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Abstract. There is a constant trade-off between the utility of the data
collected and processed by the many systems forming the Internet of
Things (IoT) revolution and the privacy concerns of the users living in the
spaces hosting these sensors. Privacy models, such as the SITA (Spatial,
Identity, Temporal, and Activity) model, can help address this trade-off.
In this paper, we focus on the problem of CO2 prediction, which is cru-
cial for health monitoring but can be used to monitor occupancy, which
might reveal some private information. We apply a number of transfor-
mations on a real dataset from a Smart Building to simulate different
SITA configurations on the collected data. We use the transformed data
with multiple Machine Learning (ML) techniques to analyse the perfor-
mance of the models to predict CO2 levels. Our results show that, for
different algorithms, different SITA configurations do not make one al-
gorithm perform better or worse than others, compared to the baseline
data; also, in our experiments, the temporal dimension was particularly
sensitive, with scores decreasing up to 18.9% between the original and
the transformed data. The results can be useful to show the effect of dif-
ferent levels of data privacy on the data utility of IoT applications, and
can also help to identify which parameters are more relevant for those
systems so that higher privacy settings can be adopted while data utility
is still preserved.
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1 Introduction

The impact of the quality of an indoor environment on the well-being of its oc-
cupants is a relatively well-studied problem [2]. More than 20 years ago, Redlich
et al. noted the increase of the Sick-Building Syndrome (SBS), which includes
“upper-respiratory irritative symptoms, headaches, fatigue, and rash” [22]. Al-
though they deemed CO2 as “an unlikely cause of SBS”, a study widely cov-
ered in the general press, clearly indicates potential health risks associated with
chronic exposure to environmentally relevant elevations in ambient CO2, in-
cluding “inflammation, reductions in higher-level cognitive abilities and impact
on different body organs” [11]. There is, therefore, a clear need for precise and
reactive monitoring of indoor CO2, to detect and prevent dangerous situations.
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On the one hand, smart buildings deploy IoT architecture usually including
CO2 and temperature sensors [32], intended to be used on new services that
can be provided, many supported by Machine Learning (ML) techniques. Those
services are intended to automatise management and optimise user comfort,
security, and safety, quite often with a focus on occupancy measurement [5,16,
17]. The need for CO2 monitoring is likely to push an increasing deployment of
such systems.

On the other hand, this monitoring faces an increasing privacy concern re-
lated to ambient infrastructures. Naieni et al. for instance showed that although
roughly half of the participants in a survey were comfortable or very comfortable
with the collection of presence and temperature data, people nevertheless favour
data collection in which they cannot be identified immediately and do not want
inferences to be made from otherwise anonymous data [21].

Lately, new legislation has been introduced to support and regulate personal
data usage and people’s privacy preferences, e.g. GDPR (General Data Protec-
tion Regulation)3 in the EU/UK and LGPD (Lei Geral de Proteção de Dados)4

in Brazil. A common principle is that of data minimisation, which specifies that
a system should not collect and process more data than needed for its purpose.
There is also a clear concern that users must be involved in data collection and
processing and their preferences must be considered. As a result, a data pro-
tection system must work out a difficult trade-off: minimise data collection to
satisfy as much as possible user privacy preference while avoiding a loss to data
utility, which might reduce the efficiency of processing, and as a consequence
could impact the overall utility of the data to the provided services.

In this paper, we explore this trade-off in the context of a real-world smart
building by evaluating how different ML methods perform to predict CO2 when
different privacy levels are defined. We also evaluate how different levels of pri-
vacy impact data utility in comparison to when the whole data is available.

The remainder of this work is organised as follows. Section 2 presents back-
ground on smart buildings, data privacy, and machine learning. Section 3 presents
our methodology to configure the dataset and to build our implementation. An
experimental evaluation and discussion are presented in Section 4. Section 5 dis-
cusses recent works on privacy in smart spaces and CO2 prediction using smart
buildings sensor’s data. Finally, Section 6 concludes this work and indicates some
future work directions.

2 Background

With the revolution of IoT equipment, many smart buildings are emerging, es-
pecially in universities and business offices. They are responsible for collecting
a huge amount of data from many people every day. In light of this, there is a
growing concern about the privacy of these data.

3 https://gdpr.eu/
4 https://www.serpro.gov.br/lgpd/menu/a-lgpd/o-que-muda-com-a-lgpd



Impact of using a privacy model on smart buildings data for CO2 prediction 3

For our research, we collected data from a smart building located at a uni-
versity in England, applied different settings of the SITA privacy model that will
be discussed in the next sections, and used machine learning algorithms to check
if there were changes regarding the usability of the data.

Thus, we investigated and collected some information on the topics covered,
which are organised as follows in the next sections: Section 2.1 deals with smart
buildings, Section 2.2 presents the SITA model, and Section 2.3 describes some
machine learning algorithms applied in this work.

2.1 Smart buildings sensors and data

Smart building is a term that has its origins in the larger scenario of building
automation, which is the set of practices aimed to improve the control of a
building by electronic means. From building automation, emerges the concept
of intelligent building, when, in addition to control, we also have historical data
enabling us to make predictions [4].

The drivers for the development of buildings can be said to revolve around
adding value to a building [27]. Reducing energy consumption has now become
a driver in its own right, due to increasingly stringent regulations and aware-
ness of climate change. This is recognised in modern buildings as a significant
design criterion [9]. In order to achieve these requisites, there are four specific
approaches to follow:

– the methods by which building operation information is gathered and re-
sponded to (intelligence);

– the interaction between the occupants and the building (control);
– the building’s physical form (materials and construction); and
– the methods by which building use information is collected and used to

improve occupant performance (enterprise).

Smart Buildings are Intelligent Buildings, but with additional, integrated as-
pects of adaptable control, enterprise and materials, and construction. In Smart
Buildings, the four methods used to meet the drivers to building progression,
mentioned previously, are developed alongside each other, utilising information
from one in the operation of another. This is in contrast to Intelligent Buildings,
which have largely developed intelligence independently of the other methods.

2.2 Privacy Model

In recent years there was an increase in demand for privacy techniques [25] [24].
This comes in line with an increase in awareness of society to how easily data is
collected, distributed, and used in the information age. One consequence is the
creation of legislation in different jurisdictions that address this topic, GDPR,
LGPD, and PDP5 are a few examples. This legislation tries to organise how

5 https://prsindia.org/billtrack/the-personal-data-protection-bill-2019
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data is treated and protected. To tackle the privacy problem the SITA model
was developed.

SITA [1] is a conceptual model that empowers end-users with the ability to
control their privacy. It is based on a granular approach to control privacy in
applications, and also, uses Maeda’s ten laws of simplicity [18] as a design phi-
losophy. As result, an end-user has a simple and intuitive method of controlling
how an application can distribute its data.

The embedded privacy control in most applications works binary, where a
user can block the application from sharing all his data or allow it to share all
his data in the application. SITA proposes the use of different levels as a way to
remediate this. The user can control how much information he is sharing, this,
however, comes with a cost. Less information that is shared in the application
can degrade an application service because of the lack of precise information.
As consequence, a user will need to set the application privacy control in some
way so that the application is usable for his needs and also does not share so
much information. This trade-off is very common in privacy applications, known
as the privacy-utility trade-off. Other frameworks work on a similar premise,
allowing more control over the privacy settings [23] [10], however, these models
are in general complex, which hinders their widespread usage.

The model is divided into four dimensions: Spatial, referring to the user’s
location data, such as GPS position, address, and others; Identity, related to the
user’s personal identification data, such as ID, Name, and Gender; Temporal,
date and time information about user activity in the application; Activity, sen-
sitive data about user behaviour, situational data, and preferences. All the data
shared with the application developer can be categorised into one of these four
groups.

Each dimension can be assigned a level from zero to four. The level represents
the amount of privacy for that specific dimension. Where zero represents no
access to the data and complete privacy. On the other extreme four represents
full access and no privacy protection. The values in-between allow controlling the
shared data using aggregation, and obfuscation techniques to granularly control
privacy. In that case, the amount of information shared is something between no
shared data at all (level zero), and total access to the data (level four). These in-
between values are application specific and need to be created by the developer.

An end user can set the level for each dimension, which is called a SITA
configuration. The resulting data shared will apply the privacy level for each
dimension and share the data with the application. A user can for instance set
The SITA level as Spatial two, Identity, three, Temporal zero, and Activity four.
The resulting shared data would include Spatial and Identity data modified by
some anonymization aggregation, and obfuscation techniques, all the temporal
data, and no activity data. In this work to identify different configurations a
sequence of four numbers is used. Each number represents the value for one
dimension. For example, 4343 means S = 4, I = 3, T = 4, and A = 3.



Impact of using a privacy model on smart buildings data for CO2 prediction 5

2.3 Supervised machine learning algorithms

Supervised machine learning algorithms use previously labelled data to train
machine learning models. One of its main uses is to allow the inference of further
data to a label. There are several algorithms, and variants, that use this method
[12]. For this work, we describe the algorithms used in our experiment.

Linear regression (LR) This method is used to predict the value of a variable,
named the dependent variable, and based on the value of other variables, named
the independent variables. The independent variables are used to compose a
linear equation. The dependent variable of a new data entry is predicted using
the value of the independent variables as input in the linear equation, resulting
in the predicted value.

Ridge Regression (RR) Multiple regression models, similar to linear regres-
sion, create an equation using independent variables to predict a dependent
variable. However, unlike linear regression, it creates an equation composed of
multiple coefficients. One problem that such an approach suffers is that highly
correlated independent variables degrade the model performance. Ridge Re-
gression solves this problem by substituting the least square estimators from
multiple-regression models with a ridge regression estimator.

Random forest (RF) Random forest uses multiple decision trees to output a
label for a new data entry. The label which is outputted more by the decision
trees is the one attributed to the new data entry. Decision trees are multiple
decision points in a tree-like format. Each non-leaf node contains a decision that
will induce entry to a leaf node. The leaf node contains the label that the data
entry will assume. The multiple trees in the random forest are created with some
degree of variance. This method reduces the bias and overfitting that using a
single decision tree can result in.

Gradient Boosting Regressor (GBR) This model is a variant of the ensem-
ble methods, like RF. In these methods, multiple simple models are combined
into a more complex and precise one. For GBR the simpler models usually are
decision trees. The result is a more robust model overall. This approach can
find any non-linear relationship in the dataset and can treat missing values, and
outliers. The main difference between RF and GBR is the process of creating
the decision tree and combining the results.

Decision Tree Regressor (DTR) A decision tree is the smaller model that
is used in the RF and GBR. It is a classifier in the form of a tree. Each node
is a decision and the leaves are the labelled value. A new entry starting at the
root is directed at each node to children nodes based on its value. At the leaf
node, it receives its label. The tree is built by partitioning the training dataset
and building a decision node based on the partitioning.
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3 Experiment

For our experiments, we collected data from a real scenario, the Urban Sciences
Building(USB) at Newcastle6.. In the next sections, we describe the methodology
used for collecting and pre-processing the data, applying the privacy model, and
the metrics used to measure the performance of the machine learning algorithms.

3.1 Privacy model for IoT datasets in CO2 prediction

In IoT scenarios, data from sensors can be stored in datasets. A dataset can
be useful for history, use in prediction models and pattern detection, forensics,
and other cases. However, the dataset can also be used in a malicious way. For
example, a malicious data holder can use the data as part of a linkage attack to
infringe upon individual privacy. To mitigate this risk one technique is to reduce
the precision of data entries in the dataset. This diminishes the data precision,
hindering malicious privacy attacks. This approach is used by the SITA model,
from an original dataset it generates a private dataset where the original data
entries are less precise.

Original datasetSensor data

Prediction model Private dataset

SITA Model

Fig. 1. Proposed privacy model used for CO2 prediction

Figure 1 presents how we apply the SITA model to add different privacy
levels to the original data. First, the data is collected from multiple sensors and
aggregated in the original dataset. This data will suffer a SITA transformation
based on a SITA Configuration. It is important to note that the same config-
uration is applied to all the datasets, instead of a configuration for a specific
user’s data or data entries. The reason for this is that we intend to isolate and
analyse the impact of the transformation for each SITA dimension on a ma-
chine learning CO2 prediction model. The result of the SITA Transformation is
a private dataset, a dataset with increased security against privacy attacks. This
private dataset is then used to create a prediction model using machine learning
techniques.

This approach reflects the possibility that an IoT environment can automat-
ically transform an original dataset, or data as it is added to a dataset using the
SITA model. The resulting private dataset can be the only information made

6 https://api.usb.urbanobservatory.ac.uk
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available to the data holder. This guarantees an increase in privacy. However,
this comes with the cost of data utility, since the modification to the original
dataset will decrease its data utility and prejudice the prediction models created
from it.

3.2 Attack model

Here we present a simple model that can be used to exploit the CO2 readings
from a sensor, or its prediction if accurate, to determine which specific person is
in a room. There is a number of studies that suggest that people who weigh more
produce more CO2 [19], and there are studies that suggest that males produce
more CO2 than females [35]. Also, there is the ASHRAE Standard 62.1 [3] used
to predict CO2 emission inside a building and control air quality, it receives as
input the metabolic rate, which is highly based on a person’s body composition
(fat, muscle, bones, and etc.). In our model, the potential difference of CO2

emission between two individuals will change the CO2 readings of the room,
allowing it to be used to identify who is inside a room.

The scenario for this model is a small closed room that is used by just two
people. These two people have a significant difference in body composition and
are of different sex. We will identify them as Alice (50kg) and Bob (90kg), a third
person, Eve, wants to identify who is inside the room without their consent. Eve
has some background information, she knows the sex of Alice and Bob and their
approximate weight. Eve also has access to the CO2 readings of the room.

In Figure 2 we summarise our model. The CO2 readings of the room (a),
and the background information (b) will be the input of the model of the gas
dispersion model (c), that model will as result identify who is inside the room.
The gas dispersion model can use the ASHRAE Standard 62.1 [3] to predict the
CO2 present in the room when it is empty, Alice is in it, Bob is in it, or both.
Using this prediction and the actual CO2 readings Eve can then predict who
is in the room. The gas dispersion model is not the only option viable for Eve,
if she has historic data of the room CO2 she can use an unsupervised machine
learning algorithm to cluster the readings in four groups, group 1 when the room
is empty, group 2 when Alice is in the room, group 3 when Bob is in the room,
and group 4 when both are in the room. Finally, if Eve has a history of CO2

readings and who is present in the room even other supervised machine learning
algorithms are viable.

This model is very simplistic and in more complex scenarios can be ineffective.
A few possible changes that can impact this model include: Changing the number
of people that use the room, this would increase the complexity of isolating the
CO2 emission of one person, and more people more complex. People with very
similar profiles, same-sex same weight, or very close. A big room would disperse
the emitted CO2, and the presence of people inside the room would change very
little in the room readings, making it impossible to distinguish who is inside.
Ventilation can also disperse the CO2, making it impossible to distinguish who
is inside.
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(b)  Individuals’ Information

(a) Room CO² readings (c) gas dispersion model (d) Individuals’ Identification

Fig. 2. CO2 individuals’ privacy attack model

3.3 Description of the Experiment

The objective of our experiment is to analyse the impact of the SITA privacy
model in CO2 predictions that use machine learning. More specifically the ex-
periment aims to analyse how changing one dimension of the SITA configuration
impacts the performance of the prediction model. Privacy techniques, such as
SITA, suffer from the privacy-utility trade-off, increased privacy decreases the
data utility which will impact the prediction model.

We briefly summarise the experiment conducted in the following sequence of
steps and in Figure 3. More detail will be provided in the next subsections:

– Collecting original dataset: The first step was the collection of the dataset
for the prediction model. We used data publicly available from the USB.

– Data Transformation: The original dataset was transformed to better suit
the SITA transformation.

– SITA Transformation:Different datasets were created from different SITA
configurations. We aim to analyze the isolated impact of each SITA dimen-
sion. Thus, for each dimension, we changed its level from 0 to 4 while keeping
the others in a fixed state. We will analyse the SITA configurations X444,
44X4, and 444X, where X is a number between 0 and 4. This transformation
results in five different private datasets for each dimension.

– ML Training: Our prediction models are created using LR, RR, RF, GBR,
and DTR. The selected techniques are based on the work of Wibisono et
al. [33]. Each technique is used with all datasets generated from the different
SITA configurations.

– Analysis: To analyse the impact of a SITA configuration in the prediction
model we utilise common ML metrics. The metrics are R2 score, Root Mean
Square Error(RMSE), and Mean Absolute Error (MAE). The chosen metrics
are also based on the work of Wibisono et al. [33].
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Smart Building

Data collected using api

Original dataset

SITA transformation

Data transformation

Private datasets 
X444 

Private datasets 
44X4 

Private datasets 
444X

Machine learning
trainning 

Machine learning
trainning 

Machine learning
trainning 

Prediction models Prediction models Prediction models

Results Analysis

Fig. 3. Experiment summary
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3.4 Dataset Scenario and data collection

Our scenario is composed of the USB.It is the largest open platform for urban
sensing data in Newcastle. The building includes multiple IoT sensors that can
be freely accessed online through their website. An API is also provided, which
allows other applications to access the data, in real-time, and also previous data.

The dataset was extracted using a script developed by our team, collecting
data from October 2018 to March 2020. We collected data from five sensors: hu-
midity, temperature, occupancy, brightness, and CO2. The data is also organised
by rooms, with the readings of the sensors in each of these rooms. The rooms
differ in size, sensors available, and usage. The historical data is stored in the
API by sensors, in different JSON files. Therefore, we had to consolidate all the
data into a single file and remove all records that contained at least one missing
data.

3.5 Data Transformation

To remove all the outliers from our dataset, we set a range of values for each
feature. So we have CO2 values ranging from 0 ppm to 1,000 ppm (ASHRAE
limit for healthy environments7) and temperature values ranging from 0°C to
50°C. The relative humidity values ranged from 0% to 100% and the brightness
values ranged from 0 lm to 2000 lm.

After completing the data cleaning as described above, we have a new dataset
with about 200,000 records. This dataset is ready to be used in the SITA trans-
formation and in future works.

3.6 SITA Data Transformation

Each level of the SITA parameters corresponds to a specific operation on those
variables related to that parameters. Below we describe those relationships, and
the transformations performed at each level. The Identity dimension is absent in
our work, since there is no individual data stored in the datasets, and because
of that its respective operations are disabled.

The Spatial dimension is represented by data regarding the room and the
zone of each entry. Given a sample input G.024, 2, the operations follow:

– Level 0: all data deleted. Output: deleted,deleted
– Level 1: only the general location is given. Output: building,deleted
– Level 2: only the ground of each room is given. Output: Ground Floor,deleted
– Level 3: returns full information about the room, omitting the zone data.

Output: G.024, deleted
– Level 4: no transformations are applied. Output: G.024, 2

For the Temporal dimension, we took as input the datetime parameter. We
present the results given a sample input 20181011141735.

7 https://www.ashrae.org/about/position-documents
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– Level 0: all data deleted. Output: deleted,deleted
– Level 1: year and month, with day fixed at 01. Output: 20181001,deleted
– Level 2: date. Output: 20181011,deleted
– Level 3: date and hour. Output: 20181011, 140000
– Level 4: no transformations are applied. Output: 20181011, 142735

For the Activity dimension, we considered the following attributes: CO2,
Temperature, Humidity, and Brightness. For the sample input 287.0,27.6,63.8,25.0,
we have the following operations:

– Level 0: all data deleted. Output: deleted,deleted,deleted,deleted
– Level 1: values are rounded up to the two rightmost digits. Output: 300,0,100,0
– Level 2: values are rounded up to the rightmost digit. Output: 290,30,60,30
– Level 3: decimal digits are removed. Output: 287,27,63,25
– Level 4: no transformations are applied. Output: 287.0,27.6,

63.8,25.0

For the experiment, a SITA configuration is applied to all the entries in the
dataset. We applied the following configurations to the original dataset: 4444,
3444, 2444, 1444, 0444, 4434, 4424, 4414, 4404, 4443, 4442, 4441, and 4440.
To better organise we will refer to a group of operations that alter the same
dimension using X for the dimension it is altering. For example, X444 refers to
configurations 4444, 3444, 2444, 1444, and 0444. Note that this transformation
from the original dataset resulted in multiple private datasets, one new dataset
from each configuration.

3.7 Machine Learning training

The ML models were trained using the Kaggle8 platform, in a remote computing
environment with 4 CPUs and 16 Gigabytes of RAM. The library used for the
training was the scikit-learn9 version 1.0.2. Before the training, since the algo-
rithms here studied only work with numerical data, we transformed all textual
data into numerical over each dataset. After this, the datasets were split into
training/testing in a proportion of 80/20 utilising random sampling, with a ran-
dom state of 10. Over these, we applied the KFold() method from scikit-learn,
with ten splits and setting the parameter shuffle to true, to avoid overfitting the
model. Each regressor method was then instantiated using their default imple-
mentations; the R2, MAE, and RMSE scores were calculated using the function
cross val score(), indicating in the score parameter the respective metric.

4 Results and Discussion

This section summarises the results of our experiments. We have three sets of
SITA configurations, each one varying by one dimension and keeping the other

8 https://www.kaggle.com
9 https://scikit-learn.org
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three unmodified (i.e. level 4 of the model). We did this to better comprehend
the impact of applying different SITA options over the dataset.

We measured the results accordingly to three metrics: R2 score, Mean Abso-
lute Error (MAE), and Root Mean Squared Error (RMSE). R2 score, also known
as the Coefficient of Determination, measures the proportion of the variance in
the dependent variable that is predictable from the independent variable(s). In
other words, it represents the correlation between the predicted outcomes of a
model and their real values [7]. Mean Absolute Error is the average difference
between predicted and real values, representing how much the model misses the
expected value. The Root-mean-square error, like MAE, is also an error metric,
but here the measurement is calculated by the square root of the average of
squared differences between prediction and actual observation. Although similar
(with MAE being usually recommended, due to its easier interpretation [34]),
MAE and RMSE exhibit distinct behaviours in specific circumstances, such as
with large test sizes; thus, a combination of both metrics are often required to
assess model performance [6].

For each SITA configuration analysed, we applied ten-fold cross-validation
over the trained models, and collected their R2, MAE, and RMSE values at the
end of each execution; after all executions were completed, we calculated the
average scores of each model/configuration pair.

Fig. 4. R2 score for machine learning algorithms in 444X SITA dimension.

For every specific setting, we ran all five algorithms, and measured the results
according to three parameters: the coefficient of determination (R2 score - figures
2 to 4), the Mean Absolute Error (MAE - figures 5 to 7), and the Root Mean
Squared Error (RMSE - figures 8 to 10). Since there are significant performance
differences between Random Forest and Decision Tree models compared to the
other algorithms evaluated, we will focus our analysis on these first two.

Regarding the R2 score, the Random Forest algorithm outperforms all other
approaches analysed, with an average value of 74.29% for the baseline data.
When taking the Activity dimension as variable, the minimum average score of
this model is 66.05%. This represents a performance decrease of 9.44% regarding
to the baseline. Even in this worst-case scenario, the Random Forest model still
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Fig. 5. R2 score for machine learning algorithms in X444 SITA dimension.

Fig. 6. R2 score for machine learning algorithms in 44X4 SITA dimension.

Fig. 7. MAE score for machine learning algorithms in 444X SITA dimension.

Fig. 8. MAE score for machine learning algorithms in X444 SITA dimension.
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Fig. 9. MAE score for machine learning algorithms in 44X4 SITA dimension.

Fig. 10. RMSE score for machine learning algorithms in 444X SITA dimension.

Fig. 11. RMSE score for machine learning algorithms in X444 SITA dimension.

Fig. 12. RMSE score for machine learning algorithms in 44X4 SITA dimension.
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outperforms the second-best algorithm (Decision Tree) by 23.62%, even when
considering the baseline for the latter. It is important to observe that we did
not apply level 0 of SITA transformations in that dimension since this operation
would erase all CO2 data, thus making it impossible to predict its levels.

For the Temporal dimension, the minimum average score of Random Forest
is 51.80% for the Temporal privacy setting of 0 (i.e. all data deleted). This repre-
sents a performance decrease of 28.98% regarding the baseline. In this worst-case
scenario for the Random Forest model, the Decision Tree baseline performance
is 3.05% superior, with all other temporal settings of the Random Forest per-
forming better than the Decision Tree baseline, and all other temporal settings
of the Decision Tree underperforming the Random Forest worst-case.

When considering the Spatial dimension, the Random forest model produces
an average R2 score of 71.86% when the privacy setting is at 0, a decrease of
1.73%. This value is 33.00% higher than the Decision Tree score for the baseline
case, having this model in the same privacy level a score of 51.16%, being 28.81%
lower than RF.

Analysing the Mean Absolute Error, the lowest score for the baseline was
obtained running the Random Forest model, with a result of 32,40%. With the
Activity dimension as variable, the maximum average score of such algorithm
equals to 41,28% when privacy level = 1 for Activity. This represents an error
increase of 27,38% regarding to the baseline. The Decision Tree algorithm pro-
duces an MAE value of 40,60%, which represents a decrease of 1,64% in relation
to the Random Forest.

For the Temporal dimension, we have a maximum average score of 49,85%
(privacy level = 0), 53,50% higher than the baseline. The same configuration
when applied to Decision Tree produces an MAE score of 50,93%, 2,17% higher
than the Random Forest model.

The Spatial dimension has an MAE score of 33,63% on the strictest privacy
level for the RF model. This represents an increase of 3,56%, considering the
baseline. The Decision Tree model, conversely, has an MAE score of 35,49%, an
increase of 5,53% from the RF.

Finally, we look at the RMSE metric. The lowest value was obtained with
the Random Forest model, with a score of 62.99%. For the Activity dimension,
the highest value was 75,47%, 13.83% higher than the baseline. When we set
Temporal and Spatial domains as variables, their respective scores were 84.20%
(an increase of 33.67%) and 64.31% (2.09% higher than the baseline).

4.1 Discussion

Firstly, our results confirm the experimental data presented in [33], regarding the
performance of the ML algorithms then analysed. Linear Regression and Ridge
Regression, being fairly simple algorithms , are expected to perform poorly than
more sophisticated methods, especially on large datasets. The other algorithms
used in our experiments can be seen as belonging to the same family, with
Decision Tree being the basis for both Random Forest and Gradient Boosting.
However, some careful tuning is necessary for the latter to achieve good results,
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which makes it harder to apply the method over different domains. Regarding
Decision Tree and Random Forest methods, since the latter is an averaging of
multiple instances of the first (thus mitigating possible errors due to overfitting),
the results of our experiments confirm the expected performances. We also show
that RF is the only algorithm between those analysed that produces R2 scores
over 70%. When analyzing the Mean Absolute Error, our results show that the
performances of RF and DT algorithms are very close, but the RMSE values
present a more significant difference between these two methods. This can be
explained by the fact that RMSE has a tendency to be increasingly larger than
MAE as the test sample size increases, thus exacerbating small differences in
MAE values between the two approaches.

Another discussion can be made about the impact of applying our SITA
implementation over the chosen dataset. Our results show that the dimensions
present different sensibilities to more restrictive privacy settings. Taking the R2

score, we show that the Spatial dimension is the least affected, and the Temporal
dimension the most affected, with Activity being in an intermediate place. This
can be used to better understand the importance of different variables in applying
ML techniques. Also, by analysing the scores of each privacy setting, we observe
that the Activity dimension has a score below 70% when the privacy setting is
lower than 3; the same occurs for the Temporal dimension with privacy setting
lower than 4 (reflecting the higher sensitivity of this dimension), and it is not
observed in the Spatial dimension in any configuration. with this we demonstrate
that it is possible, through different SITA settings, to improve the users’ privacy
and keep ML services functional.

An interesting approach for further research on this topic is the use of other
machine learning algorithms, including more powerful techniques such as deep
learning. Exploring other domains such as healthcare, social media, and other
IoT scenarios for example are also interesting further directions.

5 Related Work

There are numerous works related to the prediction of CO2 in IoT environments
using machine learning algorithms. The CO2 monitoring is an important com-
ponent of controlling the air quality of a room, which when correctly managed
provides well-being, controls general air pollution, and detects potential harms,
such as fire. Creating a prediction model can be positive in cases presented by
Kapoor et al. [14] where smart sensors are not available, also a model can be
used to help in the building design. In his work, they present a model working
with multiple machine learning algorithms and achieve a precise model.

Other works are developed in a similar fashion using machine learning algo-
rithms in an IoT scenario to create a prediction model for CO2. Vanus et al. [31]
use the value of other sensors like temperature and humidity to predict the CO2

value in a Smart Home scenario. In another study, Sharma et al. [26] describe
the building of a sensor network to detect different pollutant gases beyond CO2,
although still in development a model is described. An artificial neural network
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is used to predict air quality and to fully control an IoT network, including
air-conditioning, and ventilation based on the work of Tagliabue et al. [29].

There are other works in the prediction of air quality and CO2 [30] [13] [15].
However, the use of such prediction models and privacy models as the one pre-
sented in Section 2.2 are not common. The readings of a CO2 with other back-
ground information can be used in a linkage attack [20] in the original dataset,
or real-time data, to discover information about individuals, for example, who
was present in a room, patterns of movements in a building, among others.

6 Final consideration and future work

In this work, we analysed the trade-off between privacy and utility for CO2

prediction on a real dataset in the context of smart buildings. Therefore, several
transformations were implemented on the original data to simulate different
privacy levels and generate new transformed datasets that were used as input to
train five distinct machine learning models for CO2 prediction.

The results show that the performance of Regression based machine learning
techniques is lower than decision Tree-based techniques. The use of the privacy
model, as expected, deteriorated the performance of all algorithms. More aggres-
sive SITA configurations resulted in worse performance and each dimension has
a different impact on the prediction models. The highest impact was observed
when higher privacy levels were simulated on the Temporal dimension.

As future research directions, our model could be improved by using Syn-
tactic Anonymity [28] with SITA to increase even more the data privacy. To
the best of our knowledge, there is no work of this kind yet. Also, the inclusion
of Differential Privacy [8] is another possibility that could improve even more
the privacy model, since it is a more powerful privacy definition than syntactic
anonymity.
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