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Abstract. In recent years, Local Differential Privacy (LDP), a robust
privacy-preserving methodology, has gained widespread adoption in real-
world applications. With LDP, users can perturb their data on their de-
vices before sending it out for analysis. However, as the collection of
multiple sensitive information becomes more prevalent across various in-
dustries, collecting a single sensitive attribute under LDP may not be
sufficient. Correlated attributes in the data may still lead to inferences
about the sensitive attribute. This paper empirically studies the impact
of collecting multiple sensitive attributes under LDP on fairness. We pro-
pose a novel privacy budget allocation scheme that considers the varying
domain size of sensitive attributes. This generally led to a better privacy-
utility-fairness trade-off in our experiments than the state-of-art solution.
Our results show that LDP leads to slightly improved fairness in learning
problems without significantly affecting the performance of the models.
We conduct extensive experiments evaluating three benchmark datasets
using several group fairness metrics and seven state-of-the-art LDP pro-
tocols. Overall, this study challenges the common belief that differential
privacy necessarily leads to worsened fairness in machine learning.

Keywords: Fairness · Local Differential Privacy · Machine Learning.

1 Introduction

The advent of the Big Data era has brought many benefits but has also raised
significant concerns about privacy and algorithm bias in Machine Learning (ML).
On the one hand, with massive amounts of data generated and collected by vari-
ous entities, protecting individuals’ personal information has become increasingly
challenging. In this context, research communities have proposed different meth-
ods to preserve privacy, with ϵ-differential privacy (ϵ-DP) [16] standing out as
a formal definition that allows quantifying the privacy-utility trade-off with the
parameter ϵ (the smaller, the more private). At the same time, there have been
many efforts to develop methods and metrics to evaluate and promote fairness
in ML due to unequal treatments of individuals or groups based on factors such
as race, gender, or socio-economic status [5, 29–31].
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This means that privacy and fairness are essential for ML to apply in practice
successfully. In real-life scenarios, it is not common anymore for entities to have
access to sensitive (or protected1) attributes like race due to legal restrictions
and regulations2 governing their collection. Therefore, it can be difficult for these
entities to quantify/assess the fairness of the models they deploy since they
cannot access the protected attributes used for the fairness assessment. One way
to address this problem [32], ignoring legal feasibility, is to enable users to share
their sensitive attributes using protocols satisfying Local Differential Privacy
(LDP) [25], and learn a non-discriminatory predictor.

However, while collecting the sensitive attribute in a privacy-preserving man-
ner may seem sufficient, it is worth noting that proxy variables can exist [24]
and can still lead to inferences about the sensitive attribute (e.g., by exploiting
correlations). It is also important to acknowledge that proxy variables may be
considered as personal information under the GDPR, requiring the same level of
privacy protection. Thus, as collecting multiple sensitive information (i.e., mul-
tidimensional data) becomes increasingly prevalent in various industries, pro-
tecting this information is a legal obligation and an ethical responsibility.

Therefore, this paper contributes to an in-depth empirical analysis of how
pre-processing multidimensional data with ϵ-LDP affects the fairness and util-
ity in ML binary classification tasks. We evaluated several group fairness met-
rics [5, 30], including disparate impact [9], equal opportunity [21], and overall
accuracy [12], on benchmark datasets, namely, Adult [14], ACSCoverage [14],
and LSAC [40]. To broaden the scope of our study, we have experimentally as-
sessed seven state-of-the-art LDP protocols, namely, Generalized Randomized
Response (GRR) [23], Binary Local Hashing (BLH) [10], Optimal Local Hash-
ing (OLH) [39], RAPPOR [18], Optimal Unary Encoding (OUE) [39], Subset
Selection (SS) [38,41], and Thresholding with Histogram Encoding (THE) [39].

Moreover, since proxy variables can still introduce unintended biases and
thus lead to unfair decisions [24], we consider the setting in which each proxy
(sensitive attribute) is collected independently under LDP guarantees. In other
words, applying this independent setting automatically removes the correlation
between the proxy attributes. To this end, the privacy budget ϵ should be di-
vided among all sensitive attributes to ensure ϵ-LDP under sequential composi-
tion [17]. Let ds be the total number of sensitive attributes, the LDP literature
for multidimensional data [6,37] considers a uniform solution that collects each
sensitive attribute under ϵ

ds
-LDP. In this paper, we propose a new k-based so-

lution that considers the varying domain size k of different sensitive attributes.
More precisely, for the j-th sensitive attribute, we allocate ϵj =

ϵ·kj∑ds
i=1 ki

.

Overall, our study challenges the common belief that using DP necessar-
ily leads to worsened fairness in ML [8, 20]. Our findings show that training a
classifier on LDP-based multidimensional data slightly improved fairness results

1 Throughout this paper, we use the term sensitive attribute from a privacy per-
spective and the term protected attribute from a fairness perspective. Note that we
always consider protected attributes as sensitive attributes.

2 For example, the General Data Protection Regulation (GDPR) [3].
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without significantly affecting classifier performance. We hope this work can aid
practitioners in collecting multidimensional user data in a privacy-preserving
manner by providing insights into which LDP protocol and privacy budget-
splitting solutions are best suited to their needs.

In summary, the three main contributions of this paper are:

– We empirically analyze the impact of pre-processing multidimensional data
with ϵ-LDP on fairness and utility;

– We compare the impact of seven state-of-the-art LDP protocols under a
homogeneous encoding when training ML binary classifiers (see Fig. 1) on
fairness and utility;

– We propose a new privacy budget splitting solution named k-based, which
generally led to a better privacy-utility-fairness trade-off in our experiments.

All our codes are available in a GitHub repository [2].
Outline. The rest of this paper is organized as follows. Section 2 discusses

related work. In Section 3, we present the notation, fairness, and LDP proto-
cols used. Next, Section 4 states the problem addressed in this paper and the
proposed k-based solution. Section 5 details the experimental setting and main
results. Finally, we conclude this work indicating future perspectives in Section 6.

2 Related Work

The recent survey work by Fioretto et al. [19] discusses two views about the rela-
tionship between central DP and fairness in learning and decision tasks. The first
view considers DP and fairness in an aligned space (e.g., [15]), which mainly cor-
responds to individual fairness metrics. The other view regards DP and fairness
as “enemies” (e.g., [8, 20, 34]), which mainly corresponds to group fairness no-
tions. For instance, Pujol et al. [34] investigated disparities in decision tasks using
ϵ-DP data. Regarding learning tasks, Bagdasaryan, Poursaeed, & Shmatikov [8]
studied the impact of training ϵ-DP deep learning (a.k.a. gradient perturbation)
models on unprivileged groups. By keeping the same hyperparameters as the
non-private baseline model, the authors noticed that the accuracy for the un-
privileged group dropped more than for the privileged one. Similarly, Ganev et
al. [20] have also noticed disparities for the unprivileged group when generating
ϵ-DP synthetic data for training ML models by also keeping default hyperpa-
rameters of the differentially private generative models. In this paper, we aim
to explore to what extent training an ML classifier on ϵ-LDP multidimensional
data (a.k.a. input perturbation) while fixing the same set of hyperparameters
negatively impacts the unprivileged group is valid.

Regarding the local DP setting, the work of Mozannar, Ohannessian, & Sre-
bro [32] was the first one to propose a fair classifier when sanitizing only the
protected attribute with ϵ-LDP in both training and testing sets. More recently,
the work of Chen et al. [13] considers a “semi-private” setting in which a small
portion of users share their protected attribute with no sanitization and all
other users apply an ϵ-LDP protocol. While the two aforementioned research
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works [13, 32] answer interesting questions by collecting a single sensitive at-
tribute using only the GRR [23] protocol, we consider in this work multiple
sensitive attributes, which reflects real-world data collections, seven ϵ-LDP pro-
tocols, and several fairness and utility metrics. In addition, we also propose a
new privacy budget splitting solution named k-based, which generally leads to
better fairness and performance in ML binary classification tasks.

3 Preliminaries and Background

This section briefly reviews the group fairness metrics, LDP, and LDP protocols.
The notation used throughout this paper is summarized in Table 1.

Symbol Description

n Number of users
[n] Set of integers, {1, 2, . . . , n}
xi i-th coordinate of vector x

z = M(v) Protocol M perturbs v into z under ϵ-LDP
X Set of “non-sensitive” attributes
As Set of sensitive attributes (privacy viewpoint)
Ap Protected attribute (fairness viewpoint), Ap ∈ As

Zs Set of locally differentially private sensitive attributes, Zs = M(As)
kj Domain size of the j-th attribute
ds Number of sensitive attributes, ds = |As|
Y Set of target values, Y = {0, 1}
D Original dataset, D = (X,As, Y )
Dz Dataset with sanitized sensitive attributes, Dz = (X,Zs, Y )

Table 1: Notations

Note that in this work, we always consider a single protected attribute and
assess fairness w.r.t. that attribute. For LDP, we consider a set of sensitive at-
tributes instead. Moreover, the protected attribute is always considered sensitive,
but the opposite is untrue.

3.1 Group Fairness Metrics

In this paper, we focus on group fairness metrics, which assess the fairness of ML
models for different demographic groups that differ by the protected attribute
(e.g., race, gender, age, . . . ). Let Ap be the protected attribute, Ŷ be a predictor
of a binary target Y ∈ {0, 1}. The metrics we use to evaluate fairness are:

– Disparate Impact (DI) [9]. DI is defined as the ratio of the proportion
of positive predictions (Ŷ = 1) for the unprivileged group (Ap = 0) over
the ratio of the proportion of positive predictions for the privileged group
(Ap = 1). The formula for DI is:
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DI =
Pr[Ŷ = 1|Ap = 0]

Pr[Ŷ = 1|Ap = 1]
. (1)

Note that a perfect DI value is equal to 1.
– Statistical Parity Difference (SPD) [4]. Instead of the ratio, SDP com-

putes the difference in the proportion of positive predictions for unprivileged
and privileged groups and is defined as:

SPD = Pr[Ŷ = 1|Ap = 1]− Pr[Ŷ = 1|Ap = 0]. (2)

A perfect SPD value is equal to 0.
– Equal Opportunity Difference (EOD) [21]. EOD measures the differ-

ence between the true positive rates (i.e., recall) of the unprivileged group
and the privileged groups. Formally, EOD is defined as:

EOD = Pr[Ŷ = 1|Y = 1, Ap = 1]− Pr[Ŷ = 1|Y = 1, Ap = 0]. (3)

A perfect EOD value is equal to 0.
– Overall Accuracy Difference (OAD) [12]. OAD measures the difference

between the overall accuracy rates between the privileged group and the
unprivileged group. Formally, OAD is represented as:

OAD = Pr[Ŷ = Y |Ap = 1]− Pr[Ŷ = Y |Ap = 0]. (4)

A perfect OAD value is equal to 0.

3.2 Local Differential Privacy

In this article, we use LDP [25] as the privacy model, which is formalized as:

Definition 1 (ϵ-Local Differential Privacy). A randomized algorithm M
satisfies ϵ-local-differential-privacy (ϵ-LDP), where ϵ > 0, if for any pair of input
values v1, v2 ∈ Domain(M) and any possible output z of M:

Pr[M(v1) = z] ≤ eϵ · Pr[M(v2) = z].

Proposition 1 (Post-Processing [17]). If M is ϵ-LDP, then for any function
f , the composition of M and f , i.e., f(M) satisfies ϵ-LDP.

Proposition 2 (Sequential Composition [17]). Let M1 be an ϵ1-LDP
protocol and M2 be an ϵ2-LDP protocol. Then, the protocol M1,2(v) =
(M1(v),M2(v)) is (ϵ1 + ϵ2)-LDP.

3.3 LDP Protocols

Let As = {v1, . . . , vk} be a sensitive attribute with a discrete domain of size k =
|As|, in this subsection, we briefly review seven state-of-the-art LDP protocols.
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Generalized Randomized Response (GRR) GRR [23] uses no particular
encoding. Given a value v ∈ As, GRR(v) outputs the true value v with proba-
bility p, and any other value v′ ∈ As \ {v}, otherwise. More formally:

∀z ∈ As : Pr[z = a] =

{
p = eϵ

eϵ+k−1 if z = a

q = 1
eϵ+k−1 otherwise,

in which z is the perturbed value sent to the server.

Binary Local Hashing (BLH) Local Hashing (LH) protocols [10, 39] can
handle a large domain size k by first using hash functions to map an input value
to a smaller domain of size g (typically 2 ≤ g ≪ k), and then applying GRR
to the hashed value. Let H be a universal hash function family such that each
hash function H ∈ H hashes a value in As into [g], i.e., H : As → [g]. With
BLH, [g] = {0, 1}, each user selects at random one hash function H, calculates
b = H(v), and perturbs b to z as:

Pr[z = 1] =

{
p = eϵ

eϵ+1 if b = 1

q = 1
eϵ+1 if b = 0.

The user sends the tuple ⟨H, z⟩, i.e., the hash function and the perturbed
value. Thus, for each user, the server can calculate S (⟨H, z⟩) = {v|H(v) = z}.

Optimal LH (OLH) To improve the utility of LH protocols, Wang et al. [39]
proposed OLH in which the output space of the hash functions in family H is
no longer binary as in BLH. Thus, with OLH, g = ⌊eϵ + 1⌉, each user selects at
random one hash function H, calculates b = H(v), and perturbs b to z as:

∀i ∈ [g] : Pr[z = i] =

{
p = eϵ

eϵ+g−1 if b = i

q = 1
eϵ+g−1 if b ̸= i.

Similar to BLH, the user sends the tuple ⟨H, z⟩ and, for each user, the server
can calculate S (⟨H, z⟩) = {v|H(v) = z}.

RAPPOR The RAPPOR [18] protocol uses One-Hot Encoding (OHE) to in-
terpret the user’s input v ∈ As as a one-hot k-dimensional vector. More precisely,
v = OHE(v) is a binary vector with only the bit at position v set to 1 and the
other bits set to 0. Then, RAPPOR randomizes the bits from v independently
to generate z as follows:

∀i ∈ [k] : Pr[zi = 1] =

{
p = eϵ/2

eϵ/2+1
if vi = 1,

q = 1
eϵ/2+1

if vi = 0,

where p+ q = 1 (i.e., symmetric). Afterwards, the user sends z to the server.
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Optimal Unary Encoding (OUE) To minimize the variance of RAPPOR,
Wang et al. [39] proposed OUE, which perturbs the 0 and 1 bits asymmetrically,
i.e., p+ q ̸= 1. Thus, OUE generates z by perturbing v as follows:

∀i ∈ [k] : Pr[zi = 1] =

{
p = 1

2 if vi = 1,

q = 1
eϵ+1 if vi = 0.

Afterwards, the user sends z to the server.

Subset Selection (SS) The SS [38, 41] protocol randomly selects 1 ≤ ω ≤ k
items within the input domain to report a subset of values Ω ⊆ As. The user’s
true value v has higher probability of being included in the subset Ω, compared
to the other values in As \ {v}. The optimal subset size that minimizes the
variance is ω = ⌊ k

eϵ+1⌉. Given a value v ∈ As, SS(v) starts by initializing an
empty subset Ω. Afterwards, the true value v is added to Ω with probability
p = ωeϵ

ωeϵ+k−ω . Finally, it adds values to Ω as follows:

– If v ∈ Ω, then ω − 1 values are sampled from As \ {v} uniformly at random
(without replacement) and are added to Ω;

– If v /∈ Ω, then ω values are sampled from As \ {v} uniformly at random
(without replacement) and are added to Ω.

Afterwards, the user sends the subset Ω to the server.

Thresholding with Histogram Encoding (THE) Histogram Encoding
(HE) [39] encodes the user value as a one-hot k-dimensional histogram, i.e.,
v = [0.0, 0.0, . . . , 1.0, 0.0, . . . , 0.0] in which only the v-th component is 1.0.
HE(v) perturbs each bit of v independently using the Laplace mechanism [16].
Two different input values v1, v2 ∈ As will result in two vectors with L1 distance
of ∆ = 2. Thus, HE will output z such that zi = vi + Lap

(
2
ϵ

)
. To improve the

utility of HE, Wang et al. [39] proposed THE such that the user reports (or the
server computes): S(z) = {v | zv > θ}, in which θ is the threshold with optimal
value in (0.5, 1). In this work, we use scipy.minimize scalar to optimize θ for

a fixed ϵ as: min
θ∈(0.5,1)

2eϵθ/2−1
(1+eϵ(θ−1/2)−2eϵθ/2)2

.

4 Problem Setting and Methodology

We consider the scenario in which the server collects a set of multiple sensitive at-
tributes As under ϵ-LDP guarantees from n distributed users U = {u1, . . . , un}.
Furthermore, in addition to the LDP-based multidimensional data, we assume
that the users will also provide non-sanitized data X, which we consider as
“non-sensitive” attributes. The server aims to use both sanitized Zs = M(As)
and non-sanitized data X to train an ML classifier with a binary target vari-
able Y = {0, 1}. Notice, however, that we will be training an ML classifier on
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Dz = (X,Zs, Y ) but testing on D = (X,As, Y ) as the main goal is to protect the
privacy of the data used to train the ML model (e.g., to avoid membership in-
ference attacks [22], reconstruction attacks [35], and other privacy threats [28]).
In other words, instead of considering a system for on-the-fly LDP sanitization
of test data, as in [32], we only sanitize the training set.

With these elements in mind, our primary goal is to study the impact of
training an ML classifier on Dz = (X,Zs, Y ) compared to D = (X,As, Y ) on
fairness and utility, using different LDP protocols and privacy budget splitting
solutions. More precisely, we consider the setting where each sensitive attribute
in As is collected independently under LDP guarantees. In this case, to satisfy ϵ-
LDP following Proposition 2, the privacy budget ϵ must be split among the total
number of sensitive attributes ds = |As|. To this end, the state-of-the-art [6, 37]
solution, named uniform, propose to split the privacy budget ϵ uniformly among
all attributes, i.e., allocating ϵ

ds
for each attribute. However, as different sensitive

attributes have different domain sizes kj , for j ∈ [ds], we propose a new solution
named k-based that splits the privacy budget ϵ proportionally to the domain
size of the attribute. That is, for the j-th attribute, we will allocate ϵj =

ϵ·kj∑ds
i=1 ki

.

In addition, each LDP protocol has a different way of encoding and perturb-
ing user’s data. We thus propose to compare all LDP protocols under the same
encoding when training the ML classifier. More specifically, we will use OHE and
Indicator Vector Encoding (IVE) [1] as all LDP protocols from Section 3.3 are
designed for categorical data or discrete data with known domain. For example,
let Ω be the reported subset of a user after using SS as LDP protocol. Following
IVE, we create a binary vector z = [b1, . . . , bk] ∈ {0, 1}k of length k, where the
v-th entry is set to 1 if v ∈ Ω, and 0, otherwise. In other words, z represents
the subset Ω in a binary format. Fig. 1 illustrates the LDP encoding and per-
turbation at the user side and how to achieve a “homogeneous encoding” for all
the seven LDP protocols at the server side. Last, all “non-sensitive” attributes
X are encoded using OHE.

5 Experimental Evaluation

In this section, we present our experiments’ setting and main results. Supple-
mentary results can be found in Appendix A. Our main Research Questions
(RQ) are:

– RQ1. Overall, how does preprocessing multidimensional data with ϵ-LDP
affect the fairness and utility of ML binary classifiers with the same hyper-
parameters used before and after sanitization?

– RQ2. Which privacy budget-splitting solution leads to less harm to the
fairness and utility of an ML binary classifier?

– RQ3. How do different LDP protocols affect the fairness and utility of an ML
binary classifier, and which one is more suitable for the different real-world
scenarios applied?
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𝑧 ≠ 𝑣

𝑧 = 𝑣 𝑧
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mod 2 𝑥 ∈ {0,1}

𝑝 =
𝑒𝜖

𝑒𝜖 + 1

1 − 𝑝

Encode

𝒛 = IVE 𝑆 𝐻, 𝑧 = 1,0,0,1,1

𝑆 𝐻, 𝑧 = 𝑣 𝐻 𝑣 = 𝑧}

PerturbBLH

Server
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𝒗 = 0,0,0,1,0 𝒛 = 1,0,1,0,1

Pr 𝒛𝑖 = 1 =

𝑒𝜖/2

𝑒𝜖/2 + 1
if 𝒗𝑖 = 1,

1

𝑒𝜖/2 + 1
if 𝒗𝑖 = 0.

𝒛

Perturb

𝑣
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𝒗 = 0,0,0,1,0 𝒛 = 1,0,0,1,1

Pr 𝒛𝑖 = 1 =

1

2
if 𝒗𝑖 = 1,

1

𝑒𝜖 + 1
if 𝒗𝑖 = 0.

𝒛

Perturb

𝑣

Encode

OHE(𝑣)

OUE
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𝑣 ∈ 𝜴

𝑣 ∉ 𝜴
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1 − 𝑝

𝑣
Encode

𝜔 − 1, Uniform (𝑉 ∖ {𝑣}) → 𝜴

𝜔, Uniform (𝑉 ∖ {𝑣}) → 𝜴
𝒛 = IVE 𝜴 = 1,0,0,1,1

PerturbSS

Server

𝒗 = 0,0,0,1,0
Perturb

𝒛 = 1.3, −0.1,0.6,0.9, −1.2

𝒛𝑖 = 𝒗𝑖 + Lap
2

𝜖

𝒛 Encode 𝑆 𝒛 = 𝑣 𝒛𝑣 > 𝜃}
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𝑣

Encode
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Server

𝑧 = 𝑥

𝑧 ≠ 𝑥
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𝑝 =
𝑒𝜖

𝑒𝜖 + 𝑔 − 1

1 − 𝑝
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𝑆 𝐻, 𝑧 = 𝑣 𝐻 𝑣 = 𝑧}

Fig. 1: Overview of client-side encoding and perturbation steps for the seven dif-
ferent LDP protocols applied. On the server side, there is also a post-processing
step with one-hot encoding (OHE) or indicator vector encoding (IVE), if needed.

5.1 Setup of Experiments

General setting. For all experiments, we consider the following setting:

– Environment. All algorithms are implemented in Python 3 with
Numpy [36], Numba [27], and Multi-Freq-LDPy [7] libraries, and run on
a local machine with 2.50GHz Intel Core i9 and 64GB RAM. The codes we
develop for all experiments are available in a GitHub repository [2].

– ML classifier. We used the state-of-the-art3 LGBM [26] as predictor Ŷ .
– Encoding. We only use discrete and categorical attributes, which are en-

coded using OHE or IVE (see Fig. 1) and the target is binary, i.e., Y ∈ {0, 1}.
3 https://www.kaggle.com/kaggle-survey-2022.

https://www.kaggle.com/kaggle-survey-2022
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– Training and testing sets. We randomly select 80% as training set and
the remaining 20% as testing set. We apply LDP on the training set only.
That is, the samples in the testing set are the original samples (i.e., no LDP).

– Stability. Since LDP protocols, train/test splitting, and ML algorithms are
randomized, we report average results over 20 runs.

Datasets. Table 2 summarizes all datasets used in our experiments. For ease of
reproducibility, we use real-world and open datasets.

Table 2: Description of the datasets used in the experiments.

Dataset n Ap As, domain size k Y

Adult 45849 gender - gender, k = 2 income

- race, k = 5

- native country, k = 41

- age, k = 74

ACSCoverage 98739 DIS - DIS, k = 2 PUBCOV

- AGEP, k = 50

- SEX, k = 2

- SCHL, k = 24

LSAC 20427 race - race, k = 2 pass bar

- gender, k = 2

- family income, k = 5

- full time, k = 2

– Adult. We use 26000 as threshold to binarize the target variable “in-
come” of the reconstructed Adult dataset [14]. After cleaning, n = 45849
samples are kept. We excluded “capital-gain” and “capital-loss” and used
the remaining 10 discrete and categorical attributes. We considered As =
{gender, race, native-country, age} as sensitive attributes for LDP sanitiza-
tion and Ap = gender as the protected attribute for fairness assessment.

– ACSCoverage. This dataset4 is retrieved with the folktables [14] Python
package and the binary target “PUBCOV” designates whether an individual
is covered by public health insurance or not. We select the year 2018 and the
“Texas” state, with n = 98739 samples. We removed “DEAR”, “DEYE”,
“DREM”, and “PINCP” and used the remaining 15 discrete and categorical
attributes. We considered As = {DIS, AGEP, SEX, SCHL} as sensitive at-
tributes for LDP sanitization and Ap = DIS as the protected attribute (i.e.,
disability) for fairness assessment.

4 The full documentation for the description of all attributes is in https://www.

census.gov/programs-surveys/acs/microdata/documentation.html.

https://www.census.gov/programs-surveys/acs/microdata/documentation.html
https://www.census.gov/programs-surveys/acs/microdata/documentation.html
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– LSAC. This dataset is from the Law School Admissions Council (LSAC)
National Bar Passage Study [40] and the binary target “pass bar” in-
dicates whether or not a candidate has passed the bar exam. After
cleaning, n = 20427 samples are kept. We only consider as attributes:
‘gender’, ‘race’, ‘family income’, ‘full time’, ‘undergrad GPA score’ (dis-
cretized to {1.5, 2.0, ..., 4.5}), and ‘LSAT score’ (rounded to the closest in-
teger). The ‘race’ attribute was binarized to {black, other}. We set As =
{race, gender, family income, full time} as sensitive attributes for LDP san-
itization and Ap = race as the protected attribute for fairness assessment.

Evaluated methods. The methods we use and compare are:

– (Baseline) NonDP. This is our baseline with LGBM trained over original
data (i.e., D = (X,As, Y )). We searched for the best hyperparameters us-
ing Bayesian optimization [11] through 100 iterations varying: max depth ∈
[3, 50], n estimators ∈ [50, 2000], and learning rate ∈ (0.01, 0.25);

– LDP protocols. We pre-processed Zs = M(As) of the training sets using
all seven LDP protocols from Section 3.3 (i.e., GRR, RAPPOR, OUE, SS,
BLH, OLH, and THE) as M. We used the best hyperparameters found for
the NonDP model and trained LGBM overDz = (X,Zs, Y ). For all datasets,
we set ds to 4. That is, ds = |As| = 4. To satisfy ϵ-LDP (cf. Definition 2), we
split the privacy budget ϵ following the two solutions described in Section 4
(i.e., the state-of-the-art uniform and our k-based solution).

Metrics. We evaluate the performance of LGBM trained over the original data
(i.e., NonDP baseline) and LDP-based data on privacy, utility, and fairness:

– Privacy. We vary the privacy parameter in the range of ϵ =
{0.25, 0.5, 1, 2, 4, 8, 10, 20, 50}. At ϵ = 0.25 the ratio of probabilities is
bounded by e0.25 ≈ 1.3 giving nearly indistinguishable distributions, whereas
at ϵ = 50 almost no privacy is guaranteed.

– Utility. We use accuracy (acc), f1-score (f1), area under the receiver oper-
ating characteristic curve (auc), and recall as utility metrics;

– Fairness. We use the metrics of Section 3.1 (i.e., DI, SPD, EOD, and OAD).

5.2 Main Results

LDP impact on fairness. Fig. 2 (Adult), Fig. 3 (ACSCoverage), and Fig. 4
(LSAC) illustrate the privacy-fairness trade-off for the NonDP baseline and all
the seven LDP protocols, considering both uniform and our k-based privacy
budget splitting solutions. From these figures, one can notice that fairness is, in
general, slightly improved for all seven LDP protocols under both the uniform
and the k-based solution. For instance, for the DI metric in Fig. 2, the Non-
DP data indicates a value of 0.44 showing discrimination against women and,
by applying LDP protocols, DI tended to increase to ∼0.48 (with ϵ = 0.25)
resulting in a slight improvement in fairness. Similarly, SPD decreased from 0.37
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to ∼0.34 after applying LDP protocols. The same behavior is obtained for EOD.
The exception was in Fig. 3 for the OAD metric in which the gap between
privileged and unprivileged groups was accentuated (favoring the unprivileged
group). More specifically, the NonDP baseline has OAD equal to -0.17, and
after satisfying LDP for both uniform and k-based solutions and using all LDP
protocols, the gap between the privileged and unprivileged groups increased to
-0.3. In other words, we start with favoritism towards the unprivileged group
(negative value) and this favoritism increased after LDP.

Note also that when applying the uniform privacy budget splitting solution
(see left-side plots), all fairness metrics were less robust to LDP than our k-based
solution and, thus, returned to the NonDP baseline value in low privacy regimes.
With our k-based solution (see right-side plots), all fairness metrics continued to
be slightly better for all privacy regimes for the Adult dataset in Fig. 2. For the
ACSCoverage dataset, not all fairness metrics returned to the NonDP baseline
value and for the LSAC dataset, a similar behavior was noticed for both uniform
and k-based solutions. These differences are mainly influenced by the domain size
k of the sensitive attributes. For instance, while Adult has sensitive attributes
with higher values of k, LSAC has many binary sensitive attributes.
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Fig. 2: Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the Adult [14] dataset.

LDP impact on utility. Fig. 5 (Adult), Fig. 6 (ACSCoverage), and Fig. 7
(LSAC) illustrate the privacy-utility trade-off for the NonDP baseline and all
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Fig. 3: Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the ACSCoverage [14] dataset.
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Fig. 4: Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the LSAC [40] dataset.
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Fig. 5: Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the Adult [14] dataset.
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Fig. 6: Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the ACSCoverage [14] dataset.
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Fig. 7: Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the LSAC [40] dataset.

the seven LDP protocols, considering both uniform and our k-based privacy
budget splitting solutions. From these figures, one can note that, in general, the
impact of ϵ-LDP on utility metrics is minor. For instance, for the Adult dataset
(Fig. 5), only ∼ 1% of utility loss for all metrics is observed. Regarding privacy
budget splitting, for the Adult dataset, our k-based solution is more robust to
LDP as it only drops in higher privacy regimes (i.e., smaller ϵ values) than
the uniform solution. One main explanation for this behavior is because there
is more discrepancy in the domain size k’s of the sensitive attributes As and,
consequently, more privacy budget ϵ are allocated to those attributes with high k.
For this reason, the uniform solution preserved more utility for the ACSCoverage
dataset in Fig. 6, and both solutions had similar results for the LSAC dataset
in Fig. 7 due to sensitive attributes with small domain size k.

Summary.We summarize our main findings for the three research questions for-
mulated at the beginning of Section 5. We highlight these findings are generic and
were also confirmed in additional experiments presented in Appendix A. (RQ1)
Using the same hypeparameters configuration, ϵ-LDP positively affects fairness
in ML (see Figs. 2–4) while having a negligible impact on model’s utility (see
Figs. 5–7). This contrasts the findings of [8, 20] that state that under the same
hyperparameters configuration, ϵ-DP negatively impacts fairness. Although the
aforementioned research works concern gradient perturbation in central DP, the
recent work of de Oliveira et al. [33] has shown that when searching for the best
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hyperparameters for both non-private and DP models, the ϵ-DP impact on fair-
ness is negligible. In our case, we focused on input perturbation, i.e., randomizing
multiple sensitive attributes before training any ML algorithm, and discovered a
positive impact of ϵ-(L)DP on fairness. (RQ2) Our k-based solution consistently
led to better fairness than the state-of-the-art uniform solution when there exist
sensitive attributes with high domain size k (e.g., for both Adult and ACSCov-
erage datasets). Naturally, when all sensitive attributes have a binary domain,
our k-based solution is equivalent to the uniform solution. For this reason, both
state-of-the-art uniform and our k-based solution led to similar privacy-utility-
fairness trade-off for the LSAC dataset (see Figs. 4 and 7). Therefore, regarding
utility, k-based is better when sensitive attributes have higher domain sizes k,
which coincides with real-world data collections. (RQ3) In general, GRR and SS
presented the best privacy-utility-fairness trade-off for all three datasets. This
is because GRR has only one perturbed output value and because SS is equiv-
alent to GRR when ω = 1, thus, not introducing inconsistencies for a user’s
profile. The term inconsistency refers to an user being multiple categories in
a given attribute, i.e., being both woman and man at the same time. In fact,
this is precisely what happens with UE protocols that perturb each bit inde-
pendently or with LH protocols in which many values can hash to the same
perturbed value. For this reason, since BLH hashes the input set V → {0, 1}, it
consistently presented the worst utility results for all three datasets, and only
for ACSCoverage (see Fig. 3), it presented slightly better fairness results than
all other LDP protocols.

6 Conclusion and Perspectives

This paper presented an in-depth empirical study of the impact of pre-processing
multidimensional data with seven state-of-the-art ϵ-LDP protocols on fair-
ness and utility in binary classification tasks. In our experiments, GRR [23]
and SS [38, 41] presented the best privacy-utility-fairness trade-off than RAP-
POR [18], OUE [39], THE [39], BLH [10], and OLH [39]. In addition, we pro-
posed a new privacy budget splitting solution named k-based, which generally
led to better fairness and performance results than the state-of-the-art solu-
tion that splits ϵ uniformly [6, 37]. Globally, while previous research [8, 20] has
highlighted that DP worsens fairness in ML under the same hyperparameter
configuration, our study finds that LDP slightly improves fairness and does not
significantly impair utility. Indeed, there is still much to explore in the area of
privacy-fairness-aware ML, and this study’s empirical results can serve as a ba-
sis for future research directions. For instance, we intend to formally investigate
the privacy-utility-fairness trade-off on binary classification tasks when varying
the distribution of the protected attribute, the target, and their joint, and pro-
pose new methods accordingly. Last, we plan to investigate the impact of LDP
pre-processing on different ML algorithms, such as deep neural networks.
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Similar to Figs. 2–4 (LDP impact on fairness) and Figs. 5–7 (LDP impact
on utility), Figs. 8–13 illustrate the privacy-fairness-utility trade-offs for the
Adult, ACSCoverage, and LSAC dataset, respectively. These figures consider
the NonDP baseline and the seven LDP protocols, as well as both the uniform
and our k-based privacy budget splitting solutions. From Figs. 8–13, one can
observe that the results follow similar trends as those presented in Section 5.
Specifically, the LDP pre-processing positively affects fairness while only having
a minor impact on the utility of the ML model.
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Fig. 8: Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the ϵ-
LDP protocol, and the privacy budget splitting solution (i.e., uniform on the left-
side and our k-based on the right-side), on the Adult [14] dataset. The number
of sensitive attributes 2 ≤ ds ≤ 6 is selected uniformly at random.
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Fig. 9: Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the ACSCoverage [14] dataset.
The number of sensitive attributes 2 ≤ ds ≤ 6 is selected uniformly at random.
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Fig. 10: Fairness metrics (y-axis) by varying the privacy guarantees (x-axis),
the ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on
the left-side and our k-based on the right-side), on the LSAC [40] dataset. The
number of sensitive attributes 2 ≤ ds ≤ 6 is selected uniformly at random.
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Fig. 11: Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the ϵ-
LDP protocol, and the privacy budget splitting solution (i.e., uniform on the left-
side and our k-based on the right-side), on the Adult [14] dataset. The number
of sensitive attributes 2 ≤ ds ≤ 6 is selected uniformly at random.
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Fig. 12: Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the ACSCoverage [14] dataset.
The number of sensitive attributes 2 ≤ ds ≤ 6 is selected uniformly at random.
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Fig. 13: Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the
ϵ-LDP protocol, and the privacy budget splitting solution (i.e., uniform on the
left-side and our k-based on the right-side), on the LSAC [40] dataset. The
number of sensitive attributes 2 ≤ ds ≤ 6 is selected uniformly at random.
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