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Abstract. Variably scaled kernels and mapped bases constructed via
the so-called fake nodes approach are two different strategies to pro-
vide adaptive bases for function interpolation. In this paper, we focus on
kernel-based interpolation and we present what we call mapped variably
scaled kernels, which take advantage of both strategies. We present some
theoretical analysis and then we show their efficacy via numerical ex-
periments. Moreover, we test such a new basis for image reconstruction
tasks in the framework of hard X-ray astronomical imaging.
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1 Introduction

Kernel-based interpolation is an effective approach to deal with the scattered
data interpolation problem, where data sites do not necessarily belong to some
particular structure or grid [17,30]. Therefore, because of its flexibility and the
achievable accuracy, it finds application in many different contexts [20], including
image reconstruction and the numerical solution of partial differential equations.
The effectiveness of radial kernel-based interpolation, which is also known as Ra-
dial Basis Function (RBF) interpolation, very often relies on a good choice of
the so-called shape parameter, which rules the shape of basis functions. However,
in many situations, a fine tuning of this shape parameter is not sufficient to con-
struct basis functions that are tailored with respect to both the data distribution
and the target function to be recovered.

Therefore, in order to gain more adaptivity in the interpolation process, Vari-
ably Scaled Kernels (VSKs) have been introduced in [6], and further analyzed
in [8] in the more general framework of kernel-based regression networks, and
in [16] in the context of persistent homology. The VSK setting has also been
employed in the reconstruction of functions presenting jumps, leading to the
definition of Variably Scaled Discontinuous Kernels (VSDKs) [13], which turned
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out to be effective in medical image reconstruction tasks in the field of Magnetic
Particle Imaging (MPI) [12].

An alternative approach for constructing data-dependent or target-dependent
basis functions, the so-called Fake Nodes Approach (FNA), has been introduced
in [14] in the framework of univariate polynomial interpolation, and then ex-
tended to rational barycentric approximation [4] and general multivariate inter-
polation, including the RBF framework [15]. In particular, in latter paper the
authors showed that the VSDK setting and the FNA can lead to very similar
results when facing the Gibbs phenomenon in the reconstruction of discontinu-
ous functions. Moreover, in [11] an effective scheme for dealing with both Gibbs
and Runge’s phenomena has been proposed.

In this paper, our purpose is to design a unified kernel-based approach for
function interpolation by taking advantage of both the VSK setting and the
FNA, which are recalled in Section 2 and 3, respectively. The resulting kernels
that we call Mapped VSKs (MVSKs) are defined in Section 4 and provided with
an original theoretical contribution, which includes a focus on the discontinuous
case tested in Section 5. In Section 6 we present the application of the proposed
method to the inverse problems of solar hard X-ray imaging and, specifically, we
consider data from the on the ESA Spectrometer/Telescope for Imaging X-rays
(STIX) telescope, on board of Solar Orbiter mission. Finally, in Section 7 we
draw some conclusions.

2 Variably Scaled Kernel-Based Approximation

We refer to [17,30] for the following introduction.
Let Ω ⊆ Rd, d ∈ N, and X = XN = {xi, i = 1, . . . , N} ⊂ Ω be a set of

possible scattered distinct nodes, N ∈ N. Suppose that we wish to reconstruct
an unknown function f : Ω −→ R from its values at XN , i.e. from the vector
f = (f(x1), . . . , f(xn))

ᵀ = (f1, . . . , fn)
ᵀ. In kernel-based interpolation, this is

obtained by considering an approximating function of the form

Rf,X(x) =

n∑
i=1

ciκε(x,xi), x ∈ Ω,

where c = (c1, . . . , cn)
ᵀ ∈ RN and κε : Ω×Ω −→ R is a strictly positive definite

kernel, which depends on a shape parameter ε > 0. In the following, we may
use the shortened notation κ = κε. The interpolation conditions are imposed by
employing c so that

Kc = f , (1)

where K = (Ki,j) = κ(xi,xj), i, j = 1, . . . , N , is the so-called interpolation (or
collocation or simply kernel) matrix. The vector c that satisfies (1) is unique as
long as κ is strictly positive definite. Moreover, we assume κε to be radial, i.e.
there exists a univariate function ϕε : R≥0 −→ R such that κε(x,y) = ϕε(r),
with r := ‖x− y‖2.
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The interpolant Rf,X belongs to the dot-product space

Hκ = span
{
κ(·,x), x ∈ Ω

}
,

whose completion with respect to the norm ‖·‖Hκ=
√
(·, ·)Hκ induced by the

bilinear form (·, ·)Hκ is the native space Nκ associated to κ. The well-known
pointwise error bound [17, Theorem 14.2, p. 117]

|f(x)−Rf,X(x)| ≤ Pκ,X(x)‖f‖Nκ , f ∈ Nκ, x ∈ Ω, (2)

involves the power function Pκ,X = ‖κ(·, x)− κ(·)ᵀK−1κ(x)‖Hκ , where κ(x) :=
(κ(x,x1), . . . , κ(x,xN ))ᵀ. In the estimate (2), a noteworthy property is that the
error is split into a first term that only depends on the nodes and on the kernel,
and a second term that relies on the underlying function f .

A different perspective is provided by the following error bound, which takes
into account the so-called fill distance

hX,Ω := sup
x∈Ω

min
xk∈X

‖x− xk‖2.

Assuming Ω to be bounded and satisfying an interior cone condition, and κ ∈
C2k (Ω ×Ω), there exists Cκ(x) such that

|f (x)−Rf,X (x) | ≤ Cκ(x)hkX,Ω‖f‖Nκ(Ω). (3)

The factor Cκ(x) depends on the maximum of kernel derivatives of degree 2k in
a neighborhood of x ∈ Ω, and hkX,Ω needs to be small enough; we refer to [17,
Section 14.5] for a detailed presentation of this result.

While the theoretically achievable convergence rate is influenced by the fill
distance and the smoothness of the kernel, two terms play an important role in
affecting the conditioning of the interpolation process:

– The separation distance qX :=
1

2
mini 6=j‖xi − xj‖2.

– The value of the shape parameter ε of the kernel κε.

Precisely, the interpolation process gets more ill-conditioned as the separation
distance becomes smaller, which is what usually happens in practice when in-
creasing the number of interpolation nodes, thus reducing the value of the fill-
distance (this is often denoted as a trade-off principle in RBF literature). As far
as the shape parameter is concerned, a large value produces very localized ba-
sis functions that lead to a well-conditioned but likely inaccurate approximation
scheme, while by lowering such value we may obtain a more accurate reconstruc-
tion at the price of an ill-conditioned setting. As a consequence, the tuning of
the shape parameter is a non trivial problem in kernel-based interpolation.

In order to partially overcome such instability issues, in [6] the authors in-
troduced Variably Scaled Kernels (VSKs), which are defined as follows. Letting
ψ : Ω −→ R be a scaling or shape function and κε : (Ω ×R)× (Ω ×R) −→ R a
kernel, a VSK κψ : Ω ×Ω −→ R is defined as

κψ(x,y) := κε((x, ψ(x)), (y, ψ(y)),
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for x,y ∈ Ω. Note that we can consider the related native space Nκψ spanned
by the functions κψ(·,x), x ∈ Ω. Among the properties of VSKs, we recall that:

A1. The theoretical analysis of the VSK setting reduces to the analysis of the
classical framework in the augmented space Ω × R.

A2. The spaces Nκ and Nκψ are isometrically isomorphic.

The shape parameter is often set to ε = 1 in the VSK framework. Therefore,
the role played by the shape function is duplex. On the one hand, the tuning
of the shape parameter is substituted with the choice of the shape function.
On the other hand, ψ can lead to an improvement in the conditioning of the
approximation process by increasing the value of the separation distance in the
augmented domain Ω × R. In the following, we do not necessarily restrict to a
fixed value of the shape parameter, as also done in the context of moving least
squares [21]. Note that κψ is (strictly) positive definite if so is κ.

3 Interpolation via Mapped Bases

In this section, we present the so called Fake Nodes Approach (FNA) for the
kernel-based approximation framework; for a more general and comprehensive
treatment we refer to [15].

Let S : Ω −→ Rd be an injective map. Our purpose is to construct an
interpolant RSf,X of the function f in the space

HκS = span
{
κS(·,x), x ∈ Ω

}
,

where κS(x,y) := κ(S(x), S(y)). We have

RSf,X(x) =

N∑
i=1

cSi κ
S(x,xi) =

N∑
i=1

cSi κ(S(x), S(xi)) = Rg,X(S(x)), x ∈ Ω,

where g|S(X) = f|X . In other words, the construction of the interpolant RSf,X ∈
HκS is equivalent to the construction of a classical interpolant Rg,S(X) ∈ Hκ at
the fake nodes S(X). Similarly to the VSK setting, the FNA is provided with
the following properties (cf. A1 and A2):

B1. The theoretical analysis of the FNA interpolant reduces to the analysis of the
interpolant in the classical framework. This was proved in [15, Proposition
3.4] and it is linked to the inheritance property of the Lebesgue constant [7].

B2. The spaces Nκ and NκS are isometrically isomorphic (a direct consequence
of Theorem 1 and Proposition 1 stated below).

In previous works, the FNA has been mainly employed for two main purposes.
The first is using S to obtain an interpolation design S(X) that leads to a more
stable interpolation process with respect to the original set of nodes. For exam-
ple, this can be achieved in a polynomial-based framework by mapping onto the
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set of (tensor-product) Chebyshev-Lobatto nodes in the (multi) one-dimensional
case. In addition, as we will discuss in Subsection 4, S can be constructed in a
target-dependent fashion to emulate the possible discontinuities of the underly-
ing function and thus recover accuracy near jump points.

4 Mapped VSKs

4.1 The general framework

In Sections 2 and 3, we outlined two different approaches, which however present
some similarities and are employed for analogous purposes. In the following, we
discuss how the VSK setting and the FNA can be merged in a unified framework.
We start by giving the following definition.

Definition 1. Let S : Ω −→ Rd be an injective map, ψ : Ω −→ R be a shape
function and let κε : (S(Ω)×R)×(S(Ω)×R) −→ R be a kernel. Then, a Mapped
VSK (MVSK) κSψ : Ω ×Ω −→ R is defined as

κSψ(x,y) := κε((S(x), ψ(x)), (S(y), ψ(y)),

for x,y ∈ Ω.

We remark that κSψ might be defined in different possible equivalent manners.
However, the advantage of Definition 1 lies in the separation between the actions
of S and ψ: The function S works in the original dimension Rd, while ψ rules the
coordinate of the input in the augmented dimension. Under certain assumptions,
a MVSK reduces to a mapped or VSK.

Proposition 1. Let κSψ be a MVSK on Ω × Ω built upon a radial kernel κε.
Then:

1. If ψ(x) ≡ α ∈ R, then κSψ = κS.
2. If S(x)− S(y) = x− y, (e.g., S is the identity map), then κSψ = κψ.

Proof. By hypothesis, there exists ϕ : [0,+∞) −→ R such that κε(x,y) =
ϕ(‖x− y‖2). Therefore, we can write

κSψ(x,y) = ϕ(‖(S(x), ψ(x))− (S(y), ψ(y))‖2)

= ϕ(
√
(S(x)− S(y))2 + (ψ(x)− ψ(y))2),

from which the two theses follow.

We also prove the following.

Theorem 1. The spaces Hκ and HκSψ are isometric.

Proof. By defining the map ΛSψ(x) := (S(x), ψ(x)) we can see κSψ as the push-
forward of κ in the sense provided in [29, Equation 2.52]. Then, since S is injec-
tive, the proof follows from [29, Theorem 2.9].
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As a consequence of Theorem 1, the native spaces Nκ and NκSψ are isometrically
isomorphic (cf. [6, Section 3]).

Independently of the target function to be recovered, we recall that the con-
ditioning of the interpolation problem is related to the `2-conditioning of the
kernel matrix cond(K) = λmax/λmin, being λmax, λmin the maximum and min-
imum eigenvalue, respectively. It is known that λmin decays according to the
separation distance qX , in a way that is influenced by the regularity of the ker-
nel (see [17, Chapter 16]). In this direction, MVSKs can be employed in order
to increase the separation distance and thus improve the conditioning of the
interpolation scheme, e.g., by separating clustered nodes. On the other hand,
diminishing the fill distance may improve the accuracy of the method (see (3)).
We will experiment on this in Section 5.

4.2 Working with mapped discontinuous kernels

In the following, we focus on the case of discontinuous functions. First, we briefly
review in which manners VSKs and the FNA were used in the discontinuous
setting.

Variably Scaled Discontinuous Kernels (VSDKs). The idea proposed in
[13] and further investigated in [12] was to define the scaling function ψ to be
discontinuous at the jumps of the target function f : Ω −→ R. In order to do
so, we assume Ω ⊂ Rd to be a bounded set such that:

– Ω is the union of m pairwise disjoint sets Ωk, k ∈ {1, . . . ,m}.
– Each subset Ωk, k = 1, . . . ,m, has a Lipschitz boundary.
– The discontinuity points of f are contained in the union of the boundaries

of the subsets Ωk, k = 1, . . . ,m.

Then, letting α = (α1, . . . , αm), αi ∈ R, the scaling function ψ is such that:

– ψ is piecewise constant, such that ψ(x)
∣∣
Ωk

= αk.
– αi 6= αj if Ωi and Ωj are neighboring sets.

The theoretical analysis carried out in the referring papers then focused on radial
kernels whose related univariate function ϕ has the following Fourier decay

(Fϕ)(ω) ∼ (1 + ‖ω‖2)−s− 1
2 , s >

d− 1

2
. (4)

The native space of the kernels that satisfy (4), e.g. Matérn and Wendland
kernels, is a Sobolev space [30, Chapter 10]. In order to present an error bound in
terms of Sobolev spaces norm for the VSDK setting, we introduce two necessary
ingredients:

1. The regional fill-distance

hk := hX,Ωk = sup
x∈Ωk

min
xk∈X∩Ωk

‖x− xk‖2
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and the global fill distance

h := max
k∈{1,...,m}

hk.

2. Letting s ≥ 0 and 1 ≤ p ≤ ∞, we define the space

WPsp(Ω) :=
{
f : Ω −→ R | f |Ωk ∈ W

s
p(Ωk), k ∈ {1, . . . ,m}

}
,

which contains the piecewise smooth functions f on Ω whose restriction to
any subregion Ωk, i = k, . . . ,m, is contained in the standard Sobolev space
Ws
p(Ωk). The space WPsp(Ω) is endowed with the norm

‖f‖pWPsp(Ω)=

m∑
k=1

‖f |Ωk‖
p
Ws
p(Ωk)

.

In the outlined assumptions and letting Rψf,X be the kernel-based interpolant
of f at X built upon the VSDK κψ, in [12, Theorem 3.4] the authors proved the
following. Let s > 0, 1 ≤ q ≤ ∞ and t ∈ N0 such that bsc > t + d

2 . Then, for
f ∈ WPs2(Ω) and sufficiently small h we have that

‖f −Rψf,X‖WPtq(Ω)≤ Chs−t−d(1/2−1/q)+‖f‖WPs2 (Ω), (5)

where the constant C > 0 is independent of h.

The S-Gibbs map in the FNA. In the mapped bases approach, similarly
to the VSDK framework, the intuition is to map the nodes in order to create
some gaps in presence of discontinuities. To do so, considering the collection of
subsets Ω1, . . . , Ωm employed to construct VSDKs, the so-called S-Gibbs map is
designed as

S(x) = x+

m∑
k=1

βkχΩk
(x),

where βk = (kβ, . . . , kβ) ∈ Rd, β ∈ R, and χΩk
is the characteristic function

corresponding to Ωk. In [15, Section 4.2], the authors discussed the analogies
between a VSDK κψ and a mapped kernels κS constructed via the S-Gibbs
map. It turned out that these two approaches can lead to similar results for
certain values of the vectors of parameters α and βk. This is due to the fact
that the interpolation matrices are close being the kernel radial.

Mapped VSDKs (MVSDKs). In the mixed approach with the mapped VSK
kernel κSψ, we deal with the jumps of the underlying function as follows.

– We define ψ as in the VSDKs framework. Therefore, the role of the shape
function is to mimic the jumps of the target function and thus to prevent
the appearance of the Gibbs phenomenon.
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– Since the discontinuities are already addressed by ψ, we employ S to map the
set of nodes X to obtain improved distributions locally on each Ωk, meaning
that we aim at diminishing the global fill distance and increasing the global
separation distance defined as

q := min
k∈{1,...,m}

qk,

being qk := qXk =
1

2
mini 6=j‖xi − xj‖2, xi,xj ∈ Ωk.

Recalling the error estimate in (5), this proposed construction for MVSDKs may
lead to better results, being h smaller. Moreover, by increasing the separation
distance, an improvement in the conditioning of the scheme with respect to
classical VSDKs is likely to be obtained. We test these aspects in some numerical
examples in the next section.

5 Numerical tests with MVSDKs

The purpose of this section is to provide a numerical example to show the ben-
efits of the MVSDK framework in comparison to VSDKs and classical RBF
interpolation. To do so, we set Ω = [−1, 1]2 and letting x = (x1, x2) we consider
the target function

f : Ω −→ R, f(x) =

x1 + x2, x1 < −0.3,
sin(x1 − 2x2), 0 ≤ x1 < 0.5,
0, otherwise.

To deal with the jumps of f , we define the shape function

ψ : Ω −→ R, ψ(x) =


0, x1 < −0.3,
1, −0.3 ≤ x1 < 0,
2, 0 ≤ x1 < 0.5,
3, x1 ≥ 0.5.

As far as the nodes are concerned, we letGN be a set ofN nodes that are sampled
from a bivariate normal distribution with mean µ = (0, 0) and covariance matrix
Σ = 0.1 · I, being I the 2× 2 identity matrix. We can then consider the following
mapping function S : Ω −→ Ω defined as

S(x1, x2) =

(
1 + erf

(
x1√
0.2

)
, 1 + erf

(
x2√
0.2

))
− 1,

where erf is the well-known error function. To clarify the idea behind the con-
struction of S, it is known from classical probability theory that if z1, . . . , zn are
sampled according to a normal distribution of mean µ and standard deviation
σ, then 0.5(1 + erf((zi − µ)/(

√
2σ))), i = 1, . . . , n, are distributed uniformly in

[0, 1]. Therefore, our set of nodes GN is mapped to a uniform distribution in
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Fig. 1. N = 400. Left: GN . Right: S(GN ).

the square [−1, 1]2, as displayed in Figure 1. We point out that possible nodes
in GN that are not in Ω are removed from the set. Consequently, the mapped
set S(GN ) is very likely to present smaller fill distance and larger separation
distance than GN . The interpolation results are evaluated on a finer M ×M
equispaced grid ΞM2 in Ω. Precisely, we compute the Root Mean Square Error
(RMSE)

RMSE =

√√√√ 1

M2

M2∑
k=1

(
f(ξk)− ι(ξk)

)2
, (6)

where ξk ∈ ΞM2 and ι = Rf,GN , R
ψ
f,GN

, Rψ,Sf,GN
are the interpolants constructed

via the classical, the VSDK and the MVSDK. The shape parameter ε is chosen
between 200 equispaced values in the interval [0.01, 50] via Leave-One-Out Cross
Validation (LOOCV) [23]. Finally, we let N vary between 10 and 500 and we
test two radial kernels:

ϕW (r) = (1− εr)2+ Wendland C0,

ϕM (r) = e−εr(15 + 15εr + 6(εr)2 + (εr)3) Matérn C6.

In Figure 2, we show the behavior of the separation and fill distances, while
in Figure 3 we show the RMSEs achieved with both ϕW and ϕM .

The plots in Figure 2 display the benefits in employing S in the MVSDK in
terms of diminished fill distance and increased separation distance. In Figure 3,
we observe that MVSDKs are more effective in the case of the chosen Matérn ker-
nel. This is due to the fact that this kernel is more regular than the chosen Wend-
land kernel, therefore it is more prone to provide an ill-conditioned interpolation
process. Furthermore, we remark that the sets of nodes GN , N = 10, . . . , 500
are not nested, and they are clustered around the origin. Therefore, we can not
expect an accurate recovering of the function f , nor convergence increasing N .
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6 Applications to the STIX Imaging Framework

In order to test the proposed MVSKs in real applied sciences, we focus on so-
lar hard X-ray imaging and, specifically, on the ESA STIX telescope [28], on
board of Solar Orbiter mission (see Figure 4). Hard X-ray telescopes provide
experimental measurements, named visibilities, of the Fourier transform of the
incoming photon flux at specific points of the spatial frequency plane. In the
case of STIX, 30 subcollimators relying on the Moiré pattern technology provide
N = 60 visibilities on 10 circles of the frequency plane with increasing radii from
about 2.79× 10−3 arcsec−1 to 7.02× 10−2 arcsec−1 (see Figure 4). We observe
that the visibilities lying in the lower half plane are obtained by reflecting the
visibilities in the upper half with respect to the origin.

Fig. 4. The Spectrometer/Telescope for Imaging X-rays (STIX).
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Fig. 5. STIX visibilities: reflecting with respect to the origin leads to a total number
of 60 visibilities.

We denote by f the vector whose components are the discretized values of
the incoming flux, by F the discretized Fourier transform sampled at the set
of points {ui = (ui, vi)}Ni=1 in the (u, v)-plane and with V the vector whose n
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components are the observed visibilities. Then, the image formation model in
this framework can be approximated by

V = Ff . (7)

6.1 The imaging process

Many inversion methods have been formulated to express the STIX observations
as images, see e.g. [2,3,5,9,24,25,18]. The approach that we propose consists
of two steps: interpolation of the visibilities so that we obtain the visibility
surfaces and the inversion of the so generated surfaces with rather standard
techniques. This idea was already used for the dismissed NASA telescope Reuven
Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [22], and its IDL
implementation called uv_smooth [25], can be find in the NASA Solar SoftWare
(SSW) tree.

The uv_smooth code addresses equation (7) by means of an interpolation
and extrapolation procedure in which the interpolation step is carried out via
an algorithm based on spline functions and the extrapolation step is realized by
means of a soft-thresholding scheme [10,1]. As far as the second step is concerned,
we will rely on the well-established projected Landweber iterative method [27].
The first step instead will be carried out with our MVSKs.

6.2 MVSKs for STIX

To employ MVSKs, we need to define a scaling function ψ and a mapping S.

The choice of ψ. In order to define the scaling function, we take advantage
of a first approximation of the inverse problem obtained via a standard back-
projection algorithm [26] that computes the discretized inverse Fourier transform
of the visibilities by means of the IDL source code vis_bpmap available in the
NASA SSW tree. The so-constructed image is then forward Fourier transformed
to obtain ψ. Once the interpolated visibility surface V has been computed, the
image reconstruction problem reads as follows

V = Ff , (8)

where F is the N2×N2 discretized Fourier transform and f is the N2×1 vector
to reconstruct. In the following we will point out the advantages of interpolating
the visibilities with our technique.

The choice of S. To present in details the mapping S chosen for the STIX
imaging framework, let us first deepen the definition of the visibilities represented
in Figure 5 (left). We have

ui = (L1 + L2)
cos(αfi )

ρfi
− L2

cos(αri )

ρri
, vi = (L1 + L2)

sin(αfi )

ρfi
− L2

sin(αri )

ρri
,
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where L1 = 550, L2 = 47 and αfi , ρ
f
i , α

r
i , ρ

r
i are discussed in [19]. We define the

map

S(u, v) = C log(‖(u, v)‖2)(cos(arctan(v/u)), sin(arctan(v/u))),

where C is a normalizing factor used to retain the order of magnitude of the
original visibilities after the mapping. In Figure 6, we can observe that the
mapped visibilities are distributed in a circular crown with no clustering around
the origin.
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Fig. 6. Mapped STIX visibilities.

6.3 Numerical results

On Jul 2022 STIX recorded a flare during the during the time interval 23:41:15–
23:41:41 UT. The energy range of the event is 15–25 keV. In Figure 7 we re-
ported the reconstruction carried out with the interpolation/extrapolation algo-
rithm where we respectively interpolate with: classical radial kernels, VSKs and
MVSKs. Moreover, as a further comparison we also consider mem_ge [24] which
is a well established implementation of the maximum entropy approach and it is
used by the solar physics community. We note that all methods present artifacts
but the shape of the source reconstructed by interpolating with MVSKs is more
similar to the one computed with mem_ge. To have a quantitative feedback
on the accuracy, we show in Figure 8 the visibility fits obtained with the four
different approaches. We further observe that the chi squares values of mem_ge
and uv_smooth + MVSKs are similar and are the lowest.

7 Conclusions

In this work, we define MVSKs by mixing VSKs with the FNA. After providing
some theoretical details, we performed some numerical simulations that showed
the advantages of using MVSDKs with respect to classical RBF kernels and VS-
DKs. Then, we applied our method in the framework of hard X-ray astronomical
imaging. The obtained results encourage further investigations on this research
line.
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Fig. 7. Left to right, top to bottom: reconstruction of the flaring source with:
uv_smooth + classical radial kernels, uv_smooth + VSKs, uv_smooth + MVSKs
and mem_ge.



Mapped Variably Scaled Kernels: Applications to Solar Imaging 15

Fig. 8. Top to bottom: visibility fits of the flaring source with: uv_smooth + classical
radial kernels, uv_smooth + VSKs, uv_smooth + MVSKs and mem_ge.
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