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Abstract—Deep learning models have become state-of-the-
art in many areas, ranging from computer vision to marine
and agriculture research. However, concerns have been raised
regarding the transparency of their decisions, especially in the
image domain. In this regard, Explainable Artificial Intelligence
has been gaining popularity in recent years. The ProtoPNet
model, which breaks down an image into prototypes and uses
evidence gathered from the prototypes to classify an image,
represents an appealing approach. Still, questions regarding its
effectiveness arise when the application domain changes from
real-world natural images to gray-scale medical images. This
work explores the applicability of prototypical part learning in
medical imaging by experimenting with ProtoPNet on a breast
masses classification task. The two aspects we considered to
evaluate the applicability of this approach were the classification
capabilities and the validity of explanations. We looked for the
optimal model’s hyperparameters configuration by operating a
random search. We trained the model in a five-fold CV supervised
framework, with mammogram images cropped around the lesions
and ground-truth labels of benign/malignant masses. Then, we
compared the performance metrics of ProtoPNet to that of the
corresponding base architecture, which was ResNet18, trained
under the same framework. In addition, an experienced radiol-
ogist provided a clinical viewpoint on the quality of the learned
prototypes, the patch activations, and the global explanations. We
achieved a Recall of 0.769 and area under the receiver operating
characteristic curve of 0.719 in our experiments. Even though
our findings are non-optimal for entering the clinical practice
yet, the radiologist found ProtoPNet’s explanations very intuitive,
reporting a high level of satisfaction. Therefore, we believe that
prototypical part learning offers a reasonable and promising
trade-off between classification performance and the quality of
the related explanation.

I. INTRODUCTION

Today’s world of information research is largely dominated
by artificial intelligence (Al) technologies. In particular, deep
learning (DL) models are being deployed transversely across
many sectors, revealing a great added value to humans in
many of them. Some examples are marine object recogni-
tion [1], smart agriculture [2], human gait monitoring [3], and
autonomous driving [4].

Although DL models usually outperform humans at many
levels, performance is not all we need. Indeed, industrial and
research communities demand more explainable and trust-
worthy DL models. These needs emerge from the user’s
difficulty in understanding the internal mechanisms of an
intelligent agent that led to a decision. Based on this degree
of understanding, the user often decides whether to trust the
output of a model.

Explainable AI (XAI) plays a pivotal role in this scenario.
Research is now focusing on developing methods to explain
the behavior and reasoning of deep models. Explanation meth-
ods developed so far can be divided into two major classes:
post-hoc explanations and ante-hoc explanations.

The first class comprises solutions that are based on separate
models that are supposed to replicate most of the behavior
of the black-box model. Their major advantage is that they
can be applied to an already existing and well-performing
model. However, in approximating the outcome, they may not
reproduce the same calculations of the original model. Among
this family of explanations we find global/local approxima-
tions [S]-[7], saliency maps [8], [9] and derivatives [10], [11].

By contrast, the second class of explanation methods, also
known as explaining by design, comprises inherently inter-
pretable models that provide their explanations in the same
way the model computes its decisions. Indeed, training, infer-
ence, and explanation of the outcome are intrinsically linked.
Examples of such methods are Deep k-Nearest Neighbors [12]
and Logic Explained Networks [13].

Regarding the image domain, a substantial body of DL lit-
erature concerns classification tasks [14]-[16]. When it comes
to image classification, one of the most familiar approaches
humans exploit is to analyze the image and, by similarity,
identify the previously seen instances of a certain class. A
line of DL research focuses on models that mimic this type
of reasoning, which is called prototypical learning [17]-[19].
The key feature of this class of learning algorithms is to
compare one whole image to another whole image. Instead,



one could wish to understand what are the relevant parts of
the input image that led to a specific class prediction. In
other words, parts of observations could be compared to parts
of other observations. In the attempt to build a DL model
that resembles this kind of logic, Chen et al. [20] proposed
prototypical part network (ProtoPNet).

ProtoPNet breaks down an image into prototypes and uses
evidence gathered from the prototypes to qualify the image.
Thus, the model’s reasoning is qualitatively similar to that of
ornithologists, physicians, and others on the image classifica-
tion task. At training time, the network uses only image-level
labels without fine-annotated images. At inference time, the
network predicts the image class by comparing its patches with
the learned prototypes. The model provides an explanation
visually by indicating the most informative parts of the image
w.r.t. the output class. This allows the user to qualitatively
evaluate how reasonable and trustworthy the prediction is
according to the user domain knowledge.

ProtoPNet posed brilliant promises in classification do-
mains regarding natural images (e.g., birds and cars classi-
fication [20], video deep-fake detection [21]). On the other
hand, the applicability of this type of reasoning to medical
images 1is still in its infancy. When presented with a new
case, radiologists use to compare the images with previously
experienced ones. They recall visual features that are specific
to a particular disease, recognize them in the image at hand,
and provide a diagnosis. For this reason, medical imaging
seems to be suitable for prototypical part-based explanations.

Nevertheless, some critical issues can arise when bringing
technologies from other domains — like computer vision - into
the medical world. Unlike natural images, usually character-
ized by three channels (e.g., RGB, CYM), conventional medi-
cal images feature single-channel gray-scales. For this reason,
pixels contain a lowered amount of information. In addition,
x-ray images represent a body’s projection and therefore are
flat and bi-dimensional. As a result, objects in the field of
view could not be as separable and distinguishable as in real-
world natural images. Such issues might be detrimental to the
application of these methodologies. In addition, the scarcity of
labeled examples available for supervised training undermines
the generalization capability achievable by complex models.
This lack of labeled data is mainly due to the low prevalence
of certain diseases, the time required for labeling, and privacy
issues. Moreover, additional problems include the anatomical
variability across patients and the image quality variability
across different imaging scanners.

This work aims to investigate the applicability of ProtoPNet
in mammogram images for the automatic and explainable
malignancy classification of breast masses. The assessment of
applicability was based on two aspects: the ability of the model
in facing the task (i.e., classification metrics), and the ability
of the model to provide end-users with plausible explanations.
The novelty of this work stems from both the application
of ProtoPNet to the classification of breast masses without
fine-annotated images, and the clinical viewpoint provided for
ProtoPNet’s explanations.

The remainder of this paper is organized as follows:

o Section II overviews the previous works related to con-
ventional DL models applied to breast masses classifica-
tion and ProtoPNet applied to medical imaging;

o Section III outlines the dataset used, the operations inter-
vened upon, the architecture used, and the experiments
performed;

e Section IV presents the results of our investigation. Both
quantitative and qualitative analyses are reported;

o Section V regards a clinical viewpoint on the outputs of
the explainable model from a radiologist;

e Section VI regards the discussion. It highlights the
strengths of the work, but also its downsides;

o Finally, Section VII summarizes our answer to the re-
search question, and states a proposition for future work.

II. RELATED WORKS

Several works in the literature have applied DL algorithms,
and convolutional neural network (CNN) architectures in
particular, to automatically classify benign/malignant breast
masses from x-ray mammogram images. By contrast, only few
works explored the applicability of ProtoPNet to the medical
domain and, more specifically, on breast masses classification.

Concerning the use of CNNs for this task, some works
follow. Using a transfer-learning approach with different pre-
trained models such as AlexNet or GoogLeNet, Levy et
al. [22] classified mass images from the Digital Database for
Screening Mammography (DDSM) [23]. Zhang et al. [24]
developed a system for benign/malignant mass classification
using CNNs and the DDSM dataset. Specifically, they fine-
tuned an AlexNet model pre-trained on ImageNet [25]. Ting et
al. [26] proposed to extract hierarchical features from a custom
CNN and used a set of images from the Mammographic
Image Analysis Society (MIAS) [27]. Kulkarni et al. [28]
comparatively studied different DL architectures for mass clas-
sification by using 200 mass images from DDSM. Li et al. [29]
proposed a two-view mammogram images classification model
composed of two branches of CNNs for feature extraction
and two modified ResNets for feature fusion on images from
DDSM.

Many studies have also used the Curated Breast Imaging
Subset of DDSM (CBIS-DDSM) [30] dataset. Ragab et al. [31]
used AlexNet pre-trained on ImageNet for the classification
of benign/malignant masses. They experimented both with
the net as feature extractor combined with a support vector
machine (SVM) module, and with the net as extractor and
classifier. They obtained an accuracy of 0.736 in the latter case.
Tsochatzidis et al. [32] explored various popular CNN archi-
tectures on the CBIS-DDSM dataset, by using both randomly
initialized weights and pre-trained weights from ImageNet.
With ResNet50 and pre-trained weights they obtained an accu-
racy of 0.749. Alkhaleefah et al. [33] investigated the influence
of data augmentation techniques on classification performance,
by experimenting with images from CBIS-DDSM. When using
ResNet50, they achieved 0.676 and 0.802 before and after



augmentation, respectively. Arora et al. [34] proposed a two-
stage classification system using the CBIS-DDSM. First, they
exploited an ensemble of five CNN models to extract features
from breast mass images and then concatenated the five feature
vectors into a single one. In the second stage, they trained
a two-layered feed-forward network to classify mammogram
images. With this approach, they achieved an accuracy of
0.880. They also reported the performance obtained with
each individual sub-architecture of the ensemble, achieving
an accuracy of 0.780 with ResNetl8. Ragab et al. [35] also
experimented with multiple CNN models to classify mass
images from CBIS-DDSM. Among the experiments, they
obtained an accuracy of 0.722, 0.711 and 0.715 when applying
ResNet18, ResNet50 and ResNetlOl1, respectively. Finally,
Ansar et al. [36] introduced a novel architecture based on
MobileNet and transfer learning to classify CBIS-DDSM mass
images. They benchmarked their model with other popular
networks, among which ResNet50 led to an accuracy of 0.637.

Regarding the application of ProtoPNet to the medical
domain, only few attempts have investigated its application
to date. Mohammadjafari et al. [37] applied ProtoPNet to
Alzheimer’s Disease detection on brain magnetic resonance
images from two publicly available datasets. As a result,
they found an accuracy of 0.91 with ProtoPNet, which is
comparable to or marginally worse than that obtained with
state-of-the-art black-box models. Singh et al. [38], [39] pro-
posed two works utilizing ProtoPNet on chest X-ray images
of Covid-19 patients, pneumonia patients, and healthy people
for Covid-19 identification. In [38] they slightly modified the
weight initialization in the model to emphasize the effect of
differences between image parts and prototypes in the classi-
fication process, achieving an accuracy of 0.89. In [39] they
modified the metrics used in the model’s classification process
to select prototypes of varying dimensions, and obtained the
best accuracy of 0.87.

To the best of our knowledge, the only application of proto-
typical part learning to the classification of benign/malignant
masses in mammogram images was provided by Barnett et
al. [40]. They introduced a new model, IAIA-BL, derived from
ProtoPNet. For its application, they utilized a private dataset
that contained further annotations by experts in training data.
They included both pixel-wise masks to consider clinically
significant regions in images and mass margin characteris-
tics (spiculated, circumscribed, microlobulated, obscured, and
indistinct). On the one hand, annotation masks of clinically
significant regions were exploited at training time in con-
junction with a modified loss function to penalize prototype
activations on medically irrelevant areas. On the other hand,
they employed annotations of mass margins as an additional
label for each image and divided the inference process into two
phases: first, the model determines the mass margin feature and
then predicts malignancy based on that information. For this
purpose, they added a fully-connected (FC) layer to convert
the mass margin score to the malignancy score. With that
architecture, they managed to achieve an AUROC of 0.84.

Fig. 1. Examples of images from the original CBIS-DDSM dataset that were
removed due to artifacts. (a)-(b): annotation spot next to or within the mass;
(c): white-band artifact; (d) horizontal-pattern artifact.

III. MATERIALS AND METHODS

In this work, we trained a ProtoPNet model to classify
benign/malignant breast masses from mammogram images on
a publicly available dataset. We compared its performance
to the baseline model on which ProtoPNet is based. We
conducted a random search independently on both models
with five-fold cross-validation (CV) to optimize the respective
hyperparameters.

A. Dataset

In our study, we used images from CBIS-DDSM [30]. The
dataset is composed of scanned film mammography studies
from 1566 breast cases (i.e., patients). For each patient, two
views (i.e., MLO and CC) of the full mammogram images are
provided. In addition, the collection comes with the region of
interest (ROI)-cropped images for each lesion. Each breast
image has its annotations given by experts, including the
ground truth for the type of cancer (benign, malignant, or no-
callback) and the type of lesion (calcification or mass). Only
the ROI-cropped images of benign and malignant masses for
each patient were used in this study.

As a first step, we performed a cleaning process of the
dataset by removing images with artifacts and annotation spots
next to or within the mass region (Fig. 1). We then converted
DICOM images of the cleaned dataset into PNG files.

The training and test split of the cohort was already pro-
vided in the data collection. To obtain a balanced dataset,
we randomly selected the exceeding elements from the most
numerous class and excluded them from the cohort.

B. ProtoPNet

1) Architecture and functioning: ProtoPNet, introduced in
[20], comprises three main blocks: a CNN, a prototype layer,



and an FC layer. As for the CNN block, it consists of a feature
extractor, which can be chosen from many of the popular
models competing on ImageNet challenges (VGGs, ResNets,
DenseNets), and a series of add-on convolutional layers. This
block extracts features from an input RGB image of size
224 x 224. Given this input size, the convolutional output has
size 7 x 7 x D, where D is the number of output filters of the
CNN block. ReLU is used to activate all convolutional layers,
except the last one that utilizes the sigmoid activation. The
prototype layer that follows comprises two 1 x 1 convolutional
layers with ReLU activation. It learns m prototypes, whose
shape is 1 x 1 x D. Each prototype embodies a prototypical
activation pattern in one area of the convolutional output,
which itself refers to a prototypical image in the original
pixel space. Thus, we can say that each prototype is a latent
representation of some prototypical element of an image.

At inference time, the prototype layer computes a similarity
score as the inverted squared L? distance between each pro-
totype and all patches of the convolutional output. For each
prototype, this produces an activation map of similarity score
whose values quantify the presence of that prototypical part
in the image. This map is up-sampled to the size of the input
image and presented as an overlayed heat map highlighting
the part of the input image that mostly resembles the learned
prototype. The activation map for each prototype is then
reduced using global max pooling to a single similarity score.
A predetermined number of prototypes represents each class
in the final model. In the end, the classification is performed
by multiplying the similarity score of each prototype by the
weights of the FC layer.

2) Prototype learning process: The learning process begins
with the stochastic gradient descent of all the layers before the
FC layer (joint epochs). Then, prototypes are projected onto
the closest latent representation of training images’ patches.
Finally, the optimization of the FC layer is carried out. It is
possible to cycle through these three stages more than once.

3) Differences in our implementation: Differences exist
between the original paper introducing ProtoPNet [20] and
our work. Firstly and more importantly, we conceived a hold-
out test set to assess the final models’ performance, after the
models were trained using CV. In the original paper, instead,
both the selection of the best model and the evaluation of its
performance were carried out on the same set, i.e., validation
and test sets were the same.

In addition, since ProtoPNet works with three-channel im-
ages, we modified the one-channel gray-scale input images
by copying the information codified in the single channel
to the other two. Then, we set the number of classes for
the classification task to two instead of 200. Finally, to
reduce overfitting when training a large model using a limited
dataset, we introduced a 2D dropout layer and a 2D batch-
normalization layer after each add-on convolutional layer of
the model. An overview of our implementation of ProtoPNet
architecture and its inference process is depicted in Fig. 2,
taking the classification of a correctly classified malignant
mass as an example.
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Fig. 2. Inference process through ProtoPNet: classification of a breast mass
by means of the activation of pre-learned prototypes within the test image.

C. Experiment with ProtoPNet

As for the CNN block of ProtoPNet, the residual network
ResNet18 [41] with weights pre-trained on the ImageNet
dataset [25] was used in this experiment. Images were resized
to a dimension of 224 x 224 pixels and their values were
normalized with mean and standard deviation (std). Given
mean = [0.5,0.5,0.5] and std = [0.5,0.5,0.5] for three
channels, this transformation normalizes each channel of the
input so that:

input[channel] — mean|channel]
std[channel]

output|channel] = (1)
As a result, image values range between —1 and +1 and this
helps to improve the training process.

We then performed a random search to optimize the model’s
hyperparameters. For each configuration, we built a five-
fold CV framework for training lesions, creating the internal-
training and internal-validation subsets with an 80-20% pro-
portion. We performed the splitting in both class-balanced
and patient-stratified fashion; this way, we maintained the
balance between the classes and we associated lesions of the
same patients to the same subset (internal-training or internal-



TABLE I
VALUES OF THE PROTOPNET HYPERPARAMETERS FOR THE RANDOM

SEARCH
Parameter Domain
lr_features [le-7, 1e-6]
Ir_add_on [le-7, 1e-6]
lr_prot_vector [le-7,1e-6]
WD [le-3,1e-2]
train_batch_size (20, 40]
clst [0.6,0.8,0.9]
sep [—0.1, —0.08, —0.05]
i1 [le-5,1e-4, 1e-3]
num_prots_per_class [5, 20, 40]

validation) for each CV fold. We employed the Stratified-
GroupKFold function from the scikit-learn library [42] for this
purpose.

Given the large number of hyperparameters in ProtoPNet
that can be optimized, we investigated only a fraction of them
in this work. In particular, we examined the learning rate (LR)
at joint epochs, the weight decay (WD), the batch size of
the internal-training subset, the coefficients of the ProtoPNet
loss function terms, and the number of prototypes per class.
Their possible values are reported in Table I. Among the
resulting 2592 configurations, 30 were randomly selected and
used for training. The remaining hyperparameters were chosen
with fixed values instead. The ones different from the original
ProtoPNet paper follow:

e dropout_proportion = 0.4,

e add_on_layers_type = bottleneck;

o num_filters = 512;

o validation_batch_size = 2;

o push_batch_size = 40;

o warm_optimizer_lrs =
prototype_vectors : 16-6};

o last_layer_optimizer_lr = le-6.

{add_on_layers le-6,

At training time, we performed data augmentation on the
internal-training subset by adding slightly modified copies
of already existing data. Typically, this procedure reduces
overfitting when training a machine learning model and acts as
regularization. We adopted the transformations reported in Ta-
ble II. Specifically: (i) images underwent rotation around their
center by an angle randomly picked in the range [—10°, +10°];
(ii) images were perspective skewed, that is, transforming the
image so that it appears as if it was viewed from a different
angle; (iii) images were stretched by shear along one of its
sides; images were mirrored (iv) from left to right along y-axis
and (v) from top to bottom along x-axis. Among the presented
transformations, those based on a random initialization of
certain parameters were repeated eight times each to further
augment the number of instances. As a result, considering also
the original ones, the number of internal-training images was
totally increased by a factor of 33. For such augmentation we
exploited the Python Augmentor Library [43], which has been

TABLE II
DATA AUGMENTATION TRANSFORMATIONS PERFORMED AT TRAINING
TIME
Name Number of Value or Range
repetitions
Random rotation 10 max_right_rotation = 10°
mazx_left_rotation = 10°
Random skew 10 magnitude = 0.2
Random shear 10 max_shear_right = 10°
max_shear_left = 10°
Flip left-right 1 -
Flip top-bottom 1 -

designed to permit rotations of the images limiting the degree
of distortion.

Differently from the original study, we used fixed LR values
instead of an LR scheduler, and we framed the training
process within an early stopping (ES) setting rather than a
1000-epochs one. In particular, we checked the trend of the
loss function for ES. We exploited a moving average with
window = 5 and stride = 5 to reduce the influence of noise
in contiguous loss values at joint epochs. At every push epoch,
a discrete derivative was computed on the two averaged values
resulting from the ten joint epochs preceding that push epoch.
A non-negative derivative was the condition to be checked.
If the condition persisted for the following 30 joint epochs
(patience), ES occurred, and the training process stopped. The
considered model was the one saved before the 30 patience
epochs.

Following the random search, we chose the best-performing
configuration based on the metrics reported in section III-D.
Hence, we re-trained the model on the whole training set
with the selected configuration for as many epochs as the
average maximum epoch in the CV folds. We then performed
a prototype pruning process, as suggested in the workflow
of the original paper [20]. We did that to exclude, from
the set of learned prototypes, those that potentially regard
background and generic regions in favor of more class-specific
ones. Finally, we evaluated the final model on test set images.

In the end, we compared ProtoPNet with a simpler, conven-
tional black-box model. Since our ProtoPNet uses ResNetl8
as the CNN block, we repeated the classification task with the
same pre-processed dataset using a ResNetl8 with weights
pre-trained on ImageNet.

We conceived the training framework as a fine-tuning of
the last convolutional layers. The fine-tuning was performed
under the same five-fold CV settings and with the same
data augmentation operations. To reduce the overfitting during
training, we also inserted a dropout layer before the final FC
layer.

Provided that ProtoPNet and ResNet18 have globally differ-
ent hyperparameters, an independent random search was per-
formed. The subset of investigated hyperparameters included:

e number of re-trained last convolutional

[1,2,3,4,5,10,20];

layers =



e LR = [le-7,1e-6];

e WD = [le-3,1e-2, le-1];

« dropout proportion = [0,0.2,0.4].

Among the 126 possible configurations, 50 were randomly
selected for training.

Following the random search, we selected the top-
performing configuration according to the metrics outlined in
Section III-D. Accordingly, we re-trained the model on the
entire training set with the chosen configuration for a number
of epochs equal to the average maximum epoch in the CV
folds. Lastly, we evaluated the final model on the test set
images.

D. Evaluation Metrics

We used both quantitative metrics and a qualitative assess-
ment to evaluate the performance of the models at training
time. As for quantitative metrics, we computed the accuracy
value and stored it for both the internal training and the
internal-validation subsets at each epoch for each CV fold
of a given configuration. We then obtained the configuration
accuracy with its standard deviation by averaging the best
validation accuracy values across the CV folds.

Even though some CV folds might reach high validation
accuracy values at some epochs, the overall trend of the
validation learning curves could be erratic and noisy over
epochs. Hence, we computed the learning curves of accuracy
and loss for each configuration and collected them for both
internal-training and internal-validation subsets at each CV
fold. Then, these curves were averaged epoch-wise to obtain
an average learning curve and standard deviation values for
each epoch.

We used a qualitative assessment of the average learning
curves in combination with quantitative metrics to verify the
correctness of the training phase. In this regard, we considered
a globally non-increasing or with a high standard deviation
trend as unjustifiable. We then selected the best performing
configuration of hyperparameters based on both the configu-
ration accuracy and the quality assessment.

When evaluating the model on the test set, in addition
to AUROC, we assessed its performance through Accuracy,
Precision, Recall, F1 score, and F2 score. The latter metrics
are defined as follows:

TP+ TN

Accuracy = G T P FN + FP @
Precision = Tiji—iPFP (3)
Recall = 7;;713}7]\7 “4)
Fl=5rp +2}:Cz]$ TFP ®)

o 5TP ©

~ 5TP {4FN + FP

TABLE III
NUMBER OF BREAST MASSES IN THE STUDY COHORT
Set Mass label Original || Used
Training Benign 577 528
Malignant 637 528
Test Benign 194 131
Malignant 147 131

TP is the number of correctly predicted malignant masses,
while FP is the number of mistakenly predicted ones. Like-
wise, TN represents the number of correctly predicted benign
masses, and FN represents the number of mistakenly predicted
ones.

E. Implementation Environment

All the experiments in this study ran on the AI@Edge
cluster of ISTI-CNR, composed by four nodes, each with the
following specifications: 1x NVIDIA® A100 40 GB Tensor
Core, 2x AMD - Epyc 24-Core 7352 2.30 Ghz 128 MB, 16
x DDR4-3200 Reg. ECC 32 GB module = 512 GB.

We implemented the presented work using Python 3.9.7
on the CentOS 8 operating system and back-end libraries of
PyTorch (version 1.9.1, build py3.9-cudall.1l-cudnn8005). In
addition, for reproducibility purpose, the following code was
added to the main script:

def set_seed(seed):
random. seed (seed)
np.random. seed (seed)
torch.manual_seed (seed)
torch.cuda.manual_seed_all (seed)

This ensures that all random processes and PyTorch functions
share a common seed for the random sequence generator.

IV. RESULTS
A. CBIS-DDSM dataset

The original number of benign and malignant masses, along
with the actual number of masses obtained after cleaning and
balancing the dataset, are reported in Table III. In particular,
as a result of the cleaning process, we removed 49 benign
and 60 malignant masses from the training set and 48 benign
and 16 malignant masses from the test set. Next, based on the
more prevalent class in each set, we removed 49 malignant
masses from the training set and 15 benign masses from the
test set to balance the resulting dataset.

B. Experiment with ProtoPNet

As a result of the internal-training and internal-validation
split, each CV fold consisted of 844 and 210 original images,
respectively. Then, as a result of the data augmentation, the
internal-training subset consisted of 27852 images.

The random search with five-fold CV on the specified hy-
perparameters yielded the results reported in Table IV. There,
values in each configuration belong to the hyperparameters
domain of Table I, and are listed in the same order. For each
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Fig. 3. Average accuracy curves across the five CV folds for the selected
ProtoPNet model’s configuration. Shaded regions represent +1 - std interval
for each epoch.

configuration, we reported the values of mean and standard
deviation accuracy across the CV folds.

Based on those values, the best-performing model was
obtained in configuration 28, which has the following hyper-
parameters values:

o lr_features = le-6;

o Ilr_add_on = le-06;

o lr_prot_vector = le-6;

e WD = 16-3;

o train_batch_size = 20;

e clst =0.8;

o sep = —0.05;

o 1 =1e-4;

o num_prots_per_class = 20.

With this model, the validation accuracy was 0.763 4= 0.034.

The selected model also satisfied goodness of the learning
curves, according to the quality assessment (Fig. 3). During
the training phase, the ES condition was triggered at epoch
30. Nevertheless, 60 epochs are reported in the plot because
of the 30 patience interval epochs.

According to the training curves in Fig. 3, we re-trained
the selected model on the training set for 30 epochs. After
pruning, 9 and 2 prototypes were removed from the benign
and the malignant classes, respectively. As a result, 29 final
prototypes were retained. Then, we assessed this model on the
test set.

Finally, regarding the comparison with ResNetl8, we ob-
tained the following results. Among the 50 explored configu-
rations, the best performing model was found with the follow-
ing hyperparameters: number of re-trained last convolutional
layers = 3, LR = 1le-6, WD = 1e-3, dropout rate = 0.4. This
model reached an average validation accuracy across the five
CV folds of 0.776 £ 0.026. After re-training the model on the
whole training set for 20 epochs, we evaluated it on the test
set images.

TABLE IV

ACCURACY RESULTS FOR THE RANDOM SEARCH ON PROTOPNET’S

CONFIGURATIONS

Configuration mean + std
0:[le-6,1e-7,1e-7,1e-3,40,0.6, —0.1, le-4, 5] 0.718 £ 0.069
1:[le-6, 1le-6, 1e-6, 1e-3,20,0.8, —0.1, 1e-3, 40] 0.753 £ 0.038

2 : [le-6, 1e-7, 1e-7, 1e-3,20,0.9, —0.05, le-4, 20] 0.746 £ 0.043
3: [le-6, le-6, 1e-6, 1e-3,20,0.9, —0.08, 1e-5, 40] 0.743 £ 0.042
4 : [le-6, le-6, 1e-6, 1e-3,20,0.9, —0.05, 1e-5, 40] 0.759 £ 0.035
5: [le-7, 1e-6, 1e-6, 1e-3, 40, 0.8, —0.08, 1e-3, 20] 0.706 £ 0.056
6 : [le-7,1e-6, 1e-6, 1le-2, 20, 0.8, —0.05, le-5, 5] 0.624 £ 0.045
7:[le-7,1e-6,1e-6,1e-2,20,0.8, —0.1, 1e-3, 20] 0.698 £ 0.082
8 : [le-7,1e-6, 1e-6, 1e-2, 20, 0.6, —0.08, 1e-3, 5] 0.700 £ 0.037
9: [le-7,1le-6, 1le-7, 1e-3,20, 0.6, —0.05, 1e-5, 40] 0.713 £ 0.058
10 : [le-7,1le-6, 1le-7, 1e-2,40,0.9, —0.05, 1e-5, 5] 0.683 £ 0.042
11 : [1e-7,1e-6, 1e-7, 1e-2,40,0.6, —0.08, le-3, 40] 0.697 £ 0.057
12 : [1e-7, 1e-6, 1e-7, 1e-2, 20, 0.6, —0.05, le-5, 40] 0.697 £ 0.066
13 : [le-7,1e-7,1e-6,1e-3,40,0.6, —0.08, le-4, 5] 0.591 £ 0.055
14 : [le-7,1e-7,1e-6, 1e-3, 20, 0.8, —0.08, 1e-4, 20] 0.683 £ 0.067
15 : [1e-7,1e-7,1e-6, 1e-2,20,0.9, —0.08, 1e-3, 5] 0.668 £ 0.032
16 : [le-7,1e-7,1e-7,1e-3,40,0.6, —0.05, le-4, 5] 0.574 £ 0.030
17 : [1e-7,1e-7,1e-7,1e-3,20,0.6, —0.1, 1e-4, 5] 0.679 £ 0.045
18 : [le-7,1le-7,1e-7, 1le-2, 40, 0.6, —0.08, 1e-3, 20] 0.668 £ 0.041
19 : [1le-6, le-6, 1e-6, le-2, 20, 0.8, —0.05, 1e-5, 5] 0.748 £0.019
20 : [le-6, 1le-6, 1e-6, 1e-3, 40, 0.9, —0.05, 1e-4, 20] 0.736 £ 0.039
21 : [le-6, 1e-6, 1e-7, 1e-3,40, 0.6, —0.08, 1e-5, 5] 0.757 £0.023
22 : [le-6, 1le-6, 1e-7, 1e-3, 20, 0.8, —0.05, 1e-3, 20] 0.722 £0.018
23 : [le-6, 1le-6, 1le-7, 1e-3, 20, 0.6, —0.1, 1e-3, 40] 0.762 £ 0.036
24 : [1e-6, 1le-6, 1e-7, 1e-2, 40, 0.6, —0.05, 1e-4, 20] 0.757 £ 0.038
25 : [1e-6, le-7, 1e-6, 1e-2,40, 0.9, —0.1, 1e-3, 20] 0.732 £ 0.055
26 : [le-6, 1le-7,1e-6, 1e-2,40, 0.6, —0.1, 1e-3, 40] 0.745 £ 0.028
27 : [le-6, 1e-6, 1e-6, 1e-3, 40, 0.8, —0.08, le-5, 40] 0.743 £ 0.042
28 : [le-6, 1e-6, 1e-6, 1e-3, 20, 0.8, —0.05, le-4, 20] 0.763 £ 0.034
29 : [1e-6, le-7, 1e-6, 1e-2, 20, 0.9, —0.1, 1le-4, 20] 0.741 £ 0.040

TABLE V

TEST SET METRICS WITH BEST-PERFORMING MODELS;
AcCC. = ACCURACY, PREC. = PRECISION, REC. = RECALL

Model Acc. Prec. Rec. F1 F2 AUROC
ProtoPNet 0.685 0.658 0.769 0.709 0.744 0.719
ResNet18 0.654 0.667 0.615 0.640 0.625 0.671

The test-set metrics yielded by ProtoPNet and ResNetl8
in their independent experiments are reported in Table V. In
Fig. 4, we report an example of an explanation provided by
ProtoPNet for a test image of a correctly classified malignant
mass. Similarities with prototypes recognized by the model are
listed from top to bottom according to decreasing similarity
score of the activation. Note that the top-4 activated prototypes
correctly derive from training images of malignant masses.
Instead, towards the lower scores, prototypes originating from
other classes might be activated, in this case of benign masses.




Test image of a malignant mass
predicted as malignant by ProtoPNet
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Fig. 4. The test image of a malignant mass is correctly classified as malignant
by the model. Each row of this image represents the activation process of a
certain prototype. In the first column there is the patch found on the test
image, in the second column the activated prototype is shown together with
the training image from which it originated, in the third column is shown the
activation map with the corresponding similarity score.

V. PROTOPNET’S PROTOTYPES: A CLINICAL VIEWPOINT

Specific domain knowledge is necessary to understand and
interpret explanations provided by models such as ProtoPNet
when applied to medical images. The validity of provided
visual explanations is hardly evaluable by someone without
a background in the specific task. Furthermore, explanations
can be misleading or confusing when analyzed by non-experts.

When dealing with explainable models, one of the first
concerns is to assure that explanations are based on correct
information. Also, for such models to be interpretable and
hence helpful in the medical practice, their explanations should
use intuitions that somewhat resemble the reasoning process
of a physician. In this regard, we asked a radiologist with 16
years of experience for a clinical viewpoint on the outputs
of the selected model on a random subset of test images (15
benign, 15 malignant). In particular, we conceived three tasks
(i.e., Task 1, 2 and 3).

As before stated, ProtoPNet bases the classification outcome
and the explanation on patch similarities with a set of learned

prototypes. Therefore, we first wish to understand whether
good-quality prototypes were learned and used to characterize
each class. This was done in Task 1. We presented the
radiologist with a series of images representing the learned
prototypes from both classes and the images from which they
were extracted. We asked her to rate how much each prototype
was specific for its corresponding class on a scale from one
to five. Lower scores would be assigned to generic, not clin-
ically significant prototypes, while class-specific, meaningful
prototypes would receive higher scores. As a result of Task 1,
only 50% of the benign prototypes were considered to be of
acceptable quality, while about 88% of malignant prototypes
were deemed good by the radiologist.

Next, we would like to check that ProtoPNet was capable
of learning a meaningful concept of similarity. In this sense,
image regions that the model recognized as similar should
contain comparable clinical information. Therefore, in Task
2, we asked the radiologist to rate the activation of the
most activated prototype w.r.t each image in the selected
subset. For each case, the activated patch on the test image
and the corresponding activating prototype were given. The
rating was expressed on a scale from one to five. Activations
that shared mutual clinical information would receive higher
scores. Regarding Task 2, among the 30 activated patches
of the test images, 20 resulted as clinically similar to the
activating prototypes according to radiologist’s feedback.

Finally, we wished to figure out the degree of satisfaction
in medical end-users for the explanations provided. This was
carried out in Task 3. We presented the radiologist with
test images, each labeled with the classification yielded by
ProtoPNet, along with the explanation based on the two most
activated prototypes. She provided scores on a scale from one
to five for the overall satisfaction of such explanations. A
lower score would be assigned to explanations that highlighted
non-relevant regions or did not highlight regions on which the
radiologist would focus. Instead, if the radiologist believed the
explanation to be convincing and complete (i.e., all the relevant
regions are identified), she would have returned a higher score.
The analysis on Task 3 showed that the radiologist recognized
explanations for benign-predicted masses as sufficiently satis-
fying only in 50% of the cases. On the other hand, explanations
for malignant-predicted masses were convincing 89% of the
times.

This investigation of the explanation quality of the proposed
method, both on the detection of prototypes and the activations
correctness, is preliminary. As a by-product, the expert radi-
ologist’s feedback is a precious contribution for the design, in
the near future, of other tests to assess both the explanation’s
correctness and of explanation’s acceptance by end-users.

VI. DISCUSSION

Historically, not knowing precisely why DL models provide
their predictions has been one of the biggest concerns raised
by the scientific community. Healthcare, in particular, is one
of the areas massively impacted by the lack of transparency
of such black-box models. That is especially relevant for



automatic medical image classification, which medical practice
still strives to adopt. Explainable and interpretable Al might
overcome this issue by getting insights into models’ reasoning.
In this regard, a promising approach is that of ProtoPNet [20],
an explainable-by-design model firstly introduced in the natu-
ral images domain.

Our work aimed at exploring the applicability of proto-
typical part learning in medical images and, in particular,
in the classification of benign/malignant breast masses from
mammogram images. We assessed the applicability based on
two aspects: the ability of the model to face the task (i.e.,
classification metrics) and the ability of the model to provide
end-users with plausible explanations.

We trained a ProtoPNet model and optimized its hyper-
parameters in a random search with five-fold CV. Then, we
compared its performance to that obtained with an indepen-
dently optimized ResNetl8 model. We selected images from
CBIS-DDSM [30], a publicly available dataset of scanned
mammogram images. After, came a cleaning and balancing
process to obtain the final study cohort.

As opposed to the original paper, we utilized a hold-out test
independent from the internal-validation subset used at training
time to assess the final performance. In addition, we introduced
two-dimensional dropout and batch-normalization after each
add-on convolutional layer in the ProtoPNet architecture.

Evaluation metrics resulting from the best performing Pro-
toPNet model seem mostly higher than with the ResNetl8
architecture. In particular, we observed the most substantial
improvement in the Recall, which is of considerable interest
for this specific task. Indeed, it represents the capacity of the
model to detect positive cases: a high Recall means that the
model correctly identifies the majority of malignant masses.

In addition, ProtoPNet provides a level of transparency that
is completely missing from ResNetl18. That said, it is well
known that neural networks often use context or confounding
information instead of the information that a human would
use to solve the same problem in both medical [44] and
non-medical applications [45]. To prevent explanations to be
based on irrelevant regions of the images, we asked for the
radiologist’s viewpoint. In this regard, she provided some
helpful insights into the models’ outputs.

From Task 1, it seems reasonable to assume that ProtoP-
Net manages to learn more relevant prototypes for malig-
nant masses similar to radiologists. As in actual practice,
a suspicious finding (a non-circumscribed contour, whether
microlobulated, masked, indistinct, or spiculated), even only
in one projection, results easy to detect and justifies a recall
for further assessment. On the other hand, a benign judgment
requires an accurate bi-dimensional analysis of typical benign
findings in both projections and differential diagnoses with
overlapping tissue.

From Task 2, it appears that the model’s mathematical
concept of similarity differs from how a radiologist would
deem two regions clinically similar. The reason behind this
may be that the radiologist recalls specific features from past
experience, possibly consisting of other exams aside from

mammography and biopsy results alone. This is way broader
than the dataset the network uses for training, which strictly
consists of image-biopsy label pairs.

Finally, from Task 3, results that explanations for images
classified as malignant are, in general, more likely to be
more convincing to the radiologist. Notably, this behavior
goes in the same direction as the low clinical relevance of
benign prototypes from Task 1. Overall, the radiologist found
ProtoPNet’s explanations very intuitive and hence reported
a high level of satisfaction. This is remarkably important
because we were interested in the right level of abstraction
for explanations to foster human interpretability.

From our experiments, it seems that ProtoPNet benefits
to varying degrees from some of the notions related to the
concept of explainability defined in [46]. Completeness can
be defined as the extent to which an underlying inferential
system is described by explanations. Under this light, the
inference process of ProtoPNet is completely and transparently
presented to the user, by means of activation maps and
similarity scores.

Comprehensibility is the quality of the language used by a
method for explainability. Considering the resources deployed
to explain to a non-technical end-user, such as a physician,
the functioning of the model, we may say that ProtoPNet’s
explanations are not immediately comprehensible. It would be
preferable to have self-contained explanations.

Correctability is the capacity of a method for explainability
to allow end-users to make technical adjustments to an un-
derlying model. Thanks to the explanation provided by Pro-
toPNet at inference time, a consultation with a clinical expert
was made possible. According to their feedback, one could
envisage modifying the model or the dataset to enhance the
results’ quality. Therefore, we believe that with proper domain
knowledge ProtoPNet may benefit from high correctability.

We believe a large amount of prior domain knowledge
is necessary to evaluate the correctability and effectiveness
of ProtoPNet’s explanations. Without domain knowledge, its
results are likely to be misinterpreted. Moreover, such knowl-
edge would be necessary to properly select the number of
prototypes for each class, instead of empirically derive it from
a hyperparameters optimization.

Comparing our work with previous studies is not straight-
forward: no other work with prototypical part learning has
been done on the CBIS-DDSM dataset and benign/malignant
mass classification task. Nevertheless, we hereafter compare
our results with previous works utilizing ResNets on the same
dataset and task, albeit some of them in slightly different ways.
In the comparison, we report the accuracy as the common
performance metric across these studies. In our experiments
we achieved an accuracy of 0.654 with ResNet18 and of 0.685
with ProtoPNet. Among the ones using ResNetl8, Arora et
al. [34] and Ragab et al. [35] achieved an accuracy of 0.780 ad
0.722, respectively. Instead, among the works using different
ResNet architectures, Ragab et al. [35] achieved an accuracy of
0.711 and 0.715 when using ResNet50 and ResNet101, respec-
tively. Tsochatzidis et al. [32] deployed ResNet50 obtaining an



accuracy of 0.749. Also Alkhaleefah et al. [33] experimented
with ResNet50 in different scenarios and achieved accuracy
values between 0.676 and 0.802. Finally, Ansar et al. [36]
reported an accuracy of 0.637 by using ResNet50. Although
performance metrics reported in the previous works are in line
with ours, they are, in general, higher.

Regarding previous studies adopting a prototypical part
learning scheme to the mass classification task, not much
work has been done. To the best of our knowledge, the
work by Barnett et al. [40] is the only one, even though
the authors utilized a different (and private) dataset and a
different novel architecture, derived from ProtoPNet. Given
the different model and the private dataset they utilized, a
fair comparison may not be feasible. Besides, we achieved
an AUROC of 0.719 with ProtoPNet, which is lower than
theirs (0.840). The authors used images in combination with
a dedicated fine-annotation of relevant regions and mass
margins, and their model heavily exploits that information for
its conclusions. We point out that this is different from our
work, where ProtoPNet uses only image-level labels without
annotated images to resemble the experimental setup of the
original work on bird classification [20]. This is probably
one of the reasons for the performance discrepancies between
the two studies. However, fine-annotated images needed in
their methodology require a massive intervention by clinical
experts. Also, intending to deploy such models to fast assist
radiologists in the classification of a new image, we believe
their approach to be too dependent on annotations, therefore,
our approach may be preferable. We likely obtained acceptable
results without the complexity of the model and of the dataset
of [40].

Interestingly, the performance in [40] is somewhat similar
to that obtained on the bird classification task of the original
work introducing ProtoPNet [20]. The inclusion of information
regarding relevant regions and mass margins annotations might
have been the key to achieve such high results on the mass
classification task. However, our work shows that, by taking
the same annotation-free approach of [20], lower results might
be obtained for this task. According to our results, without
additional information to complement images, the task to
be solved is more challenging, and the problem covers a
higher level of complexity. Specifically, in images acquired
by projection, planes at different depths are fused in a single
bi-dimensional representation. That makes object separation
especially hard for these images. This implies that answering
our research question may not be as straightforward as for the
ornithology task.

Our work comes with limitations. Firstly, given the large
number of hyperparameters in ProtoPNet, we selected a subset
of them for the optimization process. Moreover, of all the
possible configurations obtainable with the chosen subset of
hyper-parameters, we evaluated the model only on a random
selection of them. That likely had an impact on the discovery
of the optimal configuration.

Secondly, due to the limited size of the utilized dataset,
our models were prone to overfitting, which affects the gen-

eralization capabilities on new images. That is particularly
true for ProtoPNet, where the entire architecture has to be re-
trained. That happened even though we took several actions
to counteract the issue. Specifically, we selected a shallower
ResNet architecture, deployed WD, and introduced dropout
and batch-normalization layers.

In addition, we provided the clinical viewpoint of a single
radiologist. We are aware that this clashes somewhat with
the subjective nature of such views: a group of differently
experienced radiologists should have been included to reach
more robust conclusions.

VII. CONCLUSION AND FUTURE WORK

Our research question was to investigate the applicability of
ProtoPNet to the automatic classification of breast masses from
mammogram images. Although a clear-cut answer might not
have been provided, this exploratory work allowed us to assess
the advantages and the weak points of this kind of approach.
The two aspects we considered to evaluate the applicability
of this approach were the classification capabilities and the
validity of explanations.

Classification results were acceptable but insufficient for
this method to enter the clinical practice. Based on the
clinical assessment, we may say that explanations provided
for malignant masses were highly plausible, valuable, and
intuitive to a radiologist. However, this is not true for benign
masses yet, and this currently invalidates the applicability of
ProtoPNet in real clinical contexts. On the other hand, this
behavior is comparable to that of a radiologist, who, typically,
finds it easier to recognize malignant masses’ characteristics.

However, our findings are promising and suggest that Pro-
toPNet may represent a compelling approach that still requires
further investigation. We believe that training this model on
more images or performing a more extensive optimization
of the model’s architecture may bring improved classification
performance. That might also increase the ability of the model
to deliver plausible explanations for benign cases.

Future work would include combining several ProtoPNet
models with different base architectures together in an ensem-
ble fashion or choosing a Vision Transformer architecture [47]
instead of a CNN model at the core of ProtoPNet. In addition,
a different initialization for the filter values could be adopted,
for example, with values learned on the same dataset using the
corresponding base architecture instead of those pre-trained on
ImageNet [25]. Moreover, in addition to geometrical transfor-
mations, one could also exploit intensity-based transformations
to try improving the networks’ generalization capabilities on
images possibly obtained with different acquisition settings.
These may include histogram equalization and random bright-
ness modification. Also, one could utilize a combination of
different mammogram images datasets to augment diversity
in the data cohort. On top of that, a dataset comprising
digital breast tomosynthesis images instead of conventional
digital mammogram images could be used. That is a pseudo-
3D imaging technique based on a series of low-dose breast
acquisitions from different angles, which has the potential to



overcome the tissue superposition issue and thus improve the
detection of breast lesions [48]. From a broader point of view,
we see the customization of ProtoPNet functioning to produce
explanations grounded in causality, instead of correlation, as
a promising future work.
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