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Abstract—Effectively classifying remote sensing scenes is still
a challenge due to the increasing spatial resolution of remote
imaging and large variances between remote sensing images.
Existing research has greatly improved the performance of re-
mote sensing scene classification (RSSC). However, these methods
are not applicable to cross-domain few-shot problems where
target domain is with very limited training samples available
and has a different data distribution from source domain. To
improve the model’s applicability, we propose the feature-wise
transformation module (FTM) in this paper. FTM transfers
the feature distribution learned on source domain to that of
target domain by a very simple affine operation with negligible
additional parameters. Moreover, FTM can be effectively learned
on target domain in the case of few training data available and
is agnostic to specific network structures. Experiments on RSSC
and land-cover mapping tasks verified its capability to handle
cross-domain few-shot problems. By comparison with directly
finetuning, FTM achieves better performance and possesses
better transferability and fine-grained discriminability. Code will
be publicly available.

I. INTRODUCTION

Remote sensing scene classification (RSSC) has attracted
much attention in the field of optical remote sensing image
processing and analysis in recent years, both due to the
availability of high spatial-resolution images and the key role
in wide applications, e.g., disaster detection [1], environmental
monitoring [2], urban planning [3]. However, effectively clas-
sifying scenes from a newly obtained remote sensing image
(RSI) is still nontrivial owing to the rich content brought by
high-resolution, imaging conditions, seasonal changes and so
on. Together with the difficulty of collecting sufficient labeled
training samples, these factors make the robust-performance
of RSSC a very challenging task.

To improve the performance of RSSC, deep learning meth-
ods [4]–[6] have been widely employed in RSSC. The deep
learning based RSSC methods made use of the hierarchical
network structure and feature abstraction ability of deep mod-
els to extract robust features for classification [7]–[9] and
achieved a great success, although they usually set aside the
distribution differences between the training and testing data.
While in a more realistic setting, the distribution difference
was explicitly taken into consideration (under the framework
of domain adaption) to build more applicable RSSC models
like [10]–[12]. These methods usually require the same class
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Fig. 1. Illustration of the motivation for the proposed method. Source
domain DS has sufficient training samples for each class as shown here
airplane, forest, lake, and river. Target domain DT may have different classes
from DS and provides only few training samples for each class (here 3
samples for paddy field, river, and lake, respectively). As shown here, DS

and DT have a significant domain gap. The proposed FTM tries to transfer
the feature distribution learned on DS to matching that of DT by an
affine transformation with a negligible number of additional parameters, thus
improving the applicability of models learned on DS to cross-domain few-
shot tasks.

distribution in the source and target domains. In addition,
existing methods are almost all built on the prerequisite that
sufficient training samples are available on target domain.
This is, however, a very strict constraint on many real RSSC
applications, especially in those target samples from a different
distribution.

To address the difficulty of cross-domain RSSC tasks with
few training samples, we propose a feature-wise transforma-
tion module (FTM) in deep CNNs with a two-stage training
strategy. FTM borrows the idea from feature-wise linear mod-
ulation (FiLM) [13] but works in the unconditional setting
and can be inserted in every convolutional layer. It attacks
the cross-domain problem by transforming the distribution of
features learned on source domain into matching that of target
domain (see Fig 1). To achieve this, a pair of scale and shift
vectors is applied to convolutional layers element-wisely. This
pair of vectors, however, is not learned on source domain
with the backbone network parameters, but instead trained
on target domain without touching those already learned
backbone parameters on source domain, which is different
from [13]–[15] where the FiLM parameters are learned with
the backbone network in an end-to-end manner. This two-
stage training strategy can also alleviate the phenomenon of
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overfitting on target tasks with few labeled training samples
due to the parsimonious parameters involved in the second
training stage. Generally, the separated training strategy and
the parsimonious usage of parameters in FTM make it well
adapted to scenarios with limited labeled training samples and
class distribution mismatching between domains. We compare
FTM with directly finetuning in this study and show its
better prediction performance, transferability, and fine-grained
discriminability. We notice that there is no existing work to
deal with this problem in RSSC and we approach this problem
in this study with the following contributions:

• We propose FTM for cross-domain few-shot RSSC. FTM
transforms the feature distribution of source data into
those matching the target data via an affine transforma-
tion.

• We propose a two-stage training strategy in which only
FTM parameters are involved in the second training stage
on target task, thus alleviating the overfitting problem.

• We validate the effectiveness of FTM on a constructed
cross-domain few-shot dataset in RSSC and demonstrate
its applicability to land cover mapping tasks.

II. RELATED WORK

Remote sensing scene classification (RSSC) has gained
great progress in recent years since the publication of several
benchmark datasets such as AID [16] and NWPU [17], which
promotes the application of deep models in RSSC. In the
early studies, researches focus on directly transferring deep
features [9] or exploring deep network structures to utilize
multi-layer [7], [18], [19] or multi-scale features [20]–[22],
thus fully exploiting granularity information in RSIs [23].
Another line of research highlights the importance of local
structures and geometries and proposes to combine them with
global features for more discriminative representation [24]–
[26]. Recently, the attention mechanism is further incorporated
to selectively attend informative areas [27] or assign objects
with different weights for feature fusion [8]. In addition,
nonlocal attentions are also studied to integrate long-range
spatial relationship for RSSC [28]. Although the mainstream
deep learning methods are absorbed quickly by the RSSC field
and much progress has been achieved, these methods, however,
are not applicable to our setting in this paper where the training
and testing data has different distributions.

Few-shot learning (FSL) has attracted much attention in
recent years where the target tasks have very few train-
ing samples available. To tackle this problem, three kinds
of methodologies are usually employed. The metric-learning
based methods [29]–[31] target at learning an embedding
space where an off-the-shelf or learned metric can perform
well. In contrast, the meta-learning based methods [32]–[34]
aim to make the learned model can fast adapt to unseen
novel tasks at the test stage. Recently, the finetuning based
methods [35] report exciting results by exploiting multiple
subspaces [36] or assembling multiple CNN features [37].
Meanwhile, FSL is also developed in settings like incremental
learning [38], [39], cross-domain [14], [40], etc. However,

very few works investigate FSL in RSSC while it is the core
problem in this study.

Domain adaption (DA) has gone through thorough studies
and been introduced into RSSC for a long time. The research
of DA in RSSC mainly borrows ideas of existing DA ap-
proaches such as by finetuning models on target domain [3],
by minimizing the maximum mean discrepancy between the
source and target data distributions [11]. [10] proposes
combining the marginal and conditional distributions for more
comprehensive alignment, AFGAN [41] captures structures
behind data and local information for fine-grained align-
ment. In addition, the class distribution misaligned problem
is investigated in [12] by multisource compensation learning.
Nevertheless, these methods assume sufficient training samples
available on target domain. [42] studies the cross-domain task
with limited target samples in RSSC, their training samples
on the target domain is, however, orders of magnitude larger
than our’s.

III. APPROACHES

In this section, we propose FTM in deep CNNs that adapts
the feature distribution learned on source domain to that of
target domain. Assuming a well-labeled large-scale dataset and
a newly acquired RS image with a small number of labeled
samples annotated from it, we define two domains, the source
domain DS and the target domain DT , respectively. The data
of the two domains can from different classes, CS 6= CT and
CS ∩ CT 6= Ø. Our approach first learns a backbone network
on DS , and then adapts the backbone feature maps by FTM
on DT without touching the backbone network parameters.
In the following, we start by introducing FTM, followed by
describing its training strategy and then present the FTM
network.

A. Feature-wise Transformation Module

Modern deep CNNs usually include BN [43] layers that re-
duce internal covariate shift and preserve feature distributions
via a learned affine transformation for training efficiency. This
operation inspires us to model different feature distributions
by adjusting the feature maps activations of a learned CNN,
expecting it can perform well on a different domain with few
training examples.

Supposing a backbone network has been trained on DS .
Feature-wise transformation module (FTM) transforms the
feature maps by a pair of scale and shift vectors (γ,β).
Concretely, assuming the feature maps of an input X ∈
R3×H×W from the l-th layer is f l ∈ RC×H′×W ′

, FTM
transforms the distribution of f l by modulating its activations:

f̃ l
c = γl

c � f l
c + βl

c, (1)

where the subscript c represents feature channel indices and �
means element-wise multiplication, γl,βl ∈ RC are learnable
parameters. FTM approaches the distribution change of f l

by independently changing each feature map’s activations.
Compared to FiLM [13], where (γ,β) are generated by a
conditioning network, FTM works in a unconditional setting
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Fig. 2. Overview of the proposed FTM network. The detail of the FTM-ed residual block is depicted in Fig. 3(b). Our approach first trains a backbone
network (shaded by gray blocks) on the source domain DS and then uses it to initialize a corresponding FTM network (shaded by blue blocks). The aligned
parts between the two networks are then fixed and only the remained parts of the FTM network are learned on the target domain DT by LDT

CE . The light
green blocks are shared. Best viewed in color.

and simply initializes γ and β to 1 and 0, respectively, and let
it adapt with the learning on target domain. By noting that the
BN transform recovers feature activations through an affine
operation, FTM further adapts it to a large range and recovers
the BN transform at γ = 1 and β = 0. This simplification
not only benefits the optimization of FTM on few-shot tasks
but also preserves the properties of FiLM.

B. Optimization

To alleviate the overfitting phenomenon of deep CNNs with
FTM on target domain with few labeled training samples, we
study a two-stage learning strategy for optimization. Recalling
that our target is transforming the feature distribution learned
on source domain into that of target domain, we prefer to
keep the backbone parameters unchanged and only train FTM
on target data. To this end, we first optimize the backbone
network by regular training on DS , then we fix the backbone
network parameters and optimize FTM parameters {γ,β} on
DT through SGD.

Intuitively, we put FTM between the BN layers and nonlin-
ear activations. This operation, however, will cause the shift of
mid-level feature activations if we keep the backbone network
parameters untouched, thus complicating optimization. To this
end, we free the statistics of BN layers by making them
adapt to input changes, and leave the shift in activations to
be compensated by {γ,β}.

C. The FTM Network

We instantiate our FTM network on the backbone of
ResNet-34 [6]. It is worth noting that FTM is agnostic to
specific CNN structures and we choose ResNet-34 just for
simplicity. ResNet-34 includes one convolutional stem and 4
stages each with several residual blocks. Each residual block
has two convolutional layers to form a shortcut connection.
We construct the corresponding FTM network by inserting
FTM after the BN layer of the second convolutional layer of
the last residual block in one or several stages. For simplicity,
we insert FTM after the BN layer of conv5 3 in ResNet-34
to illustrate its strength in this work. The transformed feature
maps are then rectified by ReLU [44] and globally averaged
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Fig. 3. (a) The shaded part is FTM, which operates on feature maps channel-
wise. ⊗ and ⊕ represent element-wise multiplication and addition. (b) A
FTM-ed residual block.

pooled to be fed into a softmax function for classification.
Fig. 3 shows the FTM-ed residual bock in conv5.

IV. EXPERIMENTS

In this section, we evaluate the transferability of the FTM
network on two cross-domain few-shot applications: a RSSC
task and a land-cover mapping task.

A. Datasets

Two datasets from different imaging conditions are collected
as the source and target domains, respectively. The source
domain data are from NWPU-RESISC45 [17], which has 700
of size 256×256 Google Earth RGB images for each class with
a total of 45 scene classes such as residential areas, basketball
courts, and commercial areas. The target domain data are from
the R, G, and B channels of GID [3] multispectral images,
which are collected from Gaofen-2 satellite with a spatial
resolution of 4m. GID provides two subsets – a large-scale
classification set (Set-C) and a fine land-cover classification
set (Set-F). Set-C includes 150 and 30 training and validation
images of size 6800× 7200 with each pixel annotated into 5
coarse categories. Set-F has a subset of 6, 000 image patches
with train/val/testing 1500/3750/750 respectively. The image
patches are of size 224×224 and belong to 15 fine categories,



TABLE I
LEARNING HYPER-PARAMETERS OF FTM AND FT ON DT .

batch epochs lr step decay opt

FT 64 50 0.001 15 0.1 Adam

FTM 64 50 0.003 15 0.1 Adam

Fig. 4. The confusion matrices of finetuning (left) and FTM (right) networks
on the testing set of Set-F. Both networks are trained with 10 shots on Set-F.

which are subcategories of the 5 coarse categories. Set-F is
used as DT and images from Set-C are only used for land-
cover mapping evaluation. We report the average performance
over 5 trials on the RSSC task.

B. Implementation

We experiment with a FTM network based on the ResNet-
34 backbone. The ResNet-34 pretrained on ImageNet [45] is
first employed to learn on DS , where random crops of size
224×224 are used for training and 100 images from each class
are kept for validation. We train ResNet-34 by Adam [46] on
DS for 30 epochs with batch size 128, lr 10−4, and decay lr
by 0.1 every 10 epochs. After this stage, we select the best-
performed one to initialize the FTM network, keep the aligned
parameters fixed, and learn the remained parameters on DT for
the RSSC task. The learning hyper-parameters are presented
in Table I. For the land-cover mapping task, we classify every
pixel into one of the 5 coarse classes by combining the output
probabilities of subcategories that belong to the same coarse
category.

Baseline: we compare FTM network with the finetuning
(FT) method, which directly finetunes the best-performed
ResNet-34 trained on DS on DT . The finetuning hyper-
parameters are in Table I

C. Experimental Results

RSSC Results. Table II compares the performance of
finetuning and FTM under various cross-domain few-shot
settings. The results are obtained from the Set-F testing set
with models trained on different shots ranging from 3 to 50,
and show that FTM improves the performance over finetuning
by 3.1% on average, demonstrating the clear advantages of
FTM. In addition, Table II illustrates that the performance of

TABLE II
ACCURACY OF FINE-TUNING (FT) AND FTM METHOD ON DIFFERENT

SHOTS. THE STANDARD DEVIATIONS ARE WITHIN 0.03.

3 5 10 15 20 30 50

FT 0.50 0.57 0.65 0.71 0.73 0.73 0.81

FTM 0.53 0.59 0.69 0.73 0.77 0.77 0.84

both FTM and finetuning can be steadily improved with more
training shots and the improvement of FTM over finetuning
is relatively stable independent of the number of available
training shots. These observations validate that FTM possesses
the ability to transform the feature distribution learned on DS

into that of target domain even with very limited training shots
available on the target domain, thus alleviating the tendency
to overfitting on the target domain.

To better understand which aspects of advantages brought
by FTM, we make an analysis of the confusion matrices of
FTM and finetuning networks trained on 10 shots in Fig. 4.
It can be seen that FTM has a more concentrated diagonal
distribution than finetuning, indicating its better classification
performance, especially in those subcategories belonging to
the same coarse category. Specifically, we find that FTM can
well separate arbor woodland from shrub land and distinguish
river, lake, and pond effectively, which are respectively from
the same coarse categories – forest and water, and confused by
the finetuning method. This signifies that FTM has the ability
to transform the original feature space into a more delicate
and discriminative space where the subtle differences between
fine-grained categories can be better ascertained, even in the
case of very limited training shots available.

Land Cover Mapping Results. To verify that FTM can im-
prove models applicability to across-domain tasks, we perform
the land-cover mapping task on two randomly selected GID
images from the Set-C validation set. The two GID images
are taken from different locations and seasons shown a big
domain gap to the images in DS . For simplicity, we do not
annotate additional training samples from the two GID images
as the target domain data but directly use the Set-F training
samples as target domain data since they are obtained from the
same satellite. To achieve pixel-level mapping, we on the one
hand segment the full GID image into 224× 224 patches and
classify them by using the FTM (or finetuning) networks, on
the other hand, we segment it into 100 superpixels by using
SLIC [47] and align them with the 224×224 patches. Finally,
we assign labels to superpixels by assembling the labels of
224 × 224 patches within the corresponding superpixels and
labeling it by winner-take-all.

Table III shows the average F1 scores of finetuning and
FTM networks evaluated on the 224× 224 patches of the two
GID images. By comparison, FTM shows clear advantage over
finetuning, achieving higher performance on all categories.
Noting that there is no meadow class because the image has
no pixels belonging to it. Further, it is worth special attention
that the improvement on farmland is very significant raising



Fig. 5. The land-cover mapping results. (a) and (e) are RGB images from GID validation set. (b) and (f) are ground-truth annotations. (c, g) and (d, h) are
mapping results from FTM and finetuning, respectively. The numbers at the bottom of (c, d, g, h) are class average F1 scores evaluated on 224× 224 image
patches.

TABLE III
F1 SCORES (%) OF FINETUNING (FT) AND FTM NETWORKS ON

LAND-COVER MAPPING TASKS WITH 3 TRAINING SAMPLES EACH CLASS.

FT3 FTM3

Farmland 55.3 86.3
Built-up 80.6 90.0
Forest 35.2 53.0
Water 84.8 90.5

Average 64.0 80.0

from 55.3% to 86.3%. These improvements further validate
the wide applicability of FTM to cross-domain few-shot tasks
considering that we even do not annotate training samples from
the target image.

We further visualize the mapping results in Fig. 5. From it
we can find that GID images have large variances between
them. This poses great obstacles to model’s applicability
where large number of annotated training samples are usually
needed to retrain the model. However, FTM can alleviate
the annotation requirements. The third and fourth columns of
Fig. 5 show prediction results. By comparison, we conclude
that FTM can effectively predict main areas in the image
and keep the smoothness between neighboring superpixels. In
contrast, finetuning fails to achieve these effects and results in
fragmented superpixels. For example, large areas of farmland
are mismapped into built-up by finetuning while correctly
mapped by FTM. This is because seasonal changes cause
large differences between the source and target domains in
the farmland class, thus when the labeling information of the
target data is limited, it is incapable of the finetuning method to
effectively represent contextual properties of this scene class.
Although the visualization effects are far behind satisfaction,

we, however, should note that our purpose is to validate the
transferability of FTM across domains while not the mapping
accuracy, which can be achieved via much smaller image
patches and more superpixels.

V. CONCLUSION

In this paper, we studied a feature-wise transformation
module (FTM) that transforms feature distributions learned
on the source domain into that of target domain. FTM can
quickly adapt to target domain with very limited training data
and effectively alleviate overfitting. Experiments on RSSC
and land-cover mapping tasks verified its transferability, fine-
grained discriminability, and illustrate its advantages over the
finetuning method, especially in those cases with very limited
training shots available. Although FTM is simple, it shows
great applicability to the RS field where large domain gaps
exist and available training samples are extremely limited.
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