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Abstract. The release of differentially private streaming data has been
extensively studied, yet striking a good balance between privacy and util-
ity on temporally correlated data in the stream remains an open problem.
Existing works focus on enhancing privacy when applying differential pri-
vacy to correlated data, highlighting that differential privacy may suffer
from additional privacy leakage under correlations; consequently, a small
privacy budget has to be used which worsens the utility. In this work,
we propose a post-processing framework to improve the utility of differ-
ential privacy data release under temporal correlations. We model the
problem as a maximum posterior estimation given the released differen-
tially private data and correlation model and transform it into nonlinear
constrained programming. Our experiments on synthetic datasets show
that the proposed approach significantly improves the utility and accu-
racy of differentially private data by nearly a hundred times in terms of
mean square error when a strict privacy budget is given.

Keywords: Differential Privacy · Data Correlations · Time-series Stream
· Continual Data Release · Post-processing.

1 Introduction

Data collection and analysis in many real-world scenarios are performed in a
streaming fashion, such as location traces [23], web page click data [13], and
real-time stock trades. However, releasing data continuously may result in pri-
vacy risks. To this end, differentially private streaming data release have been
thoroughly studied [3,4,8,9,12,13,14,15,16,24]. The curator of the database can
use a differentially private mechanism, such as Laplace Mechanism (LM), that
adds noises to the query results at each time point for satisfying a formal privacy
guarantee called ϵ-Differential Privacy (ϵ-DP) [10], where ϵ is the parameter (i.e.,
privacy budget) controlling trade-off between privacy protection and utility of
data release. A small ϵ indicates a high level of privacy and thus requires adding
a larger amount of noise. Taking location traces as an example to elaborate,
Fig. 1 (a) (c) (d) illustrate how differentially private location statistics are re-
leased using LM at each time point where (a) represent real-time location raw
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Fig. 1. Scenario: Differentially Private Streaming Data Release.

data sets (i.e., values of longitude and latitude of residence, company, shopping
mall respectively) of users in a database D collected by devices with GPS sensors
(i.e., GPS, GNSS) [23], (c) are the true counts of each location computed by a
count query function f(D) and (d) what will be released and sent to the public
are streaming private counts through a differentially private mechanism such as
Laplace Mechanism (LM) [11].

However, recent studies [5,6,18,25,28,29] reveal that, when the data are cor-
related, more noises have to be added to prevent leakages which deteriorates the
utility. They point out that differential privacy algorithms suffer extra privacy
leakage on correlated data and develop techniques to enhance differential privacy
with a smaller ϵ. In the context of streaming data release, a Markov chain could
be used to model the temporal correlations. For example, as shown in Fig. 1
(b), temporal correlation is manifested as the transition probabilities between
different locations, which can be obtained through public information such as
road networks or traffic data. Based on the temporal correlation presented in
Figure 1(b), we have the probability of users proceeding from location loc1 to
loc2 will be Pr(lt+1 = loc2|lt = loc1) = 1 if we have the knowledge that another
road is congested. Cao et al. [5,6] quantified such a private leakage and proposed
a special privacy definition on temporal correlated data named α-DPT , to cali-
brate a smaller privacy budget in order to cover the extra privacy leakage caused
by temporal correlations. Song et al. [25] proposed Wasserstein Mechanism for
Pufferfish privacy (i.e., a privacy notion that generalizes differential privacy) and
Markov Quilt Mechanism specifically when correlation between data is described
by a Bayesian Network or a Markov chain. Similar to [5, 6], they calculate an
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Fig. 2. Existing studies [5, 25] propose approaches for enhancing DP on temporally
correlated data; however, these methods sacrifice utility. This work tackles this problem
by utilizing temporal correlations as prior knowledge about the data for post-processing
purposes.

enlarged ϵ to enhance the privacy but sacrifice more utility. Hence, the challenge
is how to boost the utility of differentially private streaming data release on
temporally correlated data.

Our approach to addressing the aforementioned issue involves capitalizing
on the existing temporal correlations as prior knowledge about the original data
through post-processing. Although post-processing [?, 17,20,22] has been exten-
sively researched as a means to enhance the utility of differential privacy, cur-
rent methods are ill-equipped to deal with temporal correlations. Post-processing
primarily aims to refine differentially private (noisy) results by enforcing them
to comply with certain ground-truth constraints or prior knowledge about the
data. For instance, deterministic consistency constraints between data points
are frequently employed in previous studies to represent inherent properties of
the data (e.g., released counts in histograms should be integers). In this study,
we apply the post-processing technique to improve the utility of differentially
private streaming data release in the presence of temporal correlations. By ac-
counting for temporal correlations along with other consistency constraints, we
strive to obtain the most accurate current counts which could be estimated from
previous private counts while approximating the true current counts.

In this study, we formulate post-processing as a nonlinear optimization prob-
lem within the Maximum A Posteriori (MAP) framework, accounting for both
probabilistic constraints of temporal correlations and deterministic consistency
constraints. Similar to [5,6,25], we assume that temporal correlations are public
knowledge and are expressed by a transition matrix. As illustrated in Fig. 2, our
approach leverages the transition matrix to enhance the utility of differentially
private counts. Thus, we pose the problem of determining the most plausible
counts that satisfy the constraints (both probabilistic and deterministic) and
exhibit the least distance from the released private data. To model this proba-
bilistic distribution, we employ the knowledge of Laplace noise distribution and
introduce a Markov chain model to calculate the distribution of true counts.
Finally, extensive experiments demonstrate and validate the effectiveness of our
methods.

To summarize, our contributions are as follows:
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– To the best of our knowledge, this paper presents the first attempt to enhance
the utility of differentially private data release under temporal correlations.
We propose a post-processing framework using maximum a posteriori esti-
mation, which incorporates both probabilistic correlations and deterministic
constraints.

– We implement the post-processing framework for temporal correlations in
the differentially private continual data release. Specifically, we formulate
this problem as constrained nonlinear programming, which can be solved
using off-the-shelf optimization software.

– Our experiments on synthetic data demonstrate the effectiveness of the pro-
posed approach. We show that the utility of differentially private data is
significantly improved, with nearly a 100-fold reduction in mean square er-
ror under a strict privacy budget, while preserving temporal correlations
between data.

We would like to note that this work is an extension of our previous poster
paper [2], in which we briefly presented the idea without delving into technical
details. This paper provides a clearer and more in-depth exploration of our pre-
vious work, offering a comprehensive understanding of the proposed MAP-based
post-processing framework.

2 Related Work

Several well-studied methods exist to enhance the utility of differentially private
data, as post-processing is an effective tool. In this section, we review related
works on improving the utility of private data through post-processing.

One of the most widely studied approaches for utility enhancement is the
utilization of consistency constraints [17, 20] in data (e.g., the sum of the re-
leased data should be a fixed number, or the released values should be integer in
the case of counting queries). In our location traces scenario, these consistency
constraints can be expressed by the sum of location records or the total number
of users as a fixed value (e.g., n) for each time point, with counts always being
integers. Previous works formulate the problem as a least squares estimation
(LSE) problem [17] or a maximum likelihood estimation (MLE) problem [20],
demonstrating the effectiveness of such post-processing approaches.

Hay et al. [17] focused on improving the accuracy of private histograms
through post-processing, solving an LSE problem given consistency constraints
such as sum, sorted, and positive to find the ’closest’ private histograms that
also satisfy these constraints. Furthermore, Lee et al. [20] considered noise dis-
tribution (Laplace distribution in their scenario) to boost the utility of private
query results. They formulated their post-processing problem as an MSE prob-
lem and employed the ADMM algorithm to solve the programming problem.

However, when publishing statistics continually, the data points are often
temporally correlated. The post-processing methods mentioned above only focus
on single-time data release and cannot efficiently capture probabilistic temporal



DP Streaming Data Release under Correlations via Post-processing 5

correlations. Moreover, it remains unclear how to formulate probabilistic correla-
tions as constraints, as existing works assume deterministic constraints as prior
knowledge about the data. We also observe that many existing works on differen-
tially private streaming data release neither provide a formal privacy guarantee
under temporal correlations [3,4,8,12,13,14,15,16,24] nor offer reasonable utility
for private outputs. Therefore, our study represents the first attempt to enhance
the utility of DP with formal privacy under temporal correlations.

3 Preliminaries

3.1 Differential Privacy

Informally, the DP notion requires any single element in a dataset to have
only a limited impact on the output. Namely, if D and D′ are two neighbor-
ing databases, the difference in outputs of executing a randomized algorithm on
these databases should be minimal [21].

Definition 1. (ϵ-DP) A randomized mechanism M is said to satisfy ϵ-DP,
where ϵ ≥ 0, if and only if for any neighboring datasets D and D′ that differ on
one element, we have

∀T ⊆ Range(M) : Pr(M(D) ∈ T ) ≤ eϵPr(M(D′) ∈ T )

where Range(M) represents the set of all possible outputs of the algorithm of
mechanism M, the parameter ϵ represents the privacy budget.

3.2 The Laplace Mechanism

The Laplace Mechanism [11] is the first and probably most widely used mech-
anism for DP. It satisfies ϵ-DP by adding noise to the output of a numerical
function [21].

Definition 2. (Global sensitivity) Let D ≈ D′ denote that D and D′ are neigh-
boring. The global sensitivity of a query function f , denoted by ∆, is given below

∆ = max
D≈D′

|f(D)− f(D′)|

According to the definition of DP, the probability density function of the noise
should have the property that if one moves no more than ∆ units, the probability
should increase or decrease no more than eϵ. The distribution of noise that
naturally satisfies this requirement is Lap(∆ϵ ) [21], which denotes a Laplace

distribution with location 0 and scale ∆
ϵ .

Theorem 1. (Laplace Mechanism, LM) For any function f , the Laplace mech-
anism Af that adds i.i.d noise to each function output f satisfies ϵ-DP.

Af (D) = f(D) + Lap

(
∆

ϵ

)
.

Commonly, we denote the scale parameter using λ = ∆
ϵ .
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Table 1. Notations

D A bounded database

Loc Value domain of locations of all users

lti The location information of useri at time t,
useri ∈ U , lti ∈ Loc

M A differential privacy mechanism over D

R The set of real continual time-series query outputs

R̃ The set of added-noise continual time-series query
outputs

Rt The set of query outputs at time t, Rt ⊆ R

rtl A specific query output at time t and location l,
l ∈ Loc, rtl ∈ Rt

T The transition matrix of locations

Pt The possibility of locations for a single user at
time t

Pr(R̂) The joint distribution of possible private counts

4 Problem Statement

This section will introduce and formulate the primary issue we aim to address.
First, below we present the notations used throughout this paper. We use D
to represent a bounded database consisting of n users. We prefer to use bold
letters to indicate vectors. We use rtl to denote a specific query output at a given
time point t and location l. T represents a transition matrix modeling temporal
correlations between data. More detailed notations are in Table 1.

Temporally Correlated Stream Data. In our scenario of location traces
mentioned above, we assume that n people (labeled from 1 to n) staying at m
locations (labeled from 1 to m) respectively at single time point t (shown in
Fig. 1 (a)). Let Loc denote the sets of locations. Naturally, the data at each
time point are temporally correlated: for each user, her current location depends
on the previous location in the form a transition matrix T . Without loss of
generality, we assume the transition matrix is the same for all users and is given
in advance since it can be learned from public information such as road networks.
This assumption follows existing works [5, 25].

Differentially Private Stream Data Release. A server collects users’
real-time locations lt at time t in a database D, and aims to release differentially
private query results over D. In particular, we consider a query function f :
D → Nm that counts the total number of people at each location over the entire
publishing time T , denoted as f(D). The query outputs are represented by R =
(R1, . . . , Rt, . . . , RT ) and Rt = (rt1, . . . , r

t
m). Many existing works, such as [3,4,8,
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Table 2. Transition Matrix

Pr(lt+1|lt) Loc1 Loc2 Loc3

Loc1 0.33 0.33 0.34

Loc2 0.80 0.10 0.10

Loc3 0.05 0.90 0.05

12,13,14,15,16,24], have considered a similar problem setting as ours. However,
due to temporal correlations, increased noise is added to the true answers to
preserve strict privacy [5, 25], which reduces the utility of the released private
counts. Our question is: can we leverage the temporal correlations to improve
the utility of differentially private data via post-processing (while preserving the
enhanced privacy as [5, 25])?

5 Methodology

In this section, we will explain how to formulate the post-processing problem
for streaming data release under temporal correlations. To address the above-
mentioned challenge, we use post-processing, allowing us to refine the private
counts using publicly known prior knowledge.

Intuition. Our core idea is that the temporal correlations can be seen as
probabilistic constraints on the data. We can formulate the problem as determin-
ing the most probable query outputs R̂ that satisfy such constraints when given
R̃, leveraging the knowledge of T as shown in Fig. 1 (b). Specifically, we aim
to solve the programming problem of maximizing Pr(R̂|R̃), subject to the tran-
sition matrix and other consistency constraints. Our method will demonstrate
that the estimation depends on the noise distribution and the joint distribution
of true counts, which are determined by the mechanism used and the inherent
correlations within the raw data.

5.1 Maximum A Posterior Estimation Framework for Correlated
Data

Firstly, we propose a Maximum A Posterior (MAP) Estimation framework to
assist formulating probabilistic post-processing problem.

Definition 3. (MAP Framework) Let D be a bounded database with n records.
A post-processing approach is feasible under a framework F(M, C) if for all noisy
query results Q̃ ∈ O through a given privacy mechanism M, we have

P (Q̂|Q̃) =
P (Q̃|Q̂)P (Q̂)

P (Q̃)
, (1)

Q̂∗ = argmax
Q̂

P (Q̃|Q̂)P (Q̂) (2)
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where C represents correlations between data for all true query results Q, O is
denoted as all possible output set of M(D), Q̂ and Q̂∗ are variable and our
desired ‘closest’ query result which also meets correlation C respectively.

We apply MAP Framework to solve post-processing problem of streaming
data release under temporal correlations. Given a mechanism M(i.e., Laplace
Mechanism here) and temporal correlations C between data, the ‘closest’ private
counts R̂ is tended to be obtained by calculating the maximum of the posterior
possibility under MAP framework F(M, C)

Pr(R̂|R̃) =
Pr(R̃|R̂)Pr(R̂)

Pr(R̃)
(3)

subjecting to the correlations C and other constraints if exist. For convenience,
the logarithm form of the above formula is applied

lnPr(R̂|R̃) = lnPr(R̃|R̂) + lnPr(R̂)− lnPr(R̃) (4)

Therefore, the objective ‘closest’ query outputs (achieve the maximum of
(3)) after post-processing will be

R̂∗ = argmax
R̂

{lnPr(R̃|R̂) + lnPr(R̂)} (5)

when the private counts R̃ is given.
In essence, the first term and the second term of right side of (5) come from

M and C respectively. What makes it different from prior works is that we focus
on calculating the joint distribution of private counts Pr(R̂) which are simply
viewed as a uniform distribution, namely a constant, in most of previous works.
We point out that it cannot be omitted when there are correlations between
data especially under temporal correlations.

5.2 Calculation of Terms of Objective Equation

The next steps are how to calculate the left two terms in the right side of (5).

Calculation of the first term For this term, it tells us that noises should be
considered while improving accuracy and [20] also points out that we are able to
formulate it into a L1 function if the noises come from LM4. Thus, we formulate
the first term of (5) in the following

lnPr(R̃|R̂) = − 1

λ
||R̃− R̂||L1

+ Const. (6)

4 Please note that our method can be applied to other mechanisms. However, for
the duration of this article, we have temporarily chosen to default to the Laplace
Mechanism.
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Calculation of the second term A Markov Chain model is introduced to
calculate the possibilities of single user’s locations released in continual time-
series stream because the possibility of present location only relies on previous
one. With the transition matrix and a prior distribution of locations of single user
at t = 1, we are able to calculate user’s probability distribution of location at
any time. We introduce two policies to obtain the prior distribution: (a) the first
one is to use the normalized frequency of private counts at t = 1, R̃1 (frequency
p-d); (b) another is to simply use a uniform distribution (uniform p-d) instead.
Consequently, we can derive all the possibilities of moving next locations at each
time t, Pt, expressed as below:

Pt = Pt−1T (7)

for each t ∈ {2, . . . , T}. However, a joint distribution of users’ locations should
be calculated when given a bounded database containing data of n users.

Note that all of n users are independent here which means their next actions
will not be influenced by others. With the probability distribution of location of
single user at each time, therefore, the joint distribution of all location counts
at specific time point can be expressed by a multinomial distribution

Pr(Rt) = n!
∏
l

(Pt
l)

rtl

rtl !
(8)

for each Rt ⊆ R where n represents total number of users.

Recall the Stirling’s Approximation

lnx! ≈ ln 2πx

2
+ x ln

x

e
(9)

We apply the approximation (9) to mitigate our calculation

lnPr(Rt) ≈ lnn! +
∑
l

(rtl lnP
t
l −

ln 2πrtl
2

− rtl ln
rtl
e
) (10)

Naturally, our ‘closest’ query answer R̂ also obeys this multinomial distribu-
tion the same as true query answer.

5.3 Nonlinear Constrained Programming

We conclude our method of formulating this post-processing problem under tem-
poral correlations into a nonlinear constrained programming problem. By calcu-
lating the minimum estimation of − lnPr(R̂|R̃) and combining with (6) (10),
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we finally transform (5) into a nonlinear constrained programming as below

Minimize
1

λ
||R̃− R̂||L1

−
T∑

t=1

∑
l

(rtl lnP
t
l −

ln 2πrtl
2

− rtl ln
rtl
e
)

Subject to
∑

rtl = n, for each t ∈ {1, 2, . . . , T − 1, T}

rtl ≥ 0, for each t ∈ {1, 2, . . . , T − 1, T}

where R̂ =
(
(r11, . . . , r

1
m), . . . , (rT1 , . . . , r

T
m)

)
.

Then, we point out that this nonlinear constrained programming is solvable.
By introducing augmented Lagrangian to our objective function (O.F.), there
are many convergence results proved in the literature (e.g. ADMM [1]) where we
could prove the O.F. will finally converge as dual variables converge. Also, vari-
ables rtl must satisfy

∑
rtl = n and rtl ≥ 0 simultaneously. Thus, the boundary

of rtl is n ≥ rtl ≥ 0.
Asymptotical analysis. As shown in derived objective function, there are

two terms which represent the contribution from Mechanism applied to true
counts and Correlations between true counts respectively. As ϵ approaches zero,
the first term, namely 1

λ ||R̃− R̂||L1 will also approach to zero because of coeffi-
cient λ. In other words, the second term

−
T∑

t=1

∑
l

(rtl lnP
t
l −

ln 2πrtl
2

− rtl ln
rtl
e
)

will matter the most to objective function when a stricter privacy budget ϵ is
given. Also, we’d like to analyze what the objective function will perform if a
‘weak’ level correlation is given (note that we will provide a mathematical def-
inition of levels of correlations in our Experiments part) such that probabilities
of proceed to the next location from previous ones is a fixed value, namely Pt

l

is a uniform distribution. Then, the second term is able to be ‘ignored’ and the
first term

1

λ
||R̃− R̂||L1

will thus matter the most to solutions. We should point out that our framework
will result in an MLE problem such that post-processing problem mentioned
by [20] if there is no correlations amount original data.

6 Experiments

In this section, we present experimental results that demonstrate the effective-
ness of our proposed MAP framework for post-processing continuous data release
under temporal correlations. To validate our method, we apply it to both syn-
thetic and real-world datasets, and evaluate its performance in terms of accuracy
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and utility. Furthermore, we have made our code available on GitHub5, enabling
other researchers to reproduce our experiments and extend our work. For statis-
tical significance, all experiments are performed 50 times and the mean values
are reported as the final results.

Environment. The experiments were executed on CPU: Intel(R)Core(TM)
i7− 11370H @3.30GHz with Python version 3.7.

Nonlinear Programming Solver. The solver used for solving nonlinear
constrained programming is Gurobi Optimizer version 10.0.1 API for Python.

Level of Temporal Correlations. To evaluate the performance of our
post-processing method under different temporal correlations, we introduce a
method to generate transition matrix in different levels. To begin with, we de-
fault a transition matrix indicating the “strongest” correlations which contains
probability 1.0 in its diagonal cells. Then, we utilize Laplacian smoothing [26]
to uniform the possibilities of n× n transition matrix T S of ‘strongest’ correla-
tions. Next, let pij denote the element at the ith row and jth column of T S . The
uniformed possibilities p̂i,j can be generated from (11), where s (0 ≤ s < ∞)
is a positive parameter that controls the levels of uniformity of probabilities in
each row. That’s, a smaller s means stronger level temporal correlations. Also,
We should note that, different s are only comparable under the same n.

p̂i,j =
pij + s∑n

j=1(pij + s)
(11)

6.1 Utility Analysis

In this subsection, we conduct a utility analysis using the objective function of
the nonlinear constrained programming approach described above. The objective
function consists of two parts: the noise distribution and the joint distribution
of query answers under temporal correlations. The key to the effectiveness of
our post-processing method in achieving high utility lies in its ability to recover
the correlations between data that are blurred by incremental noise added to the
original query answers. For example, it enables the preservation of the correlation
that ‘the current number of people staying at loc1 must equal the previous
number of people staying at loc2’ by solving the relevant nonlinear constrained
programming problem. As a result, the similarity between the post-processing
query answers and the original query answers is improved significantly.

Moreover, we introduce MSE and Possibility as metrics to measure the
utility of optimal counts instead of MSE solely for supporting the validation
of our MAP post-processing method. For instance, synthetic streaming binary
counts, such that total number of locations is nloc = 3, total number of users
is nuser = 1, are going to be released under ϵ−DP. And the temporal correla-
tions are known to the public which can be expressed by transition matrix T =0.0 0.0 1.0

0.5 0.0 0.5
0.0 1.0 0.0

 which also represents the basic temporal correlation used for

5 https://github.com/DPCodesLib/DBSec23
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(a) MSE of Binary Counts Release (b) Possibilities of Varying

Fig. 3. a) Scenario: Streaming Binary Counts Released under Temporal Correlations;
b) Possibility of Proceeding to Current Counts from Prior Counts of Post-processing
Results (under 1−DP)

generating synthetic datasets. Then, we post-process and release optimal counts
using post-processing methods of MLE with a ADMM algorithm [20] and our
MAP framework respectively illustrated by Fig. 3(a). The red line of Fig. 3(a)
represents optimal results that drop temporal correlations obtained by calculat-
ing MLE problem while the greed and blue lines represent the optimal results
obtained from our method of MAP framework under two different strategies.
The details of them will be revealed in the following subsections. When calculat-
ing the possibilities of achieving current counts from previous counts (shown in
Fig. 3(b)), however, we note that many possibilities of post-processing points of
dropping temporal correlations are lower than cut-off line (10−10) which will be
seen as ‘impossible events’ if possibility is smaller than 10−10. It proves that our
MAP framework is able to preserve the probabilistic properties owned by orig-
inal data, namely temporal correlations, compared with prior post-processing
methods.

We will now explore the tradeoff between privacy and utility. The objective
function reveals that the privacy budget ϵ is a weight parameter affecting the
noises’ part, but it has no impact on the correlations’ part. This means that
the correlations’ part is dominant when the privacy budget is strict, while the
noises’ part replaces it when the budget is lax. As a result, the utility is always
preserved under any given privacy budget, since the method always preserves
known correlations when calculating the ‘closest’ private counts.

6.2 Synthetic Datasets

To thoroughly examine the feasibility and effectiveness of our MAP framework
and related post-processing methods, we conduct an evaluation on various syn-
thetic datasets. This evaluation aims to provide a comprehensive understanding
of the performance of our approach under different scenarios and to validate its
potential for practical applications.
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(a) MSE over ϵ under ϵ−DP (b) MSE over α for under α−DPT

Fig. 4. a) MSE over ϵ under ϵ−DP; total release time is T = 500, total number of users
is nuser = 200 and level of correlations is s = 0. b)MSE over α for under α−DPT ; total
release time is T = 500, total number of users is nuser = 200 and level of correlations
is s = 0.01.

MSE vs Privacy Budget ϵ or α

Here, we compare the performance of our post-processing method by varying
privacy budget ϵ or α from 0.2 to 2.0 (with step = 0.2) at a given total publishing
time T in different mechanisms, ϵ −DP and α −DPT , respectively. Note that
we must choose a prior distribution(p-d) for P 1 when t = 1, and our strategy is
to use the frequency of R̃1 or a uniform distribution to substitute for it. And the
results, shown in Fig. 4 (a) and Fig. 4 (b), illustrate that our post-processing
method significantly improves the utility and accuracy of outputs while achieving
a desired privacy budget both in ϵ−DP and α−DPT .

The red line which represents prior method of MLE using ADMM only con-
siders utilizing public knowledge of mechanisms instead of both mechanisms and
correlations to boost utility of released counts. The blue line and green line are
the results after our post-processing given two different policy to choose p-d. As
shown in figure, MSE become smaller while increasing privacy budget ϵ. And our
methods perform better than MLE method by decreasing MSE nearly hundred
times at any given fixed ϵ.

MSE vs Total Release Time

We vary the total publishing time T from 100 to 200 (step = 10) to examine
the performance of our post-processing method under both ϵ-DP and α-DPT ,
using the same methods for generating the synthetic datasets as described above.
We use default privacy budgets of α, ϵ = 1.0, 1.0.

The results of our experiments, as shown in Figure 5, indicate that the mean
squared error (MSE) values of ϵ-DP and α-DPT increase significantly as the to-
tal release time is extended. However, our post-processing method demonstrates
a remarkable boost in utility, as both of its policies consistently yield lower MSE
values than the method that drops temporal correlations. These findings under-
score the effectiveness of our post-processing method in preserving the correla-
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Fig. 5. MSE over Total Release Time under α−DPT and ϵ − DP ; privacy budget is
α = 1.0, ϵ = 1.0 and level of correlations is s = 0.01.

tions between raw data, and the importance of considering temporal correlations
when designing and evaluating different data release mechanisms.

MSE vs Different Temporal Correlations

In this subsection, we finally check the performance of our post-processing
method upon different intensities of temporal correlations. We default the pri-
vacy budget and total publishing time as α = 1.0 and T = 500 respectively. Note
that it will have relatively higher temporal correlations if users have a higher
possibility from present location to the next specific location (e.g., Pr(lti |l

t−1
i ) =

1.0). Therefore, we firstly generate a transition matrix T =

0.0 0.0 1.0
0.5 0.0 0.5
0.0 1.0 0.0

.

Then, we apply (11) to generate different level degree of correlations, weak cor-
relations, medium correlations and strong correlations corresponding to s = 1,
s = 0.1, s = 0.01 respectively.

And the results, shown in Fig. 6, reveal validation of this post-processing
method by giving prominent improvement in accuracy. We also compare a special
post-processing method that drops temporal correlations which means that the
joint distribution of query results Pr(R) is a constant. And the results show
that the post-processing method with temporal correlations will achieve higher
utility with a lower MSE.
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Fig. 6. MSE over Different Levels of Temporal Correlations under α−DPT and ϵ−DP;
privacy budget is α = 1.0 and ϵ = 1.0, total number of users is nuser = 200 and total
release time is T = 500.

These experiments also highlight the essential role of the MAP framework,
demonstrating that correlations between raw data can significantly impact the
results and cannot be disregarded in both the mechanism design and post-
processing stages.

7 Conclusion

In this paper, we have shown that temporal correlations are often present in
differential privacy data releases and proposed a MAP framework to address
the post-processing problem in this context. Our experiments demonstrate the
effectiveness of incorporating temporal correlations into the post-processing step,
resulting in significant improvements in accuracy and utility.

Furthermore, our work suggests that the MAP framework can be a useful tool
for addressing other post-processing problems involving correlated data, such as
Bayesian DP and Pufferfish Privacy Mechanisms. While our approach assumes
independence between users, this may not always hold true in practice. Future
work could explore how to extend our framework to address post-processing for
streaming data releases under temporal correlations when users are correlated.
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Overall, our work contributes to advancing the state of the art in differential
privacy data releases by providing a new perspective on post-processing under
temporal correlations and opens up new avenues for future research in this area.
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cian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing, SGP ’04, page 175–184, New York, NY, USA,
2004. Association for Computing Machinery.

27. Ziang Wang and Jerome P Reiter. Post-processing differentially private counts to
satisfy additive constraints. Transactions on Data Privacy, 14:65–77, 2021.

28. Bin Yang, Issei Sato, and Hiroshi Nakagawa. Bayesian differential privacy on
correlated data. In Proceedings of the 2015 ACM SIGMOD international conference
on Management of Data, pages 747–762, 2015.

29. Tianqing Zhu, Ping Xiong, Gang Li, and Wanlei Zhou. Correlated differential
privacy: Hiding information in non-iid data set. IEEE Transactions on Information
Forensics and Security, 10(2):229–242, 2015.


	Differentially Private Streaming Data Release under Temporal Correlations via Post-processing

