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Abstract—Biometric recognition is used across a variety of
applications from cyber security to border security. Recent
research has focused on ensuring biometric performance (false
negatives and false positives) is fair across demographic groups.
While there has been significant progress on the development of
metrics, the evaluation of the performance across groups, and the
mitigation of any problems, there has been little work incorpo-
rating statistical variation. This is important because differences
among groups can be found by chance when no difference is
present. In statistics this is called a Type I error. Differences
among groups may be due to sampling variation or they may be
due to actual difference in system performance. Discriminating
between these two sources of error is essential for good decision
making about fairness and equity. This paper presents two novel
statistical approaches for assessing fairness across demographic
groups. The first methodology is a bootstrapped-based hypothesis
test, while the second is simpler test methodology focused upon
non-statistical audience. For the latter we present the results of
a simulation study about the relationship between the margin
of error and factors such as number of subjects, number of
attempts, correlation between attempts, underlying false non-
match rates(FNMR’s), and number of groups.

I. INTRODUCTION

Biometric recognition is a technology that has broad appli-
cation for border security, e-commerce, financial transactions,
health care, and benefit distribution. With its explosion in
use, there are concerns about the fairness of solutions across
the broad spectrum of individuals, based on factors such as
age, race, ethnicity, gender, education, socioeconomic status,
etc. In particular, since biometric recognition has a possibil-
ity of error, both false negatives (false rejection) and false
positives (false acceptance), the expectation is that solutions
have performance which are “fair” across demographic groups.
Buolamwini, et. al. found that gender classification based
on a single face image had a higher error rate for darker-
skinned females with a high 34.7% error rate, compared
to other groups (intersections of skin types and genders)
[1], [2]. While focused on gender classification rather then
face recognition, these papers brought considerable attention
to this issue. Others found demographic differences in face
recognition for some algorithms and systems [3], [4].

To quantify the equitability of the various face recognition
algorithms, multiple metrics have been proposed to evaluate
fairness. ProposedFairness Discrepancy Rate (FDR) weights
the two types of errors seen in biometric recognition (false
accept and false reject rates), either equally or otherwise, and
balances FDR across groups [5]. The U.S. National Institute
of Standards and Technology (NIST) introduced the Inequity
Rate (IR) metrics for face recognition algorithm performance
testing and [6] proposed two interpretibility criterion for
biometric systems, i.e. Functional Fairness Measure Criteria
(FFMC) and Gini Aggregation Rate for Biometric Equitability
(GARBE). In other artificial intelligence (AI) research, evalu-
ation metrics include demographic parity, equalized odds, and
equal opportunity [7] [8] [9] [10].

However, with all of these active research and analyses,
there has been limited contribution towards recommending
appropriate statistical methods for determining when two or
more groups are “equal” or not. This is essential, as any metric
when measured in a sample, will have uncertainty which
is a function of variability, correlation, number of groups,
and other factors. This uncertainty can be measured through
statistical methods, e.g. confidence intervals, to determine
the likelihood that differences are found by chance or are
a true difference. Given that exact “equality” is unlikely, if
not impossible, for a set of groups, these methods allow for
appropriate conclusions to be drawn from results.

This paper focuses on statistical methods for fairness solely
for false negatives. Biometric solutions used widely by the
public are typically based on “verification” or one-to-one
matching. A false negative error is when the correct individual
is falsely rejected, e.g., does not match their enrollment
on a mobile device, passport, bank, or government benefits
provider. This “error” may block an individual from accessing
benefits which they are entitled to. The goal of this paper is
to consider the statistical methods to address differences in
false non-match rates based on number of subjects, number
of attempts, correlation in attempts, and number of possible
demographic groups in the test. The number of subjects and
number of attempts can decrease the variability as the number
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of subjects and attempts increase; whereas, incorporating the
correlation between number of attempts may increase sample
variability. Most importantly, the number of demographic
groups being compared impacts the variation as an increased
number of groups increases the chances that a difference be-
tween groups may be found “by chance”, and thus adjustments
need to be made in the test due to this effect, often called
multiplicity [11].

This paper develops two approaches to detecting differences
in FNMR’s between demographic groups. Additionally, we
explore the trade-off among variation parameters based on
simulations of a hypothetical equity study. In addition to
giving guidance on expected outcomes of such a study, this
paper will provide suggestions for “practical” thresholds that
could be used for when to say that a group is different that
would minimize the possibility that that difference was based
upon chance alone. In the next section we discuss related
statistical work that has been done to assess differences in
FNMR’s between groups. Section III introduces the basic
statistical structures needed to estimate variation in FNMR
estimation. A bootstrap hypothesis test for the equality of
FNMR across G groups is presented in Section IV, as well
as a simplified alternative that yields a margin of error for
detecting differences among groups. That section also includes
results of a simulation study. We summarize and discuss this
work and possible alternatives in Section V.

II. RELATED WORK

In this section, we discuss other work on statistical meth-
ods for comparison of bioauthentication across demographic
groups. The NIST Information Technology Laboratory (ITL)
quantifies the accuracy of face recognition algorithms for the
demographic groups of sex, age, and race [3]. A component
of the evaluation focuses on FNMR for one-to-one verification
algorithms on four large datasets of photographs collected in
U.S. governmental applications (domestic mugshots, immigra-
tion application photos, border crossing, and visa applications).
For high-quality photos, FNMR was found to be low and it
is fairly difficult to measure false negative differentials across
demographics. Compared to high-quality application photos,
the FNMR is higher for lower-quality border crossing images.
Similar observations regarding image quality have been made
by others, e.g. [4]. A measure of uncertainty is calculated for
each demographic group based on a bootstrapping approach.
In bootstrapping, the genuine scores are sampled 2000 times
and the 95% interval is plotted providing bounds for each
group. No method was presented to suggest when an algorithm
might be ”fair” under uncertainty. A notional approach might
be to declare an algorithm fair if the intervals plotted overlap
across all combinations of groups. This, however, does not
fully address the possibility of Type I errors.

Cook et al. [4] examined the effect of demographic factors
on the performance of the eleven commercial face biometric
systems tested as part of the 2018 United States Department
of Homeland Security, Science and Technology Directorate
(DHS S&T) Biometric Technology Rally. Each participating

system was tasked with acquiring face images from a diverse
population of 363 subjects in a controlled environment. Bio-
metric performance was assessed by measuring both efficiency
(transaction times) and accuracy (mated similarity scores using
a leading commercial algorithm). The authors quantified the
effect of relative facial skin reflectance and other demographic
covariates on performance using linear modeling. Both the
efficiency and accuracy of the tested acquisition systems
were significantly affected by multiple demographic covariates
including skin reflectance, gender, age, eyewear, and height,
with skin reflectance having the strongest net linear effect
on performance. Linear modeling showed that lower (darker)
skin reflectance was associated with lower efficiency (higher
transaction times) and accuracy (lower mated similarity scores)
[4]. While statistical significance of demographic factors was
considered based on a linear model of match scores, this
approach may not be applicable for assessing commercial
systems which operate at a fixed threshold.

de Freitas Pereira and Marcel [5] introduce the Fairness
Discrepancy Rate (FDR) which is a summary of system
performance accounting for both FNMR and FMR. Their
approach uses a “relaxation constant” rather than trying to
assess the sampling variation or statistical variation between
FNMR’s from different demographic groups. Howard et al.
[6] present an evaluation of FDR noting its scaling problem.
To address this scaling problem, the authors propose a new
fairness measure called Gini Aggregation Rate for Biometric
Equitability (GARBE).

Other research has also performed extensive evaluations of
face recognition across demographic groups, e.g. [12], but
have not presented statistical methods as part of their work.

III. VARIANCE AND CORRELATION STRUCTURE OF FNMR

Statistical methods for estimation of FNMR’s are dependent
upon the variance and correlation of matching decisions. In
this section, we present the basic statistical structures for a
single FNMR following [13]. This structure forms the basis
for the statistical methods that we present in the next sections.
Let Dii j represent the decision for the jth pair of captures or
signals collected on the ith individual, where n is the number
of individuals, i = 1, . . . ,n and j = 1, . . . ,mi. Thus, the number
of sample pairs that are compared for the ith individual is mi,
and n is the number of different individuals being compared.
The use of mi implies that we are allowing the number of
comparisons made per individual to vary across individuals.
We then define

Dii j =

 1 if jth pair of signals from individual i
is declared a non-match,

0 otherwise.
(1)

We assume for the Dii j’s that E[Dii j] = π and V [Dii j] =
π(1−π) represent the mean and variance, respectively. Thus,
π represents the FNMR. We assume that we have a stationary
matching process within each demographic group and implicit
in this assumption is that we have a fixed threshold within each



group. Our estimate of π , the process FNMR, will be the total
number of errors divided by the total number of decisions:

π̂ = [
n

∑
i=1

mi

∑
j=1

Dii j]/[
n

∑
i=1

mi]. (2)

Following Schuckers [14], [15], we have the following
correlation structure for the D′ii js:

Corr(Dii j,Di′i′ j′) =

 1 if i = i′, j = j′

ρ if i = i′, j 6= j′

0 otherwise.
(3)

This correlation structure for the FNMR is based upon the idea
that the there will only be correlations between decisions made
on signals from the same individual but not between decisions
made on signals from different individuals. Thus, conditional
upon the error rate, there is no correlation between decisions
on the ith individual and decisions on the i′ th individual, when
i 6= i′. The degree of correlation is summarized by ρ .

Then we can write the variance of π̂ , the estimated FNMR,
as

V [π̂] = N−2
π π(1−π)[Nπ +ρ

n

∑
i=1

mi(mi−1)] (4)

where Nπ = ∑
n
i=1 mi. An estimator for ρ is given by:

ρ̂ =

∑
n
i=1 ∑

mi
j=1 ∑

mi
j′=1
j′ 6= j

(Dii j− π̂)(Dii j′ − π̂)

π̂(1− π̂)∑
n
i=1 mi(mi−1)

. (5)

Models like that found in (3) are known as intra-individual
or intra-class models and have been studied extensively in
the statistics literature, e.g. Fleiss et al. [16], Williams [17]
or Ridout et al. [18]. The parameter ρ in the models above
represents the intra-class correlation. This measures the degree
of similarity between the decisions made on each individual.
If the decisions on each individual are varying in a way
that suggests that the decisions are not dependent upon the
individual then ρ is zero, meaning that the observations are
uncorrelated. Negative values of ρ are possible but such values
suggest that decisions on signals from the same individual are
less similar to each other than they are to all of the other
decisions. This seems unlikely to be the case in the context
of biometric authentication. Several authors, including Fleiss
et al. [16], have suggested using the following alternative way
of writing (4)

V [π̂] = N−1
π π(1−π)(1+(m0−1)ρ) (6)

where m0 =
∑

n
i=1 m2

i
Nπ

. If mi = m for all i, then Nπ = nm and the
variance of π̂ from (6) becomes V [π̂] = (nm)−1π(1−π)(1+
(m−1)ρ).

The intra-class correlation has a direct relationship with the
variance of π̂ . As ρ increases, the variance in both cases
increases. This is a consequence of the lack of independent
information from each individual. If ρ is large, then each
additional decision on a previously observed individual is
providing little new information.

IV. STATISTICAL METHODS FOR MULTIPLE FNMR’S

To evaluate and assess if different FNMR’s are detectably
different1, we need to understand the variation due to sam-
pling. In equity studies across different demographic groups,
we need to account for the sampling variation from each of
the G groups. For what follows we will assume that there
are G demographic groups across multiple dimensions. For
example, if a study wants to compare four ethnic groups,
five education levels, three genders and five age groups,
then G = 4 + 5 + 3 + 5 = 17. Methods for comparisons of
different demographic groups on their FNMR’s generally
involve comparing FNMR’s across three or more categories.
These methods are more advanced and more sophisticated than
those for comparing two groups or for comparing a single
group to a specific value. See [13] for methods involving
one or two FNMR’s. Below we present and discuss statistical
methods for determining if there are detectable differences
between FNMR’s among G independent groups. This single
methodology is preferable to testing multiple times which
yields potentially higher rates of Type I errors. Below we
begin with a bootstrap hypothesis test and that is followed
by a simplified version that may be more easily understood
by a broad audience.

A. Bootstrap Hypothesis Test

Since the individuals and decisions are independent between
groups, we bootstrap each group separately to mirror the
variability in the sampling process. As with an analysis of
variance (ANOVA), we use a test statistic similar to the
usual F-statistic and then we compare the observed value
to a reference distribution composed of bootstrapped values.
Formally, our hypotheses are: H0 : π1 = π2 = π3 = . . . =
πG, vs H1 : at least one πg is different .

1) Calculate

F =

[
∑

G
g=1 N(g)

π (π̂g− π̂)2
]
/(G−1)[

∑
G
g=1 N(g)

π π̂g(1− π̂g)(1+(m(g)
0 −1)ρ̂g)

]
/(N−G)

(7)
for the observed data where

π̂ =
∑

G
g=1 N(g)

π π̂g

∑
G
g=1 N(g)

π

, π̂g =
∑

ng
i=1 ∑

m(g)
i

j=1 D(g)
ii j

∑
ng
i=1 m(g)

i

(8)

and N = ∑
G
g=1 N(g)

π . Here π̂ is the (weighted) average of
the FNMR’s across the G groups.

2) For each group g, sample ng individuals with replace-
ment from the ng individuals in the gth group. Denote
these selected individuals by b(g)1 ,b(g)2 , . . . ,b(g)ng . For each
selected individual, b(g)i , in the gth group take all the
m

b(g)i
non-match decisions for that individual. Call these

1We are using detectably different here in place of significantly different.
See [19].



selected decisions D(g)

b(g)i b(g)i j
’s with j = 1, . . . ,m

b(g)i
and

calculate

π̂
b
g =

∑
ng
i=1 ∑

m
b(g)i

j=1 D(g)

b(g)i b(g)i j

∑
ng
i=1 m

b(g)i

− π̂g + π̂. (9)

3) Repeat the previous two steps some large number of
times, K, each time calculating and storing

Fπ =

[
∑

G
g=1 N(g)

π (π̂b
g − π̄b)2

]
/(G−1)[

∑
G
g=1 N(g)

π π̂b
g (1− π̂b

g )(1+(m(g)b
0 −1)ρ̂b

g )
]
/(N−G)

.

(10)
Here π̄b represents the calculations given above applied
to the bootstrapped matching decisions,

π̄
b =

∑
G
g=1 N(g)b

π π̂b
g

∑
G
g=1 N(g)b

π

, (11)

where N(g)b
π = ∑

ng
i=1 m

b(g)i
. The values for ρ̂b

g and m(g)b
0

are found by using the usual estimates for those quan-
tities applied to the bootstrapped decisions from the gth

group.

4) Then the p-value for this test is p =
1+∑

K
ς=1 I{Fπ≥F}

K+1 .
5) We will conclude that at least one of the FNMR’s is

different from the rest if the p-value is small. When a
significance level is designated, then we will reject the
null hypothesis, H0, if p < α .

We adjust our bootstrapped sample statistic, here π̂b, to center
their distributions of the FNMR’s in each group in accordance
with the null hypothesis of equality between the G FNMR’s. In
this case we center with respect to our estimate of the FNMR,
π̂ , assuming all of the FNMR’s are identical.

B. Simplified Alternative Methodology for Broad Audience
Reporting

The methods of the previous subsection may be difficult to
explain to a broad, non-technical audience. Consequently, in
this section, we propose a methodology for simplifying the
testing of multiple FNMR’s across demographic groups. That
is, we will conclude that a particular subgroup g has a different
FNMR if its observed FNMR is outside of the interval created
by taking the average FNMR, π̂ , and adding and subtracting a
margin of error, M. This methodology is more straightforward
for explaining to decision makers and to wide audiences and
takes advantage of the common usage of the margin of error.

In order to generate a single margin of error for all G groups,
we bootstrap the differences of each FNMR from the overall
FNMR, then use the distribution of the maximal absolute
differences to obtain M. This approach is the following:

1) Calculate the estimated overall FNMR, π̂ and the esti-
mated FNMR for each group, π̂g, for g = 1, . . . ,G.

2) Sample with replacement the individuals in each group
following Step 2) of the bootstrap approach above and

Fig. 1: The top subfigure has all G = 20 group FNMR’s fall
between the bounds (dotted lines) generated by adding and
subtracting a margin of error, M, from the overall FNMR
(dashed lines), while the bottom subfigure has three subgroups
(in red) that fall outside of these bounds.

calculate π̂b
g , the scaled bootstrapped estimated FNMM

for group g.
3) Calculate and store φ = maxg |π̂b

g − π̂| using the notation
from Equation 9 of the bootstrap approach.

4) Repeat the previous two steps K times where K is large,
say more than 500.

5) Determine M by finding the 1−α/2th percentile from
the distribution of φ .

The maximal differences, the φ ’s, are calculated from
each group FNMR which are scaled to (subtracted from)
the overall mean, so the distribution for φ that assumes
variation if all of the FNMR’s are equal. From this approach a
range,(π̂−M, π̂ +M), of acceptable variation from the overall
estimated FNMR, is generated. The probability that a sample
group FNMR would be outside of this interval by chance is
α×100% if all the groups are equal. To get a 100(1−α)%
interval, use α = 0.05. Thus, if M = 0.03 is the 95th percentile
of the distribution of φ ’s and π̂ = 0.10, the probability of a
group g having an FNMR be within 3% of the overall FNMR
is at least 90%. To illustrate this visually, consider Figure 1
where the top subfigure has no group FNMR’s outside our
interval while the bottom subfigure has three groups outside
the generated bounds of 0.07 and 0.13. Thus, the practical use
of this methodology is to produce an easily comprehensible
range of values that would not be different from the overall
FNMR and, likewise, yield a clearly delineated way to identify
those groups with FNMR’s that are statistical different from



Simulation Study Results for Margin of Error (M) versus Number of Groups (G)

(a) n=100, m=2, ρ=0.05 (b) n=100, m=3, ρ=0.05 (c) n=100, m=6, ρ=0.05

(d) n=200, m=2, ρ=0.05 (e) n=200, m=3, ρ=0.05 (f) n=200, m=6, ρ=0.05

(g) n=800, m=2, ρ=0.05 (h) n=800, m=3, ρ=0.05 (i) n=800, m=6, ρ=0.05

Fig. 2: Results of simulation study for margin of error (M) as a function of number of individuals (n), number of attempts
(m), correlation between attempts (ρ), and FNMR (π). Subfigures are organized by columns where m increases from left to
right and by rows where n increases from top to bottom. Each figure plots M versus G for fixed ρ=0.05 and with different
values for π denoted by color.

the overall mean.
Simulation Study

To better understand how M depends upon the parameters
of our model, we performed a simulation study. Given
G groups, n subjects/group, m attempts per subject,
π as the FNMR rate, and ρ as the correlation within
subjects, we randomly generated false non match rates,
π̂g, for each group 1000 times and calculated M as
above. We ran all combinations of the following values
for each parameter: π = 0.025,0.05,0.10,0.15,0.20,
ρ = 0.05,0.15,0.25,0.35,0.45, n = 100,200,400,800,
m = 2,3,4,6,10 and G = 3,4,5,6,10,15,20,30. Our values
for ρ were selected to cover the values for estimated intra-
individual correlations found in [13]. We fixed α at 0.05 for
these simulations. Figures 2 and 3 show summaries of the
results of these simulations with M rounded to three decimal
places with α = 0.05 in all cases. Figure 2 shows simulation
results for various values of n, the subfigure rows, m, the
subfigure columns and π , colors within each subfigure while

the intra-individual correlation ρ was fixed at 0.05 for these
graphics. Within each subfigure, we have plotted M versus G
and denoted different values of π by different colors. From
each subfigure, we can see that M grows as G increases
though the amount of increase in M slows as G gets larger
than 10. Moving down subfigure rows, ie. as n increases we
see that M decreases. Similarly, going from left to right across
subfigure columns, i.e. as m increases we see decreases in
M. Within each subfigure we can see that M becomes smaller
as π decreases. In Figure 3, we have plotted M versus G
and varied a single parameter (denoted by different colors)
in each subfigure at the values given above while fixing the
other parameters at n = 400, π = 0.10, ρ = 0.05 and m = 2.
From these values, we can see the impact of n, the number of
individuals per group has the largest impact on M, followed
by π , the overall FNMR, then m, the number of attempts per
individual, and ρ the intra-individual decision correlation.
Only ρ is negatively associated with the size of M. The
impacts of m and ρ are tied together because of the nature of



Simulation Study Results for Margin of Error (M) versus Number of Groups (G)

(a) π=0.1, m=2, ρ=0.05 (b) n=400, π=0.1, ρ=0.05

(c) n=400, m=2, π=0.1 (d) n=400, m=2, ρ=0.05

Fig. 3: Within each graph we vary different parameters from our simulation while fixing the others: each color is a varying n
(subfigure a); varying m (b); varying ρ (c); and varying π (d)

FNMR data. While not shown in either of these figures, our
simulations show that there is a positive, though not linear,
relationship between ρ and M.

V. DISCUSSION

Equity and fairness in biometrics are important issues.
The declaration of differences between demographic groups
is a consequential one. Such conclusions about differences
between groups need to be statistically sound and empiri-
cally based. In this paper, we have proposed two approaches
for testing for statistically detectable differences in FNMR’s
across G groups. Our first approach uses the F-statistic as a
metric and builds a reference distribution for that statistic via
bootstrapping. As mentioned above, this methodology, while
valid and appropriate, is not easy to explain. Our second
approach attempts to remedy this drawback. The second ap-
proach is to bootstrap maximal differences among the FNMR’s
in the G groups assuming a known equal FNMR across all
groups, then generates a margin of error, M, to be added
and subtracted to the overall FNMR for delineating which
groups or subgroups are statistically different from the overall
mean. The latter approach has an advantage of being simpler
and similar to other colloquial margins of error. From our
simulation study of this simpler approach, we have confirmed
that the number of groups, G, and the number of individuals
tested, N, substantially impact the margin of error. Likewise
though to a lesser extent the intra-individual correlation, ρ ,
and the number of attempts per individual, m, impact the
size of M. Our simplified approach uses the maximal absolute

difference from the overall FNMR across the G groups. Using
this distribution we generate an interval that is the overall
FNMR plus and minus a margin of error M where M is based
upon the distribution of the maximal absolute difference. Both
of these methods, because they rely solely on thresholded
decision data are applicable for testing commercial systems.

Both of our approaches in this paper have considered
differences from the overall FNMR. but reasonable alternatives
such as maxg(

π̂g
π̂
, π̂

π̂g
) might be of interest. The importance of

being able to generate a reference distribution to allow for an
appropriate comparison to the observed statistics is critical to
any statistical evaluation regardless of the functional form of
the variation.

This paper has looked at false non-match rate but similar
methods and approaches exist for other common measures
of bioauthentication performance including failure to enrol
rates, failure to acquire rates and false match rates. See [13]
for approaches for testing and comparing differences among
multiple groups for these metrics.
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