname}@uni-ulm.de
2 University of Essex, UK. david.richerby@essex.ac.uk

Abstract. Summarizing graphs w.r.t. structural features is important
to reduce the graph’s size and make tasks like indexing, querying, and
visualization feasible. Our generic parallel BRS algorithm efficiently sum-
marizes large graphs w.r.t. a custom equivalence relation ∼ defined on
the graph’s vertices V . Moreover, the definition of ∼ can be chained k ≥ 1
times, so the defined equivalence relation becomes a k-bisimulation. We
evaluate the runtime and memory performance of the BRS algorithm for
k-bisimulation with k = 1, . . . , 10 against two algorithms found in the
literature (a sequential algorithm due to Kaushik et al. and a parallel
algorithm of Schätzle et al.), which we implemented in the same soft-
ware stack as BRS. We use five real-world and synthetic graph datasets
containing 100 million to two billion edges. Our results show that the
generic BRS algorithm outperforms the respective native bisimulation
algorithms on all datasets for all k ≥ 5 and for smaller k in some cases.
The BRS implementations of the two bisimulation algorithms run almost
as fast as each other. Thus, the BRS algorithm is an effective paralleliza-
tion of the sequential Kaushik et al. bisimulation algorithm.

Keywords: structural graph summarization · bisimulation · large la-
beled graphs.

1 Introduction

Storing, indexing, querying, and visualizing large graphs is difficult [7]. One way
to mitigate this challenge is graph summarization [9]. Graphs can be summarized
w.r.t. so-called graph summary models [6] that define structural features (e. g.,
incoming/outgoing paths), statistical measures (e. g., occurrences of specific ver-
tices), or frequent patterns found in the graph [9]. This gives a summary graph,
which is usually smaller than the original but contains an approximation of or
exactly the same information as the original graph w.r.t. the selected features
of the summary model. Tasks that were to be performed on the original graph
can be performed on the summary but much faster. Use cases are optimizing
database queries [22], data visualization [12], and OWL reasoning [28].

Blume, Richerby, and Scherp developed a generic structural summarization
approach, here referred to as BRS [5, 6]. The BRS algorithm summarizes an
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input graph w.r.t. an arbitrary user-defined equivalence relation specified in its
formal language FLUID [6]. The FLUID language supports all features of struc-
tural graph summarization found in the literature [6]. There are two groups of
these features. The first comprises a vertex’s local information, e. g., its label
set, its direct neighbors, and the labels of its incoming or outgoing edges. The
second group considers a vertex’s global information at distance k > 1. This
includes, e. g., local information about reachable vertices up to distance k or in-
formation about incoming or outgoing paths of length up to k. We use stratified
k-bisimulations (formally described in Section 3.2) to summarize a graph w.r.t.
global information and group together vertices that have equivalent structural
neighborhoods up to distance k. Several existing approaches use k-bisimulations
to incorporate global information into structural graph summarization [6, 9].
The BRS algorithm generalizes these approaches and can chain any definable
equivalence relation k times, such that the resulting equivalence classes can be
efficiently computed by global information up to distance k [4, 24].

However, it is not known if a general approach like the BRS algorithm sac-
rifices performance. We choose two representative algorithms as examples to
demonstrate the capabilities of our generic BRS algorithm. First, we have re-
implemented the efficient, parallel single-purpose k-bisimulation algorithm of
Schätzle, Neu, Lausen, and Przjaciel-Zablocki [25] and investigate whether it
outperforms our generic BRS algorithm. Second, we investigate the sequential
algorithm for bisimulation by Kaushik, Shenoy, Bohannon, and Gudes [16]. Be-
ing sequential, it is naturally disadvantaged against parallel algorithms such as
ours. However, we show in this work that the bisimulation of Kaushik et al. [16]
can be declaratively specified and executed in the generic BRS algorithm. This
effectively parallelizes the algorithm “for free”. We evaluate the performance of
the BRS-based parallelized computation of the Kaushik et al. graph summary
model and compare it with their sequential native algorithm. We also compare
both Kaushik et al. variants, native and BRS-based, with the parallel native al-
gorithm of Schätzle et al. [25] and a BRS implementation of Schätzle et al. (see
also [4]). Thus, we have four k-bisimulation algorithms. For a fair comparison,
we reimplemented the existing native algorithms in the same graph processing
framework as the BRS algorithm. We execute the four algorithms on five graph
datasets – two synthetic and three real-world – of different sizes, ranging from
100 million edges to billions of edges. We evaluate the algorithms’ performance
for computing k-bisimulation for k = 1, . . . , 10. We measure running time per
iteration and the maximum memory consumption.

The questions we address are: Do the native bisimulation algorithms have an
advantage over a generic solution? How well do the native and generic algorithms
scale to large real-world and synthetic graphs? Is it possible to effectively scale
a sequential algorithm by turning it into a parallel variant by using a general
formal language and algorithm for graph summaries?

We discuss related work next. Section 3 defines preliminaries, while the al-
gorithms are introduced in Section 4. Section 5 outlines the experimental appa-
ratus. Section 6 describes the results, and these are discussed in Section 7.
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2 Related Work

Summary graphs can be constructed in several ways. Čebirić et al. [9] clas-
sify existing techniques into structural, pattern-mining, statistical, and hybrid
approaches. In this paper, we consider only structural approaches based on quo-
tients. Other structural summarization techniques, not based on quotients, are
extensively discussed by Čebirić et al. [9]. Structural approaches summarize a
graph G w.r.t. an equivalence relation ∼ ⊆ V × V defined on the vertices V of
G [7,9]. The resulting summary graph SG consists of vertices V S, each of which
corresponds to a equivalence class of the equivalence relation ∼.

One can observe that k-bisimulation is a popular feature for structural graph
summarization [6]. Bisimulation comes in three forms: backward k-bisimulation
classifies vertices based on incoming paths of length up to k, forward bisimulation
considers outgoing paths, and backward-forward bisimulation considers both.
Bisimulation may be based on edge labels, vertex labels, or both, but this makes
no significant difference to the algorithms. A notion of k-bisimulation w.r.t. graph
indices is introduced by seminal works such as the k-RO index [21] and the T-
index summaries [20]. Milo and Suciu’s T-index [20], the A(k)-Index by Kaushik
et al. [16], and others are examples that summarize graphs using backward k-
bisimulation. We chose as representative the sequential algorithm by Kaushik
et al. [16], which uses vertex labels, as described in Section 4.2. Conversely, the
k-RO index, the Extended Property Paths of Consens et al. [11], the SemSets
model of Ciglan et al. [10], Buneman et al.’s RDF graph alignment [8], and the
work of Schätzle et al. [25] are based on forward k-bisimulation. We note that
Schätzle et al. use edge labels, as described in Section 4.1. Tran et al. compute
a structural index for graphs based on backward-forward k-bisimulation [27].
Moreover, they parameterize their notion of bisimulation to a forward-set L1

and a backward-set L2, so that only labels l ∈ L1 are considered for forward-
bisimulation and labels l ∈ L2 for backward-bisimulation.

Luo et al. examine structural graph summarization by forward k-bisimulation
in a distributed, external-memory model [18]. They empirically observe that,
for values of k > 5, the summary graph’s partition blocks change little or not
at all. Therefore they state, that for summarizing a graph with respect to k-
bisimulation, it is sufficient to summarize up to a value of k = 5 [17]. Finally,
Martens et al. [19] introduce a parallel bisimulation algorithm for massively par-
allel devices such as GPU clusters. Their approach is tested on a single GPU
with 24 GB RAM, which limits its use on large datasets. Nonetheless, their pro-
posed blocking mechanism could be combined with our vertex-centric approach
to further improve performance.

Each of the works proposes a single algorithm for computing a single graph
summary based on a bisimulation. Some of the algorithms have bisimulation pa-
rameters such as the height and label parameterization in Tran et al. [27]. We sug-
gest a generic algorithm for computing k-bisimulation and show its advantages.
Also, our approach allows the bisimulation model to be specified in a declarative
way and parallelizes otherwise sequential computations like in Kaushik et al. [16]
into a parallel computation.
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Fig. 1: An example graph G displaying two universities and three employees.
Vertices are denoted by ellipses and edges by arrows. Vertex labels are marked
with rectangles and edge labels are written on the edge.

3 Preliminaries

3.1 Data Structures

The algorithms operate on multi-relational, labeled graphs G = (V,E, lV , lE),
where V = {v1, v2, . . . , vn} is a set of vertices and E ⊆ V ×V is a set of directed
edges between the vertices in V . Each vertex v ∈ V has a finite set of labels lV (v)
from a set ΣV and each edge has a finite set of labels lE(u, v) from a set ΣE .

Figure 1 shows an example graph representing two universities and three
employees. Vertices are represented by ellipses and edges are labeled arrows.
Vertex labels are shown in rectangles. For example, the edges (pr837, xuni) and
(st143, xuni) labeled with worksAt together with edges (pr837, “Bob”), (st143,
“Alice”) and (xuni, “X University”) labeled with name and vertex labels Profes-
sor (pr837), Student (st143) and Organization (xuni) state that professor Bob
and student Alice both work at the organization X University.

In a graph G = (V,E, lV , lE) the in-neighbors of a vertex v ∈ V are the set
of vertices N−(v) = {u | (u, v) ∈ E} from which v receives an edge. Similarly,
v’s out-neighbors are the set N+(v) = {w | (v, w) ∈ E} to which it sends edges.
For a set S ⊆ V , let N+(S) =

⋃
v∈S N

+(v) be the set of out-neighbors of S.

3.2 Bisimulation

A bisimulation is an equivalence relation on the vertices of a directed graph [16,
27]. Informally, a bisimulation groups vertices with equivalent structural neigh-
borhoods, i. e., the neighborhoods cannot be distinguished based on the vertices’
sets of labels and/or edges’ labels. Forward bisimulation (fw) considers outgo-
ing edges; backward bisimulation (bw) uses incoming edges. Vertices u and v are
forward-bisimilar if, every out-neighbor u′ of u has a corresponding out-neighbor
v′ of v, and vice versa; furthermore, the two neighbors u′ and v′ must be bisim-
ilar [16, 27]. Backward-bisimulation is defined similarly but using in-neighbors.
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k Partition blocks

0 {pr837}, {cs902}, {st143}, {uoy, xuni}, literals

1 {pr837}, {cs902}, {st143}, {uoy}, {xuni}, {“Alice”}, {“Charlie”},
{“Bob”}, {“X University”, “Univ. of Y”}

2 {pr837}, {cs902}, {st143}, {uoy}, {xuni}, {“Alice”}, {“Charlie”},
{“Bob”}, {“X University”}, {“Univ. of Y”}

Table 1: Vertex-labeled backward 2-bisimulation partition of the example graph
according to Definition 2.

This definition corresponds to a complete bisimulation. For the neighbors u′

and v′ to be bisimilar, their in-/out-neighbors must be bisimilar as well. A k-bi-
simulation is a bisimulation on G that considers features a distance at most k
from a vertex when deciding whether it is equivalent to another.

The algorithms of Schätzle et al. [25] and Kaushik et al. [16] compute versions
of forward and backward k-bisimulation on labeled graphs G = (V,E,ΣV , ΣE).

Definition 1. The edge-labeled forward k-bisimulation ≈k
fw ⊆ V×V with k ∈ N

of Schätzle et al. [25] is defined as follows:

– u ≈0
fw v for all u, v ∈ V ,

– u ≈k+1
fw v iff u ≈k

fw v and, for every edge (u, u′), there is an edge (v, v′) with
lE(u, u′) = lE(v, v′) and u′ ≈k

fw v′, and vice-versa.

For the graph in Figure 1, ≈0
fw has the single block V (as for all graphs, all

vertices are initially equivalent) and ≈1
fw has three blocks, i. e., sets of equiv-

alent vertices: {pr837, cs902, st143}, {uoy, xuni}, and the literals. The vertices
xuni and uoy are not 1-bisimilar to st143, cs902 and pr837, as they have no
outgoing edge labeled worksAt. For k ≥ 2, k-bisimulation in this case makes
no more distinctions than 1-bisimulation. Note that Schätzle et al. compute full
bisimulations. We have modified their algorithm to stop after k iterations.

Definition 2. The vertex-labeled backward k-bisimulation ≈k
bw ⊆ V × V with

k ∈ N of Kaushik et al. [16] is defined as follows:

– u ≈0
bw v iff lV (u) = lV (v),

– u ≈k+1
bw v iff v ≈k

bw u and, for every (u′, u) ∈ E, there is (v′, v) ∈ E with
u′ ≈k

bw v′, and vice versa.

Table 1 shows the vertex-labeled backward 2-bisimulation partitions of the
graph in Figure 1. 0-bisimulation partitions by label. Then, xuni, uoy and the
literals are split by their parents’ labels. No vertex is 2-bisimilar to any other:
every block is a singleton.

3.3 Graph Summaries for Bisimulation

The BRS algorithm summarizes graphs with respect to a graph summary model
(GSM), a mapping from graphs G = (V,E) to equivalence relations ∼ ⊆ V ×V .
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The equivalence classes of ∼ partition G. A simple GSM is label equality, i. e.,
two vertices are equivalent iff they have the same label. Depending on the appli-
cation, one might want to summarize a graph w.r.t. different GSMs. Therefore,
the algorithm works with GSMs defined in our formal language FLUID [6]. To
flexibly and quickly define GSMs, the language provides simple and complex
schema elements, along with six parameterizations, of which we use two (for
details we refer to [6]).

A complex schema element CSE := (∼s,∼p,∼o) combines three equivalence
relations [6]. Vertices v and v′ are equivalent, iff v ∼s v

′; and for all w ∈ N+(v)
there is a w′ ∈ N+(v′) with lE(v, w) ∼p lE(v′, w′) and w ∼o w

′, and vice versa.
The chaining parameterization enables computing k-bisimulations by increas-

ing the neighborhood considered for determining vertex equivalence [6]. It is de-
fined by nesting CSEs. Given a complex schema element CSE := (∼s,∼p, ∼o)
and k ∈ N>0, the chaining parameterization CSEk defines the equivalence re-
lation that corresponds to recursively applying CSE to a distance of k hops.
CSE1 := (∼s,∼p,∼o) and, inductively for k > 1, CSEk := (∼s,∼p, CSE

k−1).
This results in a summary graph that has one vertex for each equivalence class
in each equivalence relation defined within the CSE. Summary vertices v and w
are connected via a labeled edge, if all vertices in the input graph represented
by v have an edge with this label to a vertex in w. For full details, see [6].

To model backward k-bisimulations, we need to work with incoming edges,
whereas the schema elements consider only outgoing edges. In FLUID, this is
done with the direction parameterization [6] but, here, we simplify notation. We
write SE−1 for the schema element defined analogously to SE but using the
relation E−1 = {(y, x) | (x, y) ∈ E} in place of the graph’s edge relation E, and
the edge labeling `−1E (y, x) = `E(x, y).

Following Definitions 1 and 2 of Schätzle et al. and Kaushik et al., we define
CSESch and CSEKau as follows. Here, id = {(v, v) | v ∈ V } and T = V × V ,
and vertices are equivalent in OCtype iff they have the same labels [6].

CSESch := (T, id, T )k (1)

CSEKau :=
(
(OCtype, T,OCtype)

−1)k . (2)

4 Algorithms

We introduce the single-purpose algorithms of Schätzle et al. [25] in Section 4.1
and Kaushik et al. [16] in Section 4.2. Finally, we introduce the generic BRS
algorithm in Section 4.3. The first two algorithms compute summaries in a fun-
damentally different way to the BRS algorithm. At the beginning of the exe-
cution, BRS considers every vertex to be in its own equivalence class. During
execution, vertices with the same vertex summary are merged. Therefore, BRS
can be seen as a bottom-up approach. In contrast, Schätzle et al. consider all
vertices to be equivalent at the beginning, and Kaushik et al. initially consider
all vertices with the same label to be equivalent. The equivalence relation is then
successively refined. These two algorithms can be seen as top-down approaches.
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Here, it is convenient to consider set partitions. A partition of a set V is a
set {B1, . . . , B`} such that: (i) ∅ ( Bi ⊆ V for each i, (ii)

⋃
iBi = V , and (iii)

Bi ∩ Bj = ∅ for each i 6= j. The sets Bi are known as blocks. The equivalence
classes of an equivalence relation over V partition the graph’s vertices. A key
concept is partition refinement. A partition Pi = {Bi1, Bi2, . . .} refines Pj =
{Bj1, Bj2, . . .} iff every block Bik of Pi is contained in a block Bj` of Pj .

4.1 Native Schätzle et al. Algorithm

This algorithm [25] is a distributed MapReduce approach for reducing labeled
transition systems. Two fundamental concepts are the signature and ID of a
vertex v with respect to the current iteration’s partition Pi.

The signature of a vertex v w.r.t. a partition Pi = {Bi1, Bi2, . . .} of V is
given by sigPi

(v) = {(`, Bij) | (v, w) ∈ E with lE(v, w) = ` and w ∈ Bij}. That
is, v’s signature w.r.t. the current iteration’s partition Pi is the set of outgoing
edge labels to blocks of Pi. By Definition 1, u ≈k+1

fw v, iff sigPk
(u) = sigPk

(v).
Therefore signatures identify the block of a vertex and represent the current
bisimulation partition, and the signature of v w.r.t. Pi can be represented as
sigPi+1

(v) = {(lE(v, w), sigPi
(w)) | (v, w) ∈ E}. The nested structure of vertex

signatures means they can become very large. Thus, we compute a recursively
defined hash value proposed by Hellings et al. [13], which is also used by Schätzle
et al. [25]. We use this hash function to assign sigPi

(v) an integer value which we
denote by IDPi(v). Now the signature of a vertex v w.r.t. the current partition Pi

can be represented as sigPi+1
(v) = {(lE(v, w), IDPi

(w)) | (v, w) ∈ E}.
With sigPi

(v) and IDPi
(v), the procedure for computing an edge-labeled

forward k-bisimulation partition is outlined in Algorithm 1. The initial par-
tition is just V (line 2), as every vertex is 0-bisimilar to every other vertex.
Next, the algorithm performs k iterations (lines 3–8). In the ith iteration, the
information needed to construct a vertex’s signature sigPi

(v) is sent to every
vertex v (line 5). This information is the edge label lE(v, w) ∈ ΣE and the
block identifier IDPi−1

(w) for every w ∈ N+(v). The signature sigPi
(v) is then

constructed using the received information, and the identifiers IDPi(v) are up-
dated for all v (line 6). At the end of each iteration, the algorithm checks if
any vertex ID was updated, by comparing the number of distinct values in IDPi

and IDPi−1
(line 7). If no vertex ID was updated, we have reached full bisim-

ulation [3, 25] and hence can stop execution early. At the end, the resulting
k-bisimulation partition Pk is constructed by putting vertices v in one block if
they share the same identifier value IDPi(v) (line 9).

4.2 Native Kaushik et al. Algorithm

This algorithm [16] sequentially computes vertex-labeled backward k-bisimulations.
The following definitions are from [23], modified for backward bisimulation.

A subset B ⊆ V is stable with respect to another subset S ⊆ V if either B ⊆
N+(S) or B∩N+(S) = ∅. That is, vertices in a stable set B are indistinguishable
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Algorithm 1: Bisimulation Algorithm by Schätzle et al. [25]

1 function bisimSchätzle(G = (V,E, lV , lE), k ∈ N)
/* Initially, all v ∈ V in same block with IDP0(v) = 0 */

2 P0 ← {V };
3 for i← 1 to k do

/* Map Job */

4 for (v, w) ∈ E do
5 Send (lE(v, w), IDPi−1(w))

/* Reduce Job */

6 Construct sigPi
(v) and update IDPi(v);

/* Check if full bisimulation is reached */

7 if |IDPi | = |IDPi−1 | then
8 break;

9 Construct Pk from IDPi ;
10 return Pk;

by their relation to S: either all vertices in B get at least one edge from S, or
none do. If B is not stable w.r.t. S, we call S a splitter of B.

Building on this, partition Pi of V is stable with respect to a subset S ⊆ V
if every block Bij ∈ Pi is stable w.r.t. S. Pi is stable if it is stable w.r.t. each
of its blocks Bij . Thus, a partition Pi is stable if none of its blocks Bij can be
split into a set of vertices that receive edges from some Bik and a set of vertices
that do not. A stable partition corresponds to the endpoint of a bisimulation
computation: no further distinctions can be made.

This gives an algorithm for bisimulation, due to Paige and Tarjan [23] who
refer to it as the “näıve algorithm”. The initial partition is repeatedly refined
by using its own blocks or unions of them as splitters: if S splits a block B, we
replace B in the partition with the two new blocks B ∩N+(S) and B−N+(S).
When no more splitters exist, the partition is stable [23] and equivalent to the
full backward bisimulation of the initial partition P0 [15].

The algorithm of Kaushik et al., Algorithm 2, modifies this näıve approach.
The first difference is that in each iteration i ∈ {1, . . . , k} the partition is sta-
bilized with respect to each of its own blocks (lines 7–16). This ensures that,
after iteration i, the algorithm has computed the i-bisimulation [16], which is
not the case in the näıve algorithm. Second, blocks are split as defined above,
(lines 9–15). As a result, Algorithm 2 computes the k-backward bisimulation.
To check if full bisimulation has been reached, the algorithm uses the Boolean
variable wasSplit (lines 6 and 15). If this is false at the end of an iteration i, no
block was split, so the algorithm stops early (line 17). Moreover, Algorithm 2
tracks which sets have been used as splitters (line 3), to avoid checking for sta-
bility against sets w.r.t. which the partition is already known to be stable. The
algorithm provided by Kaushik et al. does not include this. If a partition P is
stable w.r.t. a block B, each refinement of P is also stable w.r.t. B [23]. So after
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Algorithm 2: Bisimulation Algorithm by Kaushik et al. [16]

1 function bisimKaushik(G = (V,E, lV , lE), k ∈ N)
/* P := {B1, B2, . . . , Bt} */

2 P ← partition V by label;
3 usedSplitters← ∅;
4 for i← 1, . . . , k do
5 P copy ← P ;
6 wasSplit← false;
7 for Bcopy ∈ P copy − usedSplitters do

/* Use blocks of copy partition to stabilize blocks of

original partition */

8 for B ∈ P do
9 succ← B ∩N+(Bcopy);

10 nonSucc← B −N+(Bcopy);
/* Split non-stable blocks */

11 if succ 6= ∅ and nonSucc 6= ∅ then
12 P.add(succ);
13 P.add(nonSucc);
14 P.delete(B);
15 wasSplit← true;

16 usedSplitters.add(Bcopy);

17 if ¬wasSplit then
18 break;

19 return P ;

the partition P is stabilized w.r.t. a block copy Bcopy (lines 7–16), we can add
Bcopy to the usedSplitters set and not consider it in subsequent iterations.

4.3 Generic BRS Algorithm

The parallel BRS algorithm is not specifically an implementation of k-bisimulation.
Rather, one can define a graph summary model in a formal language FLUID (see
Section 3.3). This model is denoted by ∼ and input to the BRS algorithm, which
then summarizes a graph w.r.t. ∼. In particular, the k-bisimulation models of
Schätzle et al. and Kaushik et al. can be expressed in FLUID, as shown in Sec-
tion 3.3. Thus, the BRS algorithm can compute k-bisimulation partitions. In
other words, k-bisimulation can be incorporated into any graph summary model
defined in FLUID. The BRS algorithm summarizes the graph w.r.t. ∼ in parallel
and uses the Signal/Collect paradigm. In Signal/Collect [26], vertices collect in-
formation from their neighbors, sent over the edges as signals. Details of the use
of the Signal/Collect paradigm in our algorithm can be found in Blume et al. [5].
Briefly, the algorithm builds equivalence classes by starting with every vertex in
its own singleton set and forming unions of equivalent vertices. Before outlining
the algorithm, we give a necessary definition.
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Definition 3. Suppose we have a graph summary GS of G = (V,E, lV , lE) w.r.t.
some GSM ∼. For each v ∈ V , the vertex summary vs is the subgraph of GS
that defines v’s equivalence class w.r.t. ∼.

We give the pseudocode of our version of the BRS algorithm in Algorithm 3
and briefly describe it below. [4] gives a step-by-step example run.

Initialization (lines 3–5). For each vertex v ∈ V , VertexSchema com-
putes the local schema information w.r.t. ∼s and ∼o of the graph summary
model (∼s,∼p,∼o)k. The method also takes into account ∼p, i. e., the equiva-
lence relation defined over the edge labels. Order-invariant hashes of this schema
information are stored as the identifiers id∼s and id∼o (lines 4–5).

At the end of the initialization, every vertex has identifiers id∼s
and id∼o

.
Two vertices v and v′ are equivalent w.r.t. (∼s,∼p,∼o), iff v.id∼s = v′.id∼s .
Thus, this initialization step can be seen as iteration k = 0 of bisimulation.

Case of k = 1 bisimulation (lines 6–11). Every vertex v sends, to each in-
neighbor w, its id∼o value and the label set `(w, v) of the edge (w, v) (line 9).

Every vertex v sends, to each in-neighbor w, its id∼o value and the label
set L = `(w, v) of the edge (w, v) (line 9). Thus, each vertex receives a set
of schema 〈L, id∼o

〉 pairs from its out-neighbors, which are collated into the
set Mo (line 10) and merged with an order-invariant hash to give v’s new id∼s

(line 11). Here, the MergeAndHash(Mo) function first merges the elements
of the schema message Mo received from vertex o and hashes it with an order-
independent hash function. This hash is then combined with the existing hash
value v.id∼s

using the xor (⊕) operator.
Case of k > 1 bisimulation (lines 13–32). In the first iteration (lines 13–19),

every vertex v sends a message to each of its out-neighbors w. The message
contains v’s id∼s

and id∼o
values, and the edge label set `(w, v) (line 15). Subse-

quently, the incoming messages of the vertex are merged into a set of tuples with
the received information 〈`(w, v), id∼s

〉 and 〈`(w, v), id∼o
〉 (lines 16 and 17). Fi-

nally, the identifiers id∼s and id∼o of v are updated by hashing the corresponding
set (lines 18 and 19). Note that, whenever an update of an identifier value v.id∼s

of vertex v is performed, the algorithm combines the old v.id∼s
with the new

hash value, indicated by ⊕.
In the remaining iterations, the algorithm performs the same steps (lines

20–27), but excludes the edge label set `(w, v) when merging messages for id∼o

(line 25). When merging the messages in id∼o
, it is not necessary to consider

`(w, v), as in the iterations 2 to k−1 it is only needed to update the id∼o values
using the hash function as described above. This is possible as id∼o by definition
already contains the edge label set `(w, v), computed in the first iteration.

In the final iteration, the identifiers are updated w.r.t. the final messages
(lines 28–32). The final messages received are the values stored in the out-
neighbors’ id∼o

values. Each vertex signals its id∼o
value to its in-neighbors

(line 30). The messages a vertex receives are merged (line 31) and hashed to
update the final id∼s

value (line 32). Equivalence between any two vertices v
and v′ can now be defined. Vertices with the same id∼s value are merged (line 33),
ending the computation.
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Algorithm 3: Parallel BRS algorithm

1 function Parallelsummarize(G, (∼s,∼p,∼o)k)
2 returns graph summary SG

/* Initialization */

3 for all v ∈ V do in parallel
4 v.id∼s ← hash(VertexSchema(v, G, ∼s, ∼p));
5 v.id∼o ← hash(VertexSchema(v, G, ∼o, ∼p));

/* If k = 1, only signal edge labels and v.id∼o */

6 if k = 1 then
7 for all v ∈ V do in parallel
8 for all w ∈ N−(v) do
9 SendMsgs(w, 〈`(w, v), 0, v.id∼o〉);

10 Mo ← {〈L, id∼o〉 | 〈L, id∼s , id∼o〉 was received};
11 v.id∼s ← v.id∼s⊕ MergeAndHash(Mo);

12 else
/* Signal initial messages. Update v.id∼s and v.id∼o */

13 for all v ∈ V do in parallel
/* Message each in-neighbor */

14 for all w ∈ N−(v) do
15 SendMsg(w, 〈`(w, v), v.id∼s , v.id∼o〉);

/* Collect all incoming messages of v */

16 Ms ← {〈L, id∼s〉 | 〈L, id∼s , id∼o〉 was received};
17 Mo ← {〈L, id∼o〉 | 〈L, id∼s , id∼o〉 was received};

/* Update identifiers by hashing the messages */

18 v.id∼s ← v.id∼s ⊕MergeAndHash(Ms);
19 v.id∼o ← v.id∼o ⊕MergeAndHash(Mo);

/* Signal messages k − 2 times. As above, but we do not

include L when updating v.id∼o. (See text.) */

20 for i← 2 to k − 1 do
21 for all v ∈ V do in parallel
22 for all w ∈ N−(v) do
23 SendMsg(w, 〈`(w, v), v.id∼s , v.id∼o〉);
24 Ms ← {〈L, id∼s〉 | 〈L, id∼s , id∼o〉 received};
25 Mo ← {〈id∼o〉 | 〈L, id∼s , id∼o〉 received};
26 v.id∼s ← v.id∼s ⊕MergeAndHash(Ms);
27 v.id∼o ← v.id∼o ⊕MergeAndHash(Mo);

/* Signal final messages. Update v.id∼s */

28 for all v ∈ V do in parallel
29 for all w ∈ N−(v) do
30 SendMsg(w, 〈∅, 0, v.id∼o〉);
31 Mo ← {〈id∼o〉 | 〈L, id∼s , id∼o〉 was received};
32 v.id∼s ← v.id∼s⊕ MergeAndHash(Mo);

33 SG← FindAndMerge(SG, V );
34 return SG;
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Graph |V | |E| |ΣV | r(lV ) µ(|lV (v)|) |ΣE |
Laundromat100M 30 M 88 M 33, 431 7, 373 0.93± 44 5, 630
BTC150M 5 M 145 M 69 137 1.04± 0.26 10, 750
BTC2B 80 M 1.92 B 113, 365 576, 265 0.95± 1.82 38, 136

BSBM100M 18 M 90 M 1, 289 2, 274 1.02± 0.13 39
BSBM1B 172 M 941 M 6, 153 27, 306 1.03± 0.18 39

Table 2: Statistics of the datasets.

We show in [4] that Algorithm 3 computes k-bisimulation of a graph with
m edges in time O(km). As a modification of the algorithm in [6], the algorithm
is correct, as long as hash collisions are avoided.

5 Experimental Apparatus

5.1 Datasets

We experiment with smaller and larger as well as real-world and synthetic graphs.
Table 2 lists statistics of these datasets, where r(lV ) = |{lV (v) | v ∈ V }| is the
number of different label sets (range) and µ(|lV (v)|) is the average number of
labels of a vertex v ∈ V .

Three real-world datasets were chosen. The Laundromat100M dataset con-
tains 100 M edges of the LOD Laundromat service [1]. This service automatically
cleaned existing linked datasets and provided the cleaned version on a publicly
accessible website. The BTC150M and BTC2B datasets contain, respectively,
around 150 million and 1.9 billion edges of the Billion Triple Challenge 2019
(BTC2019) dataset [14]. 93% of the total edges originate from Wikidata [29].
BTC150M is the first chunk of the 1.9 billion edges. For synthetic datasets, two
versions of the Berlin SPARQL Benchmark (BSBM) [2] were used. The BSBM
data generator produces RDF datasets that simulate an e-commerce use case.
BSBM100M was generated with 284, 826 products and has about 17.77 mil-

lion vertices and 89.54 million edges. BSBM1B was generated with 2, 850, 000
products and has about 172 million vertices and 941 million edges.

5.2 Procedure

An experiment consists of the algorithm to run, the dataset to summarize, and
the bisimulation degree k. In case of the BRS algorithm, it additionally consists of
the graph summary model to use. We have two different graph summary models
defined by Schätzle et al. [25] and Kaushik et al. [16]. Each model comes in two
implementations, one native implementation as defined by the original authors
and a generic implementation through our hash-based version of the BRS algo-
rithm. We chose the bisimulation algorithms of Kaushik et al. and Schätzle et al.
as they represent two typical variants of backward and forward k-bisimulation
models as found in the literature (cf. Section 2). This choice of algorithms allows
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us to demonstrate that our algorithm can be applied to different settings. We
use the terms BRS-Schätzle and BRS-Kaushik to refer to our implementations
of the two GSMs BRS algorithm; we refer to our single-purpose implementations
of these two GSMs as native Schätzle and native Kaushik.

The four algorithms are applied on the five datasets, giving 20 experiments.
Each experiment is executed with a bisimulation degree of k = 1, . . . , 10, us-
ing the following procedure. We run the algorithms six times with the specific
configuration. We use the first run as a warm-up and do not account it for our
measurements. The next five runs are used to measure the variables.

5.3 Implementation

All algorithms, i. e., the native algorithms of Schätzle et al. and Kaushik et al.
and their generic BRS-variants are implemented using the same underlying
framework and paralellization approach, i. e., are implemented in Scala upon
the Apache Spark Framework. This API offers flexible support for parallel com-
putation and message passing, which enables implementation of Map-Reduce
and Signal-Collect routines. We use an Ubuntu 20 system with 32 cores and
2 TB RAM. The Apache Spark contexts were given the full resources. Time and
memory measurements were taken using the Apache Spark Monitoring API.

5.4 Measures

We evaluate the algorithms’ running time and memory consumption. For every
run of an experiment, we report the total run time, the run time of each of the
k iterations, and the maximum JVM on-heap memory consumption.

6 Results

We present full results for each algorithm, iteratively calculating k-bisimulation
for every value of k = 1, . . . , 10 and every dataset, in Figure 2. Table 3 summa-
rizes the average total run time (minutes) for each experiment, for the compu-
tation of 10-bisimulation. The BRS algorithm takes an additional initialization
step (see Algorithm 3, lines 13–19). Table 4 reports the maximum JVM on-heap
memory in GB for each experiment. The BRS-Schätzle algorithm computes the
10-bisimulation the fastest on all datasets, except for BSBM100M, where BRS-
Kaushik is fastest. Native Schätzle consumes the least memory on all smaller
datasets. Native Schätzle consumes slightly more memory on BSBM1B than
BRS, whereas on BTC2B, the memory consumption is about the same.

Smaller Datasets (100M+ Edges). Figure 2 shows the average run time
(minutes) for each of the ten iterations on the smaller datasets. The native
Kaushik experiments take much longer than the others (Figures 2a, 2c, and 2e),
so we provide plots without native Kaushik (Figures 2b, 2d, and 2f), to allow
easier comparison between the other algorithms.



14 Jannik Rau, David Richerby, and Ansgar Scherp

(a) Laundromat100 Log Scale (b) Laundromat100 w/o Kaushik

(c) BTC150M Log Scale (d) BTC150M without Kaushik

(e) BSBM100M Log Scale (f) BSBM100M without Kaushik

(g) BTC2B without Kaushik (h) BSBM1B without Kaushik

Fig. 2: Average iteration times (minutes) on the smaller datasets in (a) to (f)
and larger datasets in (g) and (h).
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Schätzle et al. Kaushik et al.
BRS Native BRS Native

Laundromat100M 5.56 (0.50) 7.72 (0.07) 5.60 (0.15) 586.66 (21.09)

BTC150M 4.08 (1.55) 6.14 (0.38) 4.54 (1.34) 78.02 (3.71)

BTC2B 61.96 (11.38) 83.74 (1.96) 85.92 (13.6) out of time

BSBM100M 6.46 (0.08) 9.40 (0.06) 5.20 (0.50) 77.84 (2.41)

BSBM1B 54.44 (4.35) 85.98 (3.83) 64.00 (3.22) out of memory

Table 3: Total run time (in minutes) needed for computing the k = 1, . . . , 10
bisimulation (average and standard deviation over 5 runs).

Schätzle et al. Kaushik et al.
BRS Native BRS Native

Laundromat100M 211.5 147.9 210.5 335.1
BTC150M 140.6 107.7 130.1 181.7
BTC2B 1,249.1 1,249.7 1,249.3 out of time

BSBM100M 248.6 113.1 172.0 327.0
BSBM1B 1,248.2 1,335.4 1,249.2 out of memory

Table 4: Maximal JVM on-heap memory (in GB) used for k = 1, . . . , 10 bisimu-
lation. We provide the maximal memory usage determined over five runs, instead
of the average and standard deviation, in order to demonstrate what memory is
needed to perform the bisimulations without running out of memory.

BRS-Schätzle and native Schätzle have relatively constant iteration time
on all smaller datasets. For example, on Laundromat100M (Figure 2b), native
Schätzle computes an iteration in about 0.7 to 0.95 minutes. BRS is slightly
faster on all smaller datasets, but uses more memory (Table 4). BRS-Kaushik
shows similar results to BRS-Schätzle. Again iteration time is relatively constant
on all datasets. As before, it is fastest on BTC150M.

Native Kaushik shows a different behavior across the datasets. Iteration time
varies on all datasets: the iteration time increases in early iterations until it
reaches a maximum value, and then decreases. The only exception to this be-
havior occurs on BTC150M, where the iteration time decreases from iteration
one to two before following the described pattern for the remaining iterations.
For example, on Laundromat100M (Figure 2a) an iteration takes about 10 to
100 minutes. The maximum iteration time is reached in iteration six. Native
Kaushik runs fastest on BSBM100M, taking about 77.84 minutes on average.
BRS-Kaushik is much faster on all smaller datasets (Table 3) and uses slightly
less memory (Table 4).

Larger Datasets (1B+ Edges). BRS-Schätzle computes the k = 1, . . . , 10
bisimulation on BTC2B and BSBM1B with a relatively constant iteration time.
The total run time (Table 3), is lowest on BSBM1B: 54.44 minutes on average.
Native Schätzle also has nearly constant running time across iterations. The av-
erage running time for all ten iterations is lowest on BTC2B: 83.74 minutes on
average, compared to 85.98 minutes on BSBM1B. Comparing the run times of
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the two implementations, BRS is 37% on the BSBM1B dataset and 26% faster
on BTC2B. Both algorithms require about the same memory during execution
on BTC2B. On BSBM1B, native Schätzle uses slightly more memory than BRS.
Native Kaushik did not complete one iteration on BTC2B in 24 hours, so exe-
cution was canceled. The algorithm ran out of memory on BSBM1B (Table 4).

Finally, BRS-Kaushik also has similar iteration times. On BSBM1B (Fig-
ure 2h), computing a bisimulation iteration ranges from about 4 to 6 minutes.
On BTC2B (Figure 2g), the execution times for iterations one to three range
from 2 to 4 minutes. Iterations four to nine take about 8 minutes each. For the
final iteration ten, the running time slightly increases to about 9.5 minutes.

7 Discussion

Main Results. Our results show that, on all datasets, the generic BRS al-
gorithm outperforms the native bisimulation algorithms of Schätzle et al. and
Kaushik et al. for k = 10 (see Table 3). Since the BRS algorithm has an ini-
tialization phase, which is not present in the two native algorithms, we examine
the data more closely to see at which value of k BRS begins to outperform the
native implementations. We provide the exact numbers per iteration together
with the standard deviation and averaged over five executions in Appendix D.
Our generic BRS-Kaushik outperforms the native Kaushik et al. for all k: this
is unsurprising, as BRS parallelizes the original sequential algorithm. The time
taken to compute k-bisimulation is the total time for iterations up to, and includ-
ing, k. The comparison of BRS-Schätzle with the native Schätzle et al. algorithm
shows that our generic algorithm begins to outperform the native one at k = 3
for the Laundromat100M, BSBM100M, and BSBM1B; at k = 4 for BTC150M;
and at k = 5 for BTC2B. Again, we emphasize that BRS is a generic algorithm
supporting all graph summary models definable in FLUID (see introduction),
whereas native algorithms compute only one version of bisimulation each.

Note that, for each dataset and each algorithm, we iteratively compute in
total ten bisimulation-based graph summaries using every value of k from 1
to 10. As can be seen in Figure 2, the execution times per bisimulation iteration
are fairly constant over all iterations for all datasets for BRS and Schätzle et al.
The native Kaushik et al. algorithm sequentially computes the refinement of
the partitions, so execution time directly relates to the number of splits per k-
bisimulation iteration. This can be seen by the curve in the plots of the smaller
datasets (see Figures 2a, 2c, and 2e). In particular, Kaushik et al. detect that
full bisimulation has been reached and do not perform further computations:
this happens after computing the 7th iteration (7-bisimulation, see Figure 2e)
on the BSBM100M dataset but not on the other datasets on which the execution
of the Kaushik et al. algorithm completed. This kind of termination check could
also be added to the BRS algorithm but this is nontrivial, as we discuss below.

This consistent per-k iteration runtime is explained by each iteration of the
BRS algorithm processing every vertex, considering all its neighbors. Thus, the
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running time of the iteration depends primarily on the size of the graph, and not
on how much the k-bisimulation that is being computed differs from the (k−1)-
bisimulation that was computed at the previous iteration. The native Schätzle
et al. algorithm behaves in the same way. There is some variation in per-iteration
execution time but this may be because, as each vertex is processed, duplicate
incoming messages must be removed. The time taken for this will depend on the
distribution of the incoming messages, which will vary between iterations.

We consider experimenting with values between k = 1 and 10 to be ap-
propriate. The native Kaushik et al. algorithm terminates when full bisimula-
tion is reached, which shows that full bisimulation is reached at k = 7 on the
BSBM100M dataset, but has not been reached up to k = 10 for Laundromat100
and BTC150M. The rapidly decreasing per-iteration running times for native
Kaushik et al. for BTC150M (Figure 2c) suggests that full bisimulation will be
reached in a few more iterations. A similar curve can be observed for Laundro-
mat100 (Figure 2a), but the running time for the k = 10 iteration is higher,
suggesting that full bisimulation will not be reached for several iterations. Thus,
on these datasets, computing 10-bisimulations is a reasonable thing to do, as
full bisimulation has not yet been reached. Note that, for the other algorithms
that we consider (native Schätzle, and the two instances of BRS), per-iteration
running time is largely independent of k and of whether full bisimulation as been
reached (see the per-iteration measurements on BSBM100M in Table 9).

Conversely, our primary motivation is graph summarization. When two ver-
tices in a graph are 10-bisimilar, this means they have equivalent neighborhoods
out to distance 10. This means that they are already “largely similar” for that
value of k. Thus, we feel that, having computed k-bisimulation for a relatively
large value of k, there is little advantage in going to k+1. In other words, adding
another iteration of k + 1 still leaves us with vertices that are “largely similar”.

Scalability to Graph Size. From the execution time of computing k-
bisimulation for k = 1, . . . , 10, we observe that BRS-Schätzle, BRS-Kaushik, and
native Schätzle scale linearly. Here, we consider the scalability of the algorithms
with respect to graph size. To this end, we fix on iterations k = 1, . . . , 10 and
compare the total time taken to compute these bisimulations for input graphs of
different (large) sizes. BTC150M contains approximately 5M vertices and 145M
edges. BTC2B has around 80M vertices and 2B edges, which is a factor of about
18 and 14 larger, respectively. BRS-Schätzle takes 4.08 minutes, BRS-Kaushik
4.54 minutes, and native Schätzle 6.14 minutes on BTC150M. On BTC2B, they
take 15 times, 19 times, and 14 times longer. BSBM1B contains about 10 times
as many vertices and edges as BSBM100M. The experiments on BSBM1B took
about 10 times longer for BRS-Schätzle, 12 times for BRS-Kaushik, and 9 times
for native Schätzle. Thus, the scaling factor of the execution times is approx-
imately equal to that of the graph’s size. Finally, the total runtimes of native
Kaushik on the different graphs indicate that the algorithm does not scale lin-
early with the input graph’s size. The initial partition P0 has one block per label
set and Laundromat100M has many different label sets (Definition 2). The algo-
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rithm checks stability of every block against every other, leading to a run time
that is quadratic in the number of blocks.

Generalization and Threats to Validity. We use synthetic and real-
world graphs, which is important to analyze the practical application of an algo-
rithm [5, 17]. Two GSMs were used for evaluation of our hash-based BRS algo-
rithm. The GSM of Schätzle et al. computes a forward k-bisimulation, based on
edge labels (Definition 1). The GSM of Kaushik et al. computes a backward k-
bisimulation based on vertex labels (Definition 2). Hence, the two GSMs consider
different structural features for determining vertex equivalence. Regardless, for
both GSMs, the BRS algorithm scales linearly with the number of bisimulation
iterations and the input graph’s size and computes the aggregated k = 1, . . . , 10-
bisimulations the fastest on every dataset.

All algorithms are implemented in Scala, in the same framework. Each algo-
rithm was executed using the same procedure on the same machine with exclu-
sive access during the experiments. Each experimental configuration was run six
times. The first run is discarded in the evaluations to address side effects.

8 Conclusion and Future Work

We focus on the performance (runtime and memory use) of our generic, parallel
BRS algorithm for computing different bisimulation variants, and how this per-
formance compares to specific algorithms for those bisimulations, due to Schätzle
et al. and Kaushik et al. Our experiments comparing k = 1, . . . , 10 bisimula-
tions on large synthetic and real-world graphs show that our generic, hash-based
BRS algorithm outperforms the respective native bisimulation algorithms on all
datasets for all k ≥ 5 and for smaller k in some cases. The experimental re-
sults indicate that the parallel BRS algorithm and native Schätzle et al. scale
linearly with the number of bisimulation iterations and the input graph’s size.
Our experiments also show that our generic BRS-Kaushik algorithm effectively
parallelizes the original sequential algorithm of Kaushik et al., showing runtime
performance similar to BRS-Schätzle. Overall, we recommend using our generic
BRS algorithm over implementations of specific algorithms of k-bisimulations.
Due to the support of a formal language for defining graph summaries [6], the
BRS approach is flexible and easily adaptable, e. g., to changes in the desired
features and user requirements, without sacrificing performance.

Future work includes incorporating a check (similar to Kaushik et al.) for
whether full bisimulation has been reached. This is nontrivial as the algorithm of
Kaushik et al. is based on splitting partitions, whereas BRS is based on describing
the equivalence class in which each vertex lives. It is easy to check that no classes
have been split, but harder to check that every pair of vertices that had the same
description at the previous iteration have the same description at the current
iteration, since the description of every vertex changes at each iteration.
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Appendix

A Additional Dataset Statistics

Table 5 lists degree statistics of the datasets, where d(G) is the average degree
of vertices in G, dG(v) the degree of a vertex v ∈ V , and ∆(G) the maximum
degree in G.

Graph µ(dG(v)) ∆(G) µ(d−G(v)) ∆−(G) µ(d+G(v)) ∆+(G)

L’mat100M 5.89± 569 1, 570, 748 2.95± 559 1, 570, 748 2.95± 108 545, 688
BSBM100M 9.76± 1, 144 2, 273, 014 5.04± 1144 2, 273, 014 5.04± 6 76
BTC150M 58.43± 5, 655 5, 629, 275 29.22± 504 283, 686 29.22± 5, 629 5, 628, 254
BSBM1B 10.58± 3, 862 23, 924, 441 5.46± 3862 23, 924, 441 5.46± 6 85
BTC2B 48.40± 17, 119 65, 879, 409 24.20± 1556 3, 856, 778 24.20± 17, 038 65, 878, 298

Table 5: Degree Statistics of the Datasets.

Laundromat100M has the smallest average and maximum values for both
degree and in-degree. BTC150M has the highest average and maximum degrees
and the highest maximum in-degree. BSBM100M has the largest maximum in-
degree and smallest maximum out-degree of our datasets.

We note that standard deviations in Table 5 are surprisingly large. This is
due to some vertices having degrees orders of magnitude larger than the average,
as shown by the maximum degrees.

We note that, in the real-world datasets, average total degree is average in-
degree plus average out-degree, to the precision quoted. This is expected, because
every edge adds one to the total degree of each of its endpoints. This is not the
case for the two versions of the synthetic BSBM dataset. This dataset contains
relatively many self-loops and, by convention, a self-loop adds 1 to a vertex’s
total degree, while also adding 1 to its in- and out-degrees.

B Results of the BRS Algorithm

As the BRS algorithm takes an additional initialization step (see Algorithm 3,
lines 13–19), Table 6 shows the breakdown of the running time of the algo-
rithms in initialization and computing the actual k bisimulation iterations. It
is separated into average run time for initialization and computation of all ten
iterations.

On all smaller datasets, i. e., Laundromat100M, BSBM100M, and BTC150M
and the initialization step of BRS-Schätzle takes about 1 minute on average
(Table 6). Regarding BRS-Kaushik, the initialization also takes around 1 minute
on all smaller datasets (Table 6). Regarding the larger dataset BSBM1B, the
BRS-Schätzle algorithm takes 10.20 minutes for initialization and 44.24 minutes
for the 10 iterations. On BTC2B the algorithm needs 16.22 minutes to initialize
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BRS-Schätzle et al. BRS-Kaushik et al.
Init. Iterations Init. Iterations

Laundromat100M 1.10 4.46 1.10 4.50
BSBM100M 1.00 5.46 1.05 4.15
BTC150M 1.47 2.61 1.44 3.10
BSBM1B 10.20 44.24 10.43 53.57
BTC2B 16.22 45.74 16.29 69.63

Table 6: Initialization and bisimulation iteration (minutes) of average total run
time for BRS.

the graph and 45.74 minutes to compute the 10 iterations. The BRS-Kaushik
takes on BSBM1B 10.43 minutes for initialization and 53.57 minutes for the
10 iterations. On BTC2B, the BRS-Kaushik algorithm needs 16.29 minutes for
initialization and 69.93 minutes for the 10 iterations.

Native Kaushik also has an initialization step, where the vertices are parti-
tioned based on their label. This partitioning is done in parallel and took less
than a second, so we do not account for it separately.

C Discussion of the Results of the Kaushik Algorithm

Experimental results for native Kaushik indicate that the algorithm does not
scale linearly with the input graph’s size. Its worst-case complexity is O(k ·
m) [16], where m is the number of edges in the input graph.

A reason for the long running time of native Kaushik on Laundromat100M
could be the size of the initial partition P0. It depends on the number of different
label sets present in the graph’s vertices (Definition 2). Laundromat100M con-
tains 33, 431 different label sets, which is much higher than for BTC150M with
69 and BSBM100M with 1, 289 (Table 2). As a consequence, the algorithm has
to perform stability checks and (potential) splits on blocks more often than on
the other datasets. This does not contradict the similar run times on BTC150M
and BSBM100M (69 label sets vs. 1, 289 label sets). First, BSBM100M reaches
full bisimulation w.r.t. Definition 2 in iteration seven and hence execution is
stopped early. Second, as can be seen in Figure 2e, the iteration time starts to
decrease rapidly from iteration four to five on BSBM100M, going down from
about 20 minutes to about 1 minute. This indicates that the partition hardly
changes any further and therefore only a small number of stability checks and
splits are performed in iterations five to seven.

Native Kaushik operates on the blocks of the graph’s current partition. In
each iteration i, the algorithm produces a partition Pi, which is stable w.r.t. all
the blocks in Pi−1 [16]. Consequently, if a block is split into two new blocks,
these must also be checked for stability in that iteration (see also discussion in
Section 5.3). Hence, the more blocks are split in an iteration, the more steps
must be performed by the algorithm. In addition, bisimulation relationships
between the vertices change far more often in early iterations [25]. This explains
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the specific shape of the run time curve (Figures 2a, 2c and 2e) for the native
Kaushik et al. algorithm. The exception is BTC150M (Figure 2c), where the
iteration time first decreases from iteration one to two, indicating that the 1-
and 2-bisimulations of this graph are very similar.

D Detailed Results of Experiments

We provide the detailed experimental results. The results are split into results
for the smaller datasets (Laundromat100M, BTC150M, BSBM100M) shown in
Tables 7 to 9. The results for the larger datasets (BTC2B, BSBM1B) are shown
in Tables 10 and 11. The tables for BRS include an additional iteration 0, which
corresponds to the initialization routine of the algorithm.
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Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 1.1 0.4 0.5 0.5 0.4 0.4 0.6 0.6 0.5 0.5 0.5 6.0 0.49 0.07
2 1.1 0.3 0.4 0.3 0.3 0.3 0.6 0.4 0.3 0.3 0.3 4.6 0.35 0.09
3 1.1 0.4 0.5 0.4 0.7 0.6 0.5 0.4 0.4 0.4 0.4 5.8 0.47 0.10
4 1.1 0.4 0.5 0.4 0.4 0.7 0.5 0.5 0.4 0.4 0.5 5.8 0.47 0.09
5 1.1 0.4 0.4 0.4 0.4 0.8 0.4 0.4 0.4 0.4 0.5 5.6 0.45 0.12

µ 1.10 0.38 0.46 0.40 0.44 0.56 0.52 0.46 0.40 0.40 0.44 5.56

σ 0.00 0.04 0.05 0.06 0.14 0.19 0.07 0.08 0.06 0.06 0.08 0.50

(a) BRS algorithm executed with GSM Schätzle

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 1.1 0.8 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.8 7.8 0.78 0.12
2 1.1 0.8 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 7.6 0.76 0.12
3 0.7 0.8 1.1 0.8 0.7 0.8 0.8 0.7 0.7 0.7 7.8 0.78 0.12
4 0.7 0.8 1.1 0.8 0.7 0.8 0.7 0.7 0.7 0.7 7.7 0.77 0.12
5 0.7 0.7 1.1 0.8 0.7 0.8 0.8 0.7 0.7 0.7 7.7 0.77 0.12

µ 0.86 0.78 0.94 0.80 0.72 0.76 0.74 0.70 0.70 0.72 7.72

σ 0.00 0.00 0.00 0.08 0.04 0.07 0.00 0.00 0.05 0.04 0.07

(b) Schätzle algorithm

Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 1.1 0.3 0.4 0.4 0.4 0.4 0.4 0.6 0.7 0.5 0.5 5.7 0.46 0.11
2 1.1 0.3 0.4 0.3 0.3 0.4 0.5 0.7 0.4 0.4 0.5 5.3 0.42 0.12
3 1.1 0.3 0.4 0.4 0.5 0.7 0.5 0.5 0.4 0.4 0.5 5.7 0.46 0.10
4 1.1 0.3 0.4 0.4 0.4 0.4 0.7 0.6 0.5 0.4 0.5 5.7 0.46 0.11
5 1.1 0.3 0.4 0.4 0.4 0.7 0.4 0.5 0.4 0.4 0.6 5.6 0.45 0.11

µ 1.10 0.30 0.40 0.38 0.40 0.52 0.50 0.58 0.48 0.42 0.52 5.60

σ 0.00 0.00 0.00 0.04 0.06 0.15 0.11 0.07 0.12 0.04 0.04 0.15

(c) BRS algorithm executed with GSM Kaushik

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 11.4 21.2 35.1 60.0 85.5 106.7 98.8 81.8 59.3 44.1 603.9 60.39 30.9
2 13.6 22.7 35.8 66.8 76.8 91.9 85.6 69.6 52.1 35.0 549.9 54.99 25.81
3 10.9 19.3 31.9 53.7 81.3 100.1 98.7 79.9 62.5 42.5 580.8 58.08 30.21
4 11.2 21.1 33.3 58.2 78.6 100.5 98.1 85.1 61.6 41.2 588.9 58.89 30.04
5 11.8 21.3 34.1 55.1 81.8 107.7 97.0 91.9 69.0 40.1 609.8 60.98 31.81

µ 11.78 21.12 34.04 58.76 80.80 101.38 95.64 81.66 60.90 40.58 586.66

σ 0.96 1.08 1.37 4.59 2.97 5.67 5.06 7.28 5.45 3.09 21.09

(d) Kaushik algorithm

Table 7: Detailed Results (minutes) on Laundromat100M for 10-bisimulation.
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Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 1.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.4 0.10 0.00
2 1.4 0.4 0.4 0.4 0.8 0.5 0.4 0.4 0.4 0.5 0.4 6.0 0.46 0.12
3 1.7 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6 3.3 0.16 0.15
4 1.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 2.8 0.14 0.09
5 1.7 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 5.9 0.42 0.06

µ 1.47 0.26 0.22 0.22 0.34 0.24 0.22 0.22 0.22 0.24 0.38 4.08

σ 0.14 0.12 0.15 0.15 0.3 0.17 0.15 0.15 0.15 0.17 0.16 1.55

(a) BRS algorithm executed with GSM Schätzle

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 0.6 0.6 0.7 0.8 0.7 0.6 0.6 0.6 0.6 0.6 6.4 0.64 0.07
2 0.5 0.6 0.7 0.8 0.6 0.6 0.6 0.6 0.6 0.6 6.2 0.62 0.07
3 0.6 0.6 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 6.4 0.64 0.08
4 0.5 0.6 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 6.3 0.63 0.09
5 0.5 0.5 0.6 0.7 0.6 0.5 0.5 0.5 0.5 0.5 5.4 0.54 0.07

µ 0.54 0.58 0.72 0.78 0.62 0.58 0.58 0.58 0.58 0.58 6.14

σ 0.05 0.04 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.38

(b) Schätzle algorithm

Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 1.4 0.4 0.4 0.3 0.4 0.6 0.4 0.4 0.4 0.4 0.4 5.5 0.41 0.07
2 1.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.7 3.0 0.16 0.18
3 1.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 2.8 0.14 0.12
4 1.4 0.4 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 5.6 0.42 0.04
5 1.4 0.4 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.5 5.8 0.44 0.07

µ 1.44 0.28 0.34 0.30 0.28 0.32 0.28 0.28 0.28 0.28 0.50 4.54

σ 0.14 0.15 0.21 0.18 0.15 0.19 0.15 0.15 0.15 0.15 0.11 1.34

(c) BRS algorithm executed with GSM Kaushik

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 3.9 0.9 3.7 12.2 17.0 17.8 12.7 6.6 2.8 1.0 78.6 7.86 6.17
2 3.8 0.9 3.7 11.2 16.8 17.0 12.9 6.0 2.9 1.5 76.7 7.67 5.92
3 4.1 0.9 3.9 11.7 17.6 17.6 12.6 6.1 3.1 1.1 78.7 7.87 6.14
4 3.9 0.9 4.0 14.1 20.5 18.5 12.2 6.0 2.5 1.2 83.8 8.38 6.95
5 3.6 0.9 3.5 10.8 15.5 16.0 12.0 6.3 2.7 1.0 72.3 7.23 5.55

µ 3.86 0.90 3.76 12.00 17.48 17.38 12.48 6.20 2.80 1.16 78.02

σ 0.16 0.00 0.17 1.15 1.66 0.84 0.33 0.23 0.20 0.19 3.71

(d) Kaushik algorithm

Table 8: Detailed Results (minutes) on BTC150M for 10-bisimulation.
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Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 1.0 0.5 0.5 0.5 0.6 0.8 0.5 0.5 0.5 0.5 0.4 6.3 0.53 0.10
2 1.0 0.5 0.6 0.5 0.5 0.9 0.5 0.5 0.5 0.5 0.5 6.5 0.55 0.12
3 1.0 0.5 0.6 0.5 0.5 0.9 0.5 0.5 0.5 0.5 0.5 6.5 0.55 0.12
4 1.0 0.5 0.5 0.5 0.6 0.9 0.5 0.5 0.5 0.5 0.5 6.5 0.55 0.12
5 1.0 0.5 0.5 0.5 0.9 0.5 0.5 0.5 0.5 0.6 0.5 6.5 0.55 0.12

µ 1.00 0.50 0.54 0.50 0.62 0.80 0.50 0.50 0.50 0.52 0.48 6.46

σ 0.00 0.00 0.05 0.00 0.15 0.15 0.00 0.00 0.00 0.04 0.04 0.08

(a) BRS algorithm executed with GSM Schätzle

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 0.9 1.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 9.4 0.94 0.12
2 0.9 1.0 1.2 0.9 1.0 0.9 0.9 0.9 0.9 0.9 9.5 0.95 0.09
3 0.9 0.9 1.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 9.3 0.93 0.09
4 0.9 1.0 1.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 9.4 0.94 0.09
5 0.9 1.0 1.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 9.4 0.94 0.09

µ 0.90 1.04 1.14 0.90 0.92 0.90 0.90 0.90 0.90 0.90 9.40

σ 0.00 0.14 0.12 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.06

(b) Schätzle algorithm

Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 1.0 0.4 0.5 0.4 0.4 0.6 0.7 0.4 0.4 0.4 0.4 5.6 0.46 0.10
2 1.0 0.3 0.4 0.3 0.3 0.3 0.3 0.5 0.5 0.3 0.3 4.5 0.35 0.08
3 1.1 0.4 0.4 0.4 0.5 0.7 0.5 0.4 0.4 0.4 0.5 5.7 0.46 0.09
4 1.0 0.4 0.5 0.4 0.4 0.6 0.6 0.4 0.4 0.4 0.4 5.5 0.45 0.08
5 1.1 0.3 0.4 0.3 0.3 0.3 0.3 0.5 0.5 0.3 0.4 4.7 0.36 0.08

µ 1.05 0.36 0.44 0.36 0.38 0.50 0.48 0.44 0.44 0.36 0.40 5.20

σ 0.05 0.05 0.05 0.05 0.07 0.17 0.16 0.05 0.05 0.05 0.06 0.50

(c) BRS algorithm executed with GSM Kaushik

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 8.0 16.5 33.9 19.0 0.8 0.6 0.6 0.0 0.0 0.0 79.4 7.94 11.03
2 8.8 17.2 29.3 22.1 0.9 0.6 0.6 0.0 0.0 0.0 79.5 7.95 10.44
3 8.2 16.2 30.7 22.6 0.8 0.7 0.7 0.0 0.0 0.0 79.9 7.99 10.71
4 8.0 19.0 26.4 21.5 0.8 0.6 0.6 0.0 0.0 0.0 76.9 7.69 9.97
5 9.2 15.9 25.8 20.6 0.8 0.6 0.6 0.0 0.0 0.0 73.5 7.35 9.43

µ 8.44 16.96 29.22 21.16 0.82 0.62 0.62 0.00 0.00 0.00 77.84

σ 0.48 1.11 2.96 1.27 0.04 0.04 0.04 0.00 0.00 0.00 2.41

(d) Kaushik algorithm

Table 9: Detailed Results (minutes) on BSBM100M for 10-bisimulation.
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Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 16.0 4.7 5.2 4.9 5.0 5.6 5.1 5.1 5.1 5.1 5.9 67.7 5.17 0.33
2 16.0 4.5 5.1 4.9 5.0 5.9 5.0 5.0 5.8 5.1 5.3 67.6 5.16 0.40
3 16.4 1.6 1.8 1.7 1.9 2.2 1.9 1.9 1.9 1.9 6.0 39.2 2.28 1.25
4 16.0 4.5 5.1 4.9 5.2 5.5 5.1 5.0 5.8 5.2 5.4 67.7 5.17 0.33
5 16.4 4.6 4.9 4.8 6.2 5.7 5.0 5.0 4.9 5.0 5.1 67.6 5.12 0.45

µ 16.22 3.98 4.42 4.24 4.66 4.98 4.42 4.40 4.70 4.46 5.54 61.96

σ 0.16 1.19 1.31 1.27 1.45 1.4 1.26 1.25 1.45 1.28 0.35 11.38

(a) BRS algorithm executed with GSM Schätzle

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 8.3 8.7 8.7 9.2 8.7 8.7 8.7 8.7 8.7 8.9 87.3 8.73 0.21
2 8.1 8.3 8.3 8.8 8.3 8.3 8.3 8.3 8.3 8.3 83.3 8.33 0.17
3 7.9 8.2 8.2 8.2 8.1 8.2 8.1 8.6 8.1 8.2 81.8 8.18 0.17
4 7.9 8.3 8.3 8.4 8.4 8.7 8.8 8.4 8.4 8.5 84.1 8.41 0.23
5 7.9 8.2 8.1 8.2 8.3 8.3 8.3 8.3 8.3 8.3 82.2 8.22 0.12

µ 8.02 8.34 8.32 8.56 8.36 8.44 8.44 8.46 8.36 8.44 83.74

σ 0.16 0.19 0.20 0.39 0.20 0.22 0.27 0.16 0.20 0.25 1.96

(b) Schätzle algorithm

Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 16.1 1.9 2.5 3.8 7.0 7.0 7.5 7.2 7.4 7.2 7.3 74.9 5.88 2.11
2 16.1 2.1 2.7 4.2 7.0 8.3 7.5 8.0 7.6 8.0 11.8 83.3 6.72 2.77
3 16.6 2.4 2.8 4.3 7.9 7.8 8.0 7.8 7.8 7.8 10.9 84.1 6.75 2.55
4 16.1 1.9 2.6 3.9 7.1 7.3 7.7 7.2 7.3 7.1 7.1 75.3 5.92 2.10
5 16.6 5.2 5.9 7.4 11.2 11.1 11.2 10.7 10.6 10.8 11.3 112.0 9.54 2.28

µ 16.29 2.70 3.30 4.72 8.04 8.30 8.38 8.18 8.14 8.18 9.68 85.92

σ 0.20 1.26 1.30 1.35 1.62 1.47 1.42 1.30 1.24 1.35 2.05 13.60

(c) BRS algorithm executed with GSM Kaushik

Table 10: Detailed Results (minutes) on BTC2B for 10-bisimulation.



28 Jannik Rau, David Richerby, and Ansgar Scherp

Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 10.1 3.9 4.7 4.3 4.3 4.5 5.3 4.7 5.1 4.7 5.7 57.3 4.72 0.50
2 10.1 2.9 3.7 3.3 3.4 3.3 4.1 4.1 4.1 3.8 3.1 45.9 3.58 0.42
3 10.0 3.9 4.8 4.3 4.4 4.5 5.2 4.7 4.9 4.5 4.2 55.4 4.54 0.36
4 10.1 3.9 4.8 4.4 4.4 4.5 5.2 4.9 5.2 4.5 5.8 57.7 4.76 0.51
5 10.0 3.9 4.8 4.4 4.4 4.6 5.4 4.8 5.0 4.4 4.2 55.9 4.59 0.41

µ 10.20 3.70 4.56 4.14 4.18 4.28 5.04 4.64 4.86 4.38 4.60 54.44

σ 0.62 0.40 0.43 0.42 0.39 0.49 0.48 0.28 0.39 0.31 1.02 4.35

(a) BRS algorithm executed with GSM Schätzle

Run Iteration Aggregates

1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 9.0 8.1 8.1 8.2 8.3 8.2 8.2 8.5 8.2 8.2 83.0 8.30 0.26
2 10.0 8.3 8.2 8.3 8.4 8.5 8.4 8.4 8.3 8.3 85.1 8.51 0.50
3 8.8 8.9 8.9 9.0 9.0 12.5 9.3 9.0 9.0 9.0 93.4 9.34 1.06
4 8.1 8.2 8.4 8.2 8.3 8.6 8.7 8.2 8.2 8.2 83.1 8.31 0.19
5 8.5 8.4 8.3 8.4 8.5 9.2 8.5 8.5 8.5 8.5 85.3 8.53 0.23

µ 8.88 8.38 8.38 8.42 8.50 9.40 8.62 8.52 8.44 8.44 85.98

σ 0.64 0.28 0.28 0.30 0.26 1.58 0.38 0.26 0.30 0.30 3.83

(b) Schätzle algorithm

Run Iteration Aggregates

0 1 2 3 4 5 6 7 8 9 10 Σ µ σ

1 10.7 4.0 5.6 5.8 5.9 6.0 5.8 5.8 5.8 6.3 5.0 66.7 5.60 0.62
2 10.7 3.2 5.2 5.5 5.4 5.5 5.5 5.5 5.4 6.3 5.6 63.8 5.31 0.75
3 10.3 3.1 5.0 5.2 5.2 5.1 5.1 5.2 5.2 6.0 4.0 59.4 4.91 0.76
4 10.7 3.2 5.1 5.2 5.5 5.4 5.3 5.3 5.3 5.7 5.1 61.8 5.11 0.66
5 10.3 4.1 5.8 6.1 6.1 6.1 6.1 6.1 6.1 6.6 4.9 68.3 5.80 0.70

µ 10.43 3.52 5.34 5.56 5.62 5.62 5.56 5.58 5.56 6.18 4.92 64.00

σ 0.27 0.44 0.31 0.35 0.33 0.38 0.36 0.33 0.34 0.31 0.52 3.22

(c) BRS algorithm executed with GSM Kaushik

Table 11: Detailed Results (minutes) on BSBM1B for 10-bisimulation.
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